MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bdayiun Structured version   Visualization version   GIF version

Theorem bdayiun 27829
Description: The birthday of a surreal is the least upper bound of the successors of the birthdays of its options. This is the definition of the birthday of a combinatorial game in the Lean Combinatorial Game Theory library at https://github.com/vihdzp/combinatorial-games. (Contributed by Scott Fenton, 22-Nov-2025.)
Assertion
Ref Expression
bdayiun (𝐴 No → ( bday 𝐴) = 𝑥 ∈ ( O ‘( bday 𝐴))suc ( bday 𝑥))
Distinct variable group:   𝑥,𝐴

Proof of Theorem bdayiun
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 lrcut 27818 . . . 4 (𝐴 No → (( L ‘𝐴) |s ( R ‘𝐴)) = 𝐴)
21fveq2d 6826 . . 3 (𝐴 No → ( bday ‘(( L ‘𝐴) |s ( R ‘𝐴))) = ( bday 𝐴))
3 lltropt 27786 . . . 4 ( L ‘𝐴) <<s ( R ‘𝐴)
4 fvex 6835 . . . . 5 ( O ‘( bday 𝐴)) ∈ V
5 bdayelon 27686 . . . . . . 7 ( bday 𝑥) ∈ On
65onsuci 7772 . . . . . 6 suc ( bday 𝑥) ∈ On
76rgenw 3048 . . . . 5 𝑥 ∈ ( O ‘( bday 𝐴))suc ( bday 𝑥) ∈ On
8 iunon 8262 . . . . 5 ((( O ‘( bday 𝐴)) ∈ V ∧ ∀𝑥 ∈ ( O ‘( bday 𝐴))suc ( bday 𝑥) ∈ On) → 𝑥 ∈ ( O ‘( bday 𝐴))suc ( bday 𝑥) ∈ On)
94, 7, 8mp2an 692 . . . 4 𝑥 ∈ ( O ‘( bday 𝐴))suc ( bday 𝑥) ∈ On
10 lrold 27811 . . . . . 6 (( L ‘𝐴) ∪ ( R ‘𝐴)) = ( O ‘( bday 𝐴))
1110imaeq2i 6009 . . . . 5 ( bday “ (( L ‘𝐴) ∪ ( R ‘𝐴))) = ( bday “ ( O ‘( bday 𝐴)))
12 nfv 1914 . . . . . 6 𝑦 𝐴 No
13 bdayfun 27682 . . . . . . 7 Fun bday
1413a1i 11 . . . . . 6 (𝐴 No → Fun bday )
15 fvex 6835 . . . . . . . . . 10 ( bday 𝑦) ∈ V
1615sucid 6391 . . . . . . . . 9 ( bday 𝑦) ∈ suc ( bday 𝑦)
17 fveq2 6822 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ( bday 𝑥) = ( bday 𝑦))
1817suceqd 6374 . . . . . . . . . . 11 (𝑥 = 𝑦 → suc ( bday 𝑥) = suc ( bday 𝑦))
1918eleq2d 2814 . . . . . . . . . 10 (𝑥 = 𝑦 → (( bday 𝑦) ∈ suc ( bday 𝑥) ↔ ( bday 𝑦) ∈ suc ( bday 𝑦)))
2019rspcev 3577 . . . . . . . . 9 ((𝑦 ∈ ( O ‘( bday 𝐴)) ∧ ( bday 𝑦) ∈ suc ( bday 𝑦)) → ∃𝑥 ∈ ( O ‘( bday 𝐴))( bday 𝑦) ∈ suc ( bday 𝑥))
2116, 20mpan2 691 . . . . . . . 8 (𝑦 ∈ ( O ‘( bday 𝐴)) → ∃𝑥 ∈ ( O ‘( bday 𝐴))( bday 𝑦) ∈ suc ( bday 𝑥))
2221adantl 481 . . . . . . 7 ((𝐴 No 𝑦 ∈ ( O ‘( bday 𝐴))) → ∃𝑥 ∈ ( O ‘( bday 𝐴))( bday 𝑦) ∈ suc ( bday 𝑥))
2322eliund 4948 . . . . . 6 ((𝐴 No 𝑦 ∈ ( O ‘( bday 𝐴))) → ( bday 𝑦) ∈ 𝑥 ∈ ( O ‘( bday 𝐴))suc ( bday 𝑥))
2412, 14, 23funimassd 6889 . . . . 5 (𝐴 No → ( bday “ ( O ‘( bday 𝐴))) ⊆ 𝑥 ∈ ( O ‘( bday 𝐴))suc ( bday 𝑥))
2511, 24eqsstrid 3974 . . . 4 (𝐴 No → ( bday “ (( L ‘𝐴) ∪ ( R ‘𝐴))) ⊆ 𝑥 ∈ ( O ‘( bday 𝐴))suc ( bday 𝑥))
26 scutbdaybnd 27726 . . . 4 ((( L ‘𝐴) <<s ( R ‘𝐴) ∧ 𝑥 ∈ ( O ‘( bday 𝐴))suc ( bday 𝑥) ∈ On ∧ ( bday “ (( L ‘𝐴) ∪ ( R ‘𝐴))) ⊆ 𝑥 ∈ ( O ‘( bday 𝐴))suc ( bday 𝑥)) → ( bday ‘(( L ‘𝐴) |s ( R ‘𝐴))) ⊆ 𝑥 ∈ ( O ‘( bday 𝐴))suc ( bday 𝑥))
273, 9, 25, 26mp3an12i 1467 . . 3 (𝐴 No → ( bday ‘(( L ‘𝐴) |s ( R ‘𝐴))) ⊆ 𝑥 ∈ ( O ‘( bday 𝐴))suc ( bday 𝑥))
282, 27eqsstrrd 3971 . 2 (𝐴 No → ( bday 𝐴) ⊆ 𝑥 ∈ ( O ‘( bday 𝐴))suc ( bday 𝑥))
29 oldbdayim 27803 . . . . 5 (𝑥 ∈ ( O ‘( bday 𝐴)) → ( bday 𝑥) ∈ ( bday 𝐴))
3029adantl 481 . . . 4 ((𝐴 No 𝑥 ∈ ( O ‘( bday 𝐴))) → ( bday 𝑥) ∈ ( bday 𝐴))
31 bdayelon 27686 . . . . 5 ( bday 𝐴) ∈ On
325, 31onsucssi 7774 . . . 4 (( bday 𝑥) ∈ ( bday 𝐴) ↔ suc ( bday 𝑥) ⊆ ( bday 𝐴))
3330, 32sylib 218 . . 3 ((𝐴 No 𝑥 ∈ ( O ‘( bday 𝐴))) → suc ( bday 𝑥) ⊆ ( bday 𝐴))
3433iunssd 4999 . 2 (𝐴 No 𝑥 ∈ ( O ‘( bday 𝐴))suc ( bday 𝑥) ⊆ ( bday 𝐴))
3528, 34eqssd 3953 1 (𝐴 No → ( bday 𝐴) = 𝑥 ∈ ( O ‘( bday 𝐴))suc ( bday 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3436  cun 3901  wss 3903   ciun 4941   class class class wbr 5092  cima 5622  Oncon0 6307  suc csuc 6309  Fun wfun 6476  cfv 6482  (class class class)co 7349   No csur 27549   bday cbday 27551   <<s csslt 27691   |s cscut 27693   O cold 27753   L cleft 27755   R cright 27756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-1o 8388  df-2o 8389  df-no 27552  df-slt 27553  df-bday 27554  df-sslt 27692  df-scut 27694  df-made 27757  df-old 27758  df-left 27760  df-right 27761
This theorem is referenced by:  bdayle  27830
  Copyright terms: Public domain W3C validator