MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bdayiun Structured version   Visualization version   GIF version

Theorem bdayiun 27864
Description: The birthday of a surreal is the least upper bound of the successors of the birthdays of its options. This is the definition of the birthday of a combinatorial game in the Lean Combinatorial Game Theory library at https://github.com/vihdzp/combinatorial-games. (Contributed by Scott Fenton, 22-Nov-2025.)
Assertion
Ref Expression
bdayiun (𝐴 No → ( bday 𝐴) = 𝑥 ∈ ( O ‘( bday 𝐴))suc ( bday 𝑥))
Distinct variable group:   𝑥,𝐴

Proof of Theorem bdayiun
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 lrcut 27853 . . . 4 (𝐴 No → (( L ‘𝐴) |s ( R ‘𝐴)) = 𝐴)
21fveq2d 6844 . . 3 (𝐴 No → ( bday ‘(( L ‘𝐴) |s ( R ‘𝐴))) = ( bday 𝐴))
3 lltropt 27821 . . . 4 ( L ‘𝐴) <<s ( R ‘𝐴)
4 fvex 6853 . . . . 5 ( O ‘( bday 𝐴)) ∈ V
5 bdayelon 27721 . . . . . . 7 ( bday 𝑥) ∈ On
65onsuci 7794 . . . . . 6 suc ( bday 𝑥) ∈ On
76rgenw 3048 . . . . 5 𝑥 ∈ ( O ‘( bday 𝐴))suc ( bday 𝑥) ∈ On
8 iunon 8285 . . . . 5 ((( O ‘( bday 𝐴)) ∈ V ∧ ∀𝑥 ∈ ( O ‘( bday 𝐴))suc ( bday 𝑥) ∈ On) → 𝑥 ∈ ( O ‘( bday 𝐴))suc ( bday 𝑥) ∈ On)
94, 7, 8mp2an 692 . . . 4 𝑥 ∈ ( O ‘( bday 𝐴))suc ( bday 𝑥) ∈ On
10 lrold 27846 . . . . . 6 (( L ‘𝐴) ∪ ( R ‘𝐴)) = ( O ‘( bday 𝐴))
1110imaeq2i 6018 . . . . 5 ( bday “ (( L ‘𝐴) ∪ ( R ‘𝐴))) = ( bday “ ( O ‘( bday 𝐴)))
12 nfv 1914 . . . . . 6 𝑦 𝐴 No
13 bdayfun 27717 . . . . . . 7 Fun bday
1413a1i 11 . . . . . 6 (𝐴 No → Fun bday )
15 fvex 6853 . . . . . . . . . 10 ( bday 𝑦) ∈ V
1615sucid 6404 . . . . . . . . 9 ( bday 𝑦) ∈ suc ( bday 𝑦)
17 fveq2 6840 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ( bday 𝑥) = ( bday 𝑦))
1817suceqd 6387 . . . . . . . . . . 11 (𝑥 = 𝑦 → suc ( bday 𝑥) = suc ( bday 𝑦))
1918eleq2d 2814 . . . . . . . . . 10 (𝑥 = 𝑦 → (( bday 𝑦) ∈ suc ( bday 𝑥) ↔ ( bday 𝑦) ∈ suc ( bday 𝑦)))
2019rspcev 3585 . . . . . . . . 9 ((𝑦 ∈ ( O ‘( bday 𝐴)) ∧ ( bday 𝑦) ∈ suc ( bday 𝑦)) → ∃𝑥 ∈ ( O ‘( bday 𝐴))( bday 𝑦) ∈ suc ( bday 𝑥))
2116, 20mpan2 691 . . . . . . . 8 (𝑦 ∈ ( O ‘( bday 𝐴)) → ∃𝑥 ∈ ( O ‘( bday 𝐴))( bday 𝑦) ∈ suc ( bday 𝑥))
2221adantl 481 . . . . . . 7 ((𝐴 No 𝑦 ∈ ( O ‘( bday 𝐴))) → ∃𝑥 ∈ ( O ‘( bday 𝐴))( bday 𝑦) ∈ suc ( bday 𝑥))
2322eliund 4958 . . . . . 6 ((𝐴 No 𝑦 ∈ ( O ‘( bday 𝐴))) → ( bday 𝑦) ∈ 𝑥 ∈ ( O ‘( bday 𝐴))suc ( bday 𝑥))
2412, 14, 23funimassd 6909 . . . . 5 (𝐴 No → ( bday “ ( O ‘( bday 𝐴))) ⊆ 𝑥 ∈ ( O ‘( bday 𝐴))suc ( bday 𝑥))
2511, 24eqsstrid 3982 . . . 4 (𝐴 No → ( bday “ (( L ‘𝐴) ∪ ( R ‘𝐴))) ⊆ 𝑥 ∈ ( O ‘( bday 𝐴))suc ( bday 𝑥))
26 scutbdaybnd 27761 . . . 4 ((( L ‘𝐴) <<s ( R ‘𝐴) ∧ 𝑥 ∈ ( O ‘( bday 𝐴))suc ( bday 𝑥) ∈ On ∧ ( bday “ (( L ‘𝐴) ∪ ( R ‘𝐴))) ⊆ 𝑥 ∈ ( O ‘( bday 𝐴))suc ( bday 𝑥)) → ( bday ‘(( L ‘𝐴) |s ( R ‘𝐴))) ⊆ 𝑥 ∈ ( O ‘( bday 𝐴))suc ( bday 𝑥))
273, 9, 25, 26mp3an12i 1467 . . 3 (𝐴 No → ( bday ‘(( L ‘𝐴) |s ( R ‘𝐴))) ⊆ 𝑥 ∈ ( O ‘( bday 𝐴))suc ( bday 𝑥))
282, 27eqsstrrd 3979 . 2 (𝐴 No → ( bday 𝐴) ⊆ 𝑥 ∈ ( O ‘( bday 𝐴))suc ( bday 𝑥))
29 oldbdayim 27838 . . . . 5 (𝑥 ∈ ( O ‘( bday 𝐴)) → ( bday 𝑥) ∈ ( bday 𝐴))
3029adantl 481 . . . 4 ((𝐴 No 𝑥 ∈ ( O ‘( bday 𝐴))) → ( bday 𝑥) ∈ ( bday 𝐴))
31 bdayelon 27721 . . . . 5 ( bday 𝐴) ∈ On
325, 31onsucssi 7797 . . . 4 (( bday 𝑥) ∈ ( bday 𝐴) ↔ suc ( bday 𝑥) ⊆ ( bday 𝐴))
3330, 32sylib 218 . . 3 ((𝐴 No 𝑥 ∈ ( O ‘( bday 𝐴))) → suc ( bday 𝑥) ⊆ ( bday 𝐴))
3433iunssd 5009 . 2 (𝐴 No 𝑥 ∈ ( O ‘( bday 𝐴))suc ( bday 𝑥) ⊆ ( bday 𝐴))
3528, 34eqssd 3961 1 (𝐴 No → ( bday 𝐴) = 𝑥 ∈ ( O ‘( bday 𝐴))suc ( bday 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3444  cun 3909  wss 3911   ciun 4951   class class class wbr 5102  cima 5634  Oncon0 6320  suc csuc 6322  Fun wfun 6493  cfv 6499  (class class class)co 7369   No csur 27584   bday cbday 27586   <<s csslt 27726   |s cscut 27728   O cold 27788   L cleft 27790   R cright 27791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-1o 8411  df-2o 8412  df-no 27587  df-slt 27588  df-bday 27589  df-sslt 27727  df-scut 27729  df-made 27792  df-old 27793  df-left 27795  df-right 27796
This theorem is referenced by:  bdayle  27865
  Copyright terms: Public domain W3C validator