MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bdayiun Structured version   Visualization version   GIF version

Theorem bdayiun 27860
Description: The birthday of a surreal is the least upper bound of the successors of the birthdays of its options. This is the definition of the birthday of a combinatorial game in the Lean Combinatorial Game Theory library at https://github.com/vihdzp/combinatorial-games. (Contributed by Scott Fenton, 22-Nov-2025.)
Assertion
Ref Expression
bdayiun (𝐴 No → ( bday 𝐴) = 𝑥 ∈ ( O ‘( bday 𝐴))suc ( bday 𝑥))
Distinct variable group:   𝑥,𝐴

Proof of Theorem bdayiun
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 lrcut 27849 . . . 4 (𝐴 No → (( L ‘𝐴) |s ( R ‘𝐴)) = 𝐴)
21fveq2d 6826 . . 3 (𝐴 No → ( bday ‘(( L ‘𝐴) |s ( R ‘𝐴))) = ( bday 𝐴))
3 lltropt 27817 . . . 4 ( L ‘𝐴) <<s ( R ‘𝐴)
4 fvex 6835 . . . . 5 ( O ‘( bday 𝐴)) ∈ V
5 bdayelon 27715 . . . . . . 7 ( bday 𝑥) ∈ On
65onsuci 7769 . . . . . 6 suc ( bday 𝑥) ∈ On
76rgenw 3051 . . . . 5 𝑥 ∈ ( O ‘( bday 𝐴))suc ( bday 𝑥) ∈ On
8 iunon 8259 . . . . 5 ((( O ‘( bday 𝐴)) ∈ V ∧ ∀𝑥 ∈ ( O ‘( bday 𝐴))suc ( bday 𝑥) ∈ On) → 𝑥 ∈ ( O ‘( bday 𝐴))suc ( bday 𝑥) ∈ On)
94, 7, 8mp2an 692 . . . 4 𝑥 ∈ ( O ‘( bday 𝐴))suc ( bday 𝑥) ∈ On
10 lrold 27842 . . . . . 6 (( L ‘𝐴) ∪ ( R ‘𝐴)) = ( O ‘( bday 𝐴))
1110imaeq2i 6006 . . . . 5 ( bday “ (( L ‘𝐴) ∪ ( R ‘𝐴))) = ( bday “ ( O ‘( bday 𝐴)))
12 nfv 1915 . . . . . 6 𝑦 𝐴 No
13 bdayfun 27711 . . . . . . 7 Fun bday
1413a1i 11 . . . . . 6 (𝐴 No → Fun bday )
15 fvex 6835 . . . . . . . . . 10 ( bday 𝑦) ∈ V
1615sucid 6390 . . . . . . . . 9 ( bday 𝑦) ∈ suc ( bday 𝑦)
17 fveq2 6822 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ( bday 𝑥) = ( bday 𝑦))
1817suceqd 6373 . . . . . . . . . . 11 (𝑥 = 𝑦 → suc ( bday 𝑥) = suc ( bday 𝑦))
1918eleq2d 2817 . . . . . . . . . 10 (𝑥 = 𝑦 → (( bday 𝑦) ∈ suc ( bday 𝑥) ↔ ( bday 𝑦) ∈ suc ( bday 𝑦)))
2019rspcev 3572 . . . . . . . . 9 ((𝑦 ∈ ( O ‘( bday 𝐴)) ∧ ( bday 𝑦) ∈ suc ( bday 𝑦)) → ∃𝑥 ∈ ( O ‘( bday 𝐴))( bday 𝑦) ∈ suc ( bday 𝑥))
2116, 20mpan2 691 . . . . . . . 8 (𝑦 ∈ ( O ‘( bday 𝐴)) → ∃𝑥 ∈ ( O ‘( bday 𝐴))( bday 𝑦) ∈ suc ( bday 𝑥))
2221adantl 481 . . . . . . 7 ((𝐴 No 𝑦 ∈ ( O ‘( bday 𝐴))) → ∃𝑥 ∈ ( O ‘( bday 𝐴))( bday 𝑦) ∈ suc ( bday 𝑥))
2322eliund 4946 . . . . . 6 ((𝐴 No 𝑦 ∈ ( O ‘( bday 𝐴))) → ( bday 𝑦) ∈ 𝑥 ∈ ( O ‘( bday 𝐴))suc ( bday 𝑥))
2412, 14, 23funimassd 6888 . . . . 5 (𝐴 No → ( bday “ ( O ‘( bday 𝐴))) ⊆ 𝑥 ∈ ( O ‘( bday 𝐴))suc ( bday 𝑥))
2511, 24eqsstrid 3968 . . . 4 (𝐴 No → ( bday “ (( L ‘𝐴) ∪ ( R ‘𝐴))) ⊆ 𝑥 ∈ ( O ‘( bday 𝐴))suc ( bday 𝑥))
26 scutbdaybnd 27756 . . . 4 ((( L ‘𝐴) <<s ( R ‘𝐴) ∧ 𝑥 ∈ ( O ‘( bday 𝐴))suc ( bday 𝑥) ∈ On ∧ ( bday “ (( L ‘𝐴) ∪ ( R ‘𝐴))) ⊆ 𝑥 ∈ ( O ‘( bday 𝐴))suc ( bday 𝑥)) → ( bday ‘(( L ‘𝐴) |s ( R ‘𝐴))) ⊆ 𝑥 ∈ ( O ‘( bday 𝐴))suc ( bday 𝑥))
273, 9, 25, 26mp3an12i 1467 . . 3 (𝐴 No → ( bday ‘(( L ‘𝐴) |s ( R ‘𝐴))) ⊆ 𝑥 ∈ ( O ‘( bday 𝐴))suc ( bday 𝑥))
282, 27eqsstrrd 3965 . 2 (𝐴 No → ( bday 𝐴) ⊆ 𝑥 ∈ ( O ‘( bday 𝐴))suc ( bday 𝑥))
29 oldbdayim 27834 . . . . 5 (𝑥 ∈ ( O ‘( bday 𝐴)) → ( bday 𝑥) ∈ ( bday 𝐴))
3029adantl 481 . . . 4 ((𝐴 No 𝑥 ∈ ( O ‘( bday 𝐴))) → ( bday 𝑥) ∈ ( bday 𝐴))
31 bdayelon 27715 . . . . 5 ( bday 𝐴) ∈ On
325, 31onsucssi 7771 . . . 4 (( bday 𝑥) ∈ ( bday 𝐴) ↔ suc ( bday 𝑥) ⊆ ( bday 𝐴))
3330, 32sylib 218 . . 3 ((𝐴 No 𝑥 ∈ ( O ‘( bday 𝐴))) → suc ( bday 𝑥) ⊆ ( bday 𝐴))
3433iunssd 4997 . 2 (𝐴 No 𝑥 ∈ ( O ‘( bday 𝐴))suc ( bday 𝑥) ⊆ ( bday 𝐴))
3528, 34eqssd 3947 1 (𝐴 No → ( bday 𝐴) = 𝑥 ∈ ( O ‘( bday 𝐴))suc ( bday 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  Vcvv 3436  cun 3895  wss 3897   ciun 4939   class class class wbr 5089  cima 5617  Oncon0 6306  suc csuc 6308  Fun wfun 6475  cfv 6481  (class class class)co 7346   No csur 27578   bday cbday 27580   <<s csslt 27720   |s cscut 27722   O cold 27784   L cleft 27786   R cright 27787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-1o 8385  df-2o 8386  df-no 27581  df-slt 27582  df-bday 27583  df-sslt 27721  df-scut 27723  df-made 27788  df-old 27789  df-left 27791  df-right 27792
This theorem is referenced by:  bdayle  27861
  Copyright terms: Public domain W3C validator