| Step | Hyp | Ref
| Expression |
| 1 | | lrcut 27853 |
. . . 4
⊢ (𝐴 ∈
No → (( L ‘𝐴) |s ( R ‘𝐴)) = 𝐴) |
| 2 | 1 | fveq2d 6844 |
. . 3
⊢ (𝐴 ∈
No → ( bday ‘(( L ‘𝐴) |s ( R ‘𝐴))) = (
bday ‘𝐴)) |
| 3 | | lltropt 27821 |
. . . 4
⊢ ( L
‘𝐴) <<s ( R
‘𝐴) |
| 4 | | fvex 6853 |
. . . . 5
⊢ ( O
‘( bday ‘𝐴)) ∈ V |
| 5 | | bdayelon 27721 |
. . . . . . 7
⊢ ( bday ‘𝑥) ∈ On |
| 6 | 5 | onsuci 7794 |
. . . . . 6
⊢ suc
( bday ‘𝑥) ∈ On |
| 7 | 6 | rgenw 3048 |
. . . . 5
⊢
∀𝑥 ∈ ( O
‘( bday ‘𝐴))suc ( bday
‘𝑥) ∈
On |
| 8 | | iunon 8285 |
. . . . 5
⊢ ((( O
‘( bday ‘𝐴)) ∈ V ∧ ∀𝑥 ∈ ( O ‘(
bday ‘𝐴))suc
( bday ‘𝑥) ∈ On) → ∪ 𝑥 ∈ ( O ‘(
bday ‘𝐴))suc
( bday ‘𝑥) ∈ On) |
| 9 | 4, 7, 8 | mp2an 692 |
. . . 4
⊢ ∪ 𝑥 ∈ ( O ‘(
bday ‘𝐴))suc
( bday ‘𝑥) ∈ On |
| 10 | | lrold 27846 |
. . . . . 6
⊢ (( L
‘𝐴) ∪ ( R
‘𝐴)) = ( O
‘( bday ‘𝐴)) |
| 11 | 10 | imaeq2i 6018 |
. . . . 5
⊢ ( bday “ (( L ‘𝐴) ∪ ( R ‘𝐴))) = ( bday
“ ( O ‘( bday ‘𝐴))) |
| 12 | | nfv 1914 |
. . . . . 6
⊢
Ⅎ𝑦 𝐴 ∈
No |
| 13 | | bdayfun 27717 |
. . . . . . 7
⊢ Fun bday |
| 14 | 13 | a1i 11 |
. . . . . 6
⊢ (𝐴 ∈
No → Fun bday ) |
| 15 | | fvex 6853 |
. . . . . . . . . 10
⊢ ( bday ‘𝑦) ∈ V |
| 16 | 15 | sucid 6404 |
. . . . . . . . 9
⊢ ( bday ‘𝑦) ∈ suc ( bday
‘𝑦) |
| 17 | | fveq2 6840 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → ( bday
‘𝑥) = ( bday ‘𝑦)) |
| 18 | 17 | suceqd 6387 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → suc ( bday
‘𝑥) = suc
( bday ‘𝑦)) |
| 19 | 18 | eleq2d 2814 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (( bday
‘𝑦) ∈ suc
( bday ‘𝑥) ↔ ( bday
‘𝑦) ∈ suc
( bday ‘𝑦))) |
| 20 | 19 | rspcev 3585 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ( O ‘( bday ‘𝐴)) ∧ ( bday
‘𝑦) ∈ suc
( bday ‘𝑦)) → ∃𝑥 ∈ ( O ‘(
bday ‘𝐴))( bday
‘𝑦) ∈ suc
( bday ‘𝑥)) |
| 21 | 16, 20 | mpan2 691 |
. . . . . . . 8
⊢ (𝑦 ∈ ( O ‘( bday ‘𝐴)) → ∃𝑥 ∈ ( O ‘(
bday ‘𝐴))( bday
‘𝑦) ∈ suc
( bday ‘𝑥)) |
| 22 | 21 | adantl 481 |
. . . . . . 7
⊢ ((𝐴 ∈
No ∧ 𝑦 ∈ (
O ‘( bday ‘𝐴))) → ∃𝑥 ∈ ( O ‘(
bday ‘𝐴))( bday
‘𝑦) ∈ suc
( bday ‘𝑥)) |
| 23 | 22 | eliund 4958 |
. . . . . 6
⊢ ((𝐴 ∈
No ∧ 𝑦 ∈ (
O ‘( bday ‘𝐴))) → ( bday
‘𝑦) ∈
∪ 𝑥 ∈ ( O ‘(
bday ‘𝐴))suc
( bday ‘𝑥)) |
| 24 | 12, 14, 23 | funimassd 6909 |
. . . . 5
⊢ (𝐴 ∈
No → ( bday “ ( O
‘( bday ‘𝐴))) ⊆ ∪ 𝑥 ∈ ( O ‘(
bday ‘𝐴))suc
( bday ‘𝑥)) |
| 25 | 11, 24 | eqsstrid 3982 |
. . . 4
⊢ (𝐴 ∈
No → ( bday “ (( L
‘𝐴) ∪ ( R
‘𝐴))) ⊆
∪ 𝑥 ∈ ( O ‘(
bday ‘𝐴))suc
( bday ‘𝑥)) |
| 26 | | scutbdaybnd 27761 |
. . . 4
⊢ ((( L
‘𝐴) <<s ( R
‘𝐴) ∧ ∪ 𝑥 ∈ ( O ‘(
bday ‘𝐴))suc
( bday ‘𝑥) ∈ On ∧ (
bday “ (( L ‘𝐴) ∪ ( R ‘𝐴))) ⊆ ∪ 𝑥 ∈ ( O ‘(
bday ‘𝐴))suc
( bday ‘𝑥)) → ( bday
‘(( L ‘𝐴) |s ( R ‘𝐴))) ⊆ ∪ 𝑥 ∈ ( O ‘(
bday ‘𝐴))suc
( bday ‘𝑥)) |
| 27 | 3, 9, 25, 26 | mp3an12i 1467 |
. . 3
⊢ (𝐴 ∈
No → ( bday ‘(( L ‘𝐴) |s ( R ‘𝐴))) ⊆ ∪ 𝑥 ∈ ( O ‘(
bday ‘𝐴))suc
( bday ‘𝑥)) |
| 28 | 2, 27 | eqsstrrd 3979 |
. 2
⊢ (𝐴 ∈
No → ( bday ‘𝐴) ⊆ ∪ 𝑥 ∈ ( O ‘(
bday ‘𝐴))suc
( bday ‘𝑥)) |
| 29 | | oldbdayim 27838 |
. . . . 5
⊢ (𝑥 ∈ ( O ‘( bday ‘𝐴)) → ( bday
‘𝑥) ∈
( bday ‘𝐴)) |
| 30 | 29 | adantl 481 |
. . . 4
⊢ ((𝐴 ∈
No ∧ 𝑥 ∈ (
O ‘( bday ‘𝐴))) → ( bday
‘𝑥) ∈
( bday ‘𝐴)) |
| 31 | | bdayelon 27721 |
. . . . 5
⊢ ( bday ‘𝐴) ∈ On |
| 32 | 5, 31 | onsucssi 7797 |
. . . 4
⊢ (( bday ‘𝑥) ∈ ( bday
‘𝐴) ↔ suc
( bday ‘𝑥) ⊆ ( bday
‘𝐴)) |
| 33 | 30, 32 | sylib 218 |
. . 3
⊢ ((𝐴 ∈
No ∧ 𝑥 ∈ (
O ‘( bday ‘𝐴))) → suc ( bday
‘𝑥) ⊆
( bday ‘𝐴)) |
| 34 | 33 | iunssd 5009 |
. 2
⊢ (𝐴 ∈
No → ∪ 𝑥 ∈ ( O ‘(
bday ‘𝐴))suc
( bday ‘𝑥) ⊆ ( bday
‘𝐴)) |
| 35 | 28, 34 | eqssd 3961 |
1
⊢ (𝐴 ∈
No → ( bday ‘𝐴) = ∪
𝑥 ∈ ( O ‘( bday ‘𝐴))suc ( bday
‘𝑥)) |