Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1326 Structured version   Visualization version   GIF version

Theorem bnj1326 35062
Description: Technical lemma for bnj60 35098. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1326.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1326.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1326.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1326.4 𝐷 = (dom 𝑔 ∩ dom )
Assertion
Ref Expression
bnj1326 ((𝑅 FrSe 𝐴𝑔𝐶𝐶) → (𝑔𝐷) = (𝐷))
Distinct variable groups:   𝐴,𝑑,𝑓,𝑥   𝐵,𝑓   𝐺,𝑑,𝑓   𝑅,𝑑,𝑓,𝑥
Allowed substitution hints:   𝐴(𝑔,)   𝐵(𝑥,𝑔,,𝑑)   𝐶(𝑥,𝑓,𝑔,,𝑑)   𝐷(𝑥,𝑓,𝑔,,𝑑)   𝑅(𝑔,)   𝐺(𝑥,𝑔,)   𝑌(𝑥,𝑓,𝑔,,𝑑)

Proof of Theorem bnj1326
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1w 2818 . . . 4 (𝑞 = → (𝑞𝐶𝐶))
213anbi3d 1444 . . 3 (𝑞 = → ((𝑅 FrSe 𝐴𝑔𝐶𝑞𝐶) ↔ (𝑅 FrSe 𝐴𝑔𝐶𝐶)))
3 dmeq 5888 . . . . . . 7 (𝑞 = → dom 𝑞 = dom )
43ineq2d 4200 . . . . . 6 (𝑞 = → (dom 𝑔 ∩ dom 𝑞) = (dom 𝑔 ∩ dom ))
54reseq2d 5971 . . . . 5 (𝑞 = → (𝑔 ↾ (dom 𝑔 ∩ dom 𝑞)) = (𝑔 ↾ (dom 𝑔 ∩ dom )))
6 bnj1326.4 . . . . . 6 𝐷 = (dom 𝑔 ∩ dom )
76reseq2i 5968 . . . . 5 (𝑔𝐷) = (𝑔 ↾ (dom 𝑔 ∩ dom ))
85, 7eqtr4di 2789 . . . 4 (𝑞 = → (𝑔 ↾ (dom 𝑔 ∩ dom 𝑞)) = (𝑔𝐷))
94reseq2d 5971 . . . . . 6 (𝑞 = → (𝑞 ↾ (dom 𝑔 ∩ dom 𝑞)) = (𝑞 ↾ (dom 𝑔 ∩ dom )))
10 reseq1 5965 . . . . . 6 (𝑞 = → (𝑞 ↾ (dom 𝑔 ∩ dom )) = ( ↾ (dom 𝑔 ∩ dom )))
119, 10eqtrd 2771 . . . . 5 (𝑞 = → (𝑞 ↾ (dom 𝑔 ∩ dom 𝑞)) = ( ↾ (dom 𝑔 ∩ dom )))
126reseq2i 5968 . . . . 5 (𝐷) = ( ↾ (dom 𝑔 ∩ dom ))
1311, 12eqtr4di 2789 . . . 4 (𝑞 = → (𝑞 ↾ (dom 𝑔 ∩ dom 𝑞)) = (𝐷))
148, 13eqeq12d 2752 . . 3 (𝑞 = → ((𝑔 ↾ (dom 𝑔 ∩ dom 𝑞)) = (𝑞 ↾ (dom 𝑔 ∩ dom 𝑞)) ↔ (𝑔𝐷) = (𝐷)))
152, 14imbi12d 344 . 2 (𝑞 = → (((𝑅 FrSe 𝐴𝑔𝐶𝑞𝐶) → (𝑔 ↾ (dom 𝑔 ∩ dom 𝑞)) = (𝑞 ↾ (dom 𝑔 ∩ dom 𝑞))) ↔ ((𝑅 FrSe 𝐴𝑔𝐶𝐶) → (𝑔𝐷) = (𝐷))))
16 eleq1w 2818 . . . . 5 (𝑝 = 𝑔 → (𝑝𝐶𝑔𝐶))
17163anbi2d 1443 . . . 4 (𝑝 = 𝑔 → ((𝑅 FrSe 𝐴𝑝𝐶𝑞𝐶) ↔ (𝑅 FrSe 𝐴𝑔𝐶𝑞𝐶)))
18 dmeq 5888 . . . . . . . 8 (𝑝 = 𝑔 → dom 𝑝 = dom 𝑔)
1918ineq1d 4199 . . . . . . 7 (𝑝 = 𝑔 → (dom 𝑝 ∩ dom 𝑞) = (dom 𝑔 ∩ dom 𝑞))
2019reseq2d 5971 . . . . . 6 (𝑝 = 𝑔 → (𝑝 ↾ (dom 𝑝 ∩ dom 𝑞)) = (𝑝 ↾ (dom 𝑔 ∩ dom 𝑞)))
21 reseq1 5965 . . . . . 6 (𝑝 = 𝑔 → (𝑝 ↾ (dom 𝑔 ∩ dom 𝑞)) = (𝑔 ↾ (dom 𝑔 ∩ dom 𝑞)))
2220, 21eqtrd 2771 . . . . 5 (𝑝 = 𝑔 → (𝑝 ↾ (dom 𝑝 ∩ dom 𝑞)) = (𝑔 ↾ (dom 𝑔 ∩ dom 𝑞)))
2319reseq2d 5971 . . . . 5 (𝑝 = 𝑔 → (𝑞 ↾ (dom 𝑝 ∩ dom 𝑞)) = (𝑞 ↾ (dom 𝑔 ∩ dom 𝑞)))
2422, 23eqeq12d 2752 . . . 4 (𝑝 = 𝑔 → ((𝑝 ↾ (dom 𝑝 ∩ dom 𝑞)) = (𝑞 ↾ (dom 𝑝 ∩ dom 𝑞)) ↔ (𝑔 ↾ (dom 𝑔 ∩ dom 𝑞)) = (𝑞 ↾ (dom 𝑔 ∩ dom 𝑞))))
2517, 24imbi12d 344 . . 3 (𝑝 = 𝑔 → (((𝑅 FrSe 𝐴𝑝𝐶𝑞𝐶) → (𝑝 ↾ (dom 𝑝 ∩ dom 𝑞)) = (𝑞 ↾ (dom 𝑝 ∩ dom 𝑞))) ↔ ((𝑅 FrSe 𝐴𝑔𝐶𝑞𝐶) → (𝑔 ↾ (dom 𝑔 ∩ dom 𝑞)) = (𝑞 ↾ (dom 𝑔 ∩ dom 𝑞)))))
26 bnj1326.1 . . . 4 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
27 bnj1326.2 . . . 4 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
28 bnj1326.3 . . . 4 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
29 eqid 2736 . . . 4 (dom 𝑝 ∩ dom 𝑞) = (dom 𝑝 ∩ dom 𝑞)
3026, 27, 28, 29bnj1311 35060 . . 3 ((𝑅 FrSe 𝐴𝑝𝐶𝑞𝐶) → (𝑝 ↾ (dom 𝑝 ∩ dom 𝑞)) = (𝑞 ↾ (dom 𝑝 ∩ dom 𝑞)))
3125, 30chvarvv 1989 . 2 ((𝑅 FrSe 𝐴𝑔𝐶𝑞𝐶) → (𝑔 ↾ (dom 𝑔 ∩ dom 𝑞)) = (𝑞 ↾ (dom 𝑔 ∩ dom 𝑞)))
3215, 31chvarvv 1989 1 ((𝑅 FrSe 𝐴𝑔𝐶𝐶) → (𝑔𝐷) = (𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2714  wral 3052  wrex 3061  cin 3930  wss 3931  cop 4612  dom cdm 5659  cres 5661   Fn wfn 6531  cfv 6536   predc-bnj14 34724   FrSe w-bnj15 34728
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-reg 9611  ax-inf2 9660
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-om 7867  df-1o 8485  df-bnj17 34723  df-bnj14 34725  df-bnj13 34727  df-bnj15 34729  df-bnj18 34731  df-bnj19 34733
This theorem is referenced by:  bnj1321  35063  bnj1384  35068
  Copyright terms: Public domain W3C validator