Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1326 Structured version   Visualization version   GIF version

Theorem bnj1326 34037
Description: Technical lemma for bnj60 34073. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1326.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1326.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1326.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1326.4 𝐷 = (dom 𝑔 ∩ dom )
Assertion
Ref Expression
bnj1326 ((𝑅 FrSe 𝐴𝑔𝐶𝐶) → (𝑔𝐷) = (𝐷))
Distinct variable groups:   𝐴,𝑑,𝑓,𝑥   𝐵,𝑓   𝐺,𝑑,𝑓   𝑅,𝑑,𝑓,𝑥
Allowed substitution hints:   𝐴(𝑔,)   𝐵(𝑥,𝑔,,𝑑)   𝐶(𝑥,𝑓,𝑔,,𝑑)   𝐷(𝑥,𝑓,𝑔,,𝑑)   𝑅(𝑔,)   𝐺(𝑥,𝑔,)   𝑌(𝑥,𝑓,𝑔,,𝑑)

Proof of Theorem bnj1326
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1w 2817 . . . 4 (𝑞 = → (𝑞𝐶𝐶))
213anbi3d 1443 . . 3 (𝑞 = → ((𝑅 FrSe 𝐴𝑔𝐶𝑞𝐶) ↔ (𝑅 FrSe 𝐴𝑔𝐶𝐶)))
3 dmeq 5904 . . . . . . 7 (𝑞 = → dom 𝑞 = dom )
43ineq2d 4213 . . . . . 6 (𝑞 = → (dom 𝑔 ∩ dom 𝑞) = (dom 𝑔 ∩ dom ))
54reseq2d 5982 . . . . 5 (𝑞 = → (𝑔 ↾ (dom 𝑔 ∩ dom 𝑞)) = (𝑔 ↾ (dom 𝑔 ∩ dom )))
6 bnj1326.4 . . . . . 6 𝐷 = (dom 𝑔 ∩ dom )
76reseq2i 5979 . . . . 5 (𝑔𝐷) = (𝑔 ↾ (dom 𝑔 ∩ dom ))
85, 7eqtr4di 2791 . . . 4 (𝑞 = → (𝑔 ↾ (dom 𝑔 ∩ dom 𝑞)) = (𝑔𝐷))
94reseq2d 5982 . . . . . 6 (𝑞 = → (𝑞 ↾ (dom 𝑔 ∩ dom 𝑞)) = (𝑞 ↾ (dom 𝑔 ∩ dom )))
10 reseq1 5976 . . . . . 6 (𝑞 = → (𝑞 ↾ (dom 𝑔 ∩ dom )) = ( ↾ (dom 𝑔 ∩ dom )))
119, 10eqtrd 2773 . . . . 5 (𝑞 = → (𝑞 ↾ (dom 𝑔 ∩ dom 𝑞)) = ( ↾ (dom 𝑔 ∩ dom )))
126reseq2i 5979 . . . . 5 (𝐷) = ( ↾ (dom 𝑔 ∩ dom ))
1311, 12eqtr4di 2791 . . . 4 (𝑞 = → (𝑞 ↾ (dom 𝑔 ∩ dom 𝑞)) = (𝐷))
148, 13eqeq12d 2749 . . 3 (𝑞 = → ((𝑔 ↾ (dom 𝑔 ∩ dom 𝑞)) = (𝑞 ↾ (dom 𝑔 ∩ dom 𝑞)) ↔ (𝑔𝐷) = (𝐷)))
152, 14imbi12d 345 . 2 (𝑞 = → (((𝑅 FrSe 𝐴𝑔𝐶𝑞𝐶) → (𝑔 ↾ (dom 𝑔 ∩ dom 𝑞)) = (𝑞 ↾ (dom 𝑔 ∩ dom 𝑞))) ↔ ((𝑅 FrSe 𝐴𝑔𝐶𝐶) → (𝑔𝐷) = (𝐷))))
16 eleq1w 2817 . . . . 5 (𝑝 = 𝑔 → (𝑝𝐶𝑔𝐶))
17163anbi2d 1442 . . . 4 (𝑝 = 𝑔 → ((𝑅 FrSe 𝐴𝑝𝐶𝑞𝐶) ↔ (𝑅 FrSe 𝐴𝑔𝐶𝑞𝐶)))
18 dmeq 5904 . . . . . . . 8 (𝑝 = 𝑔 → dom 𝑝 = dom 𝑔)
1918ineq1d 4212 . . . . . . 7 (𝑝 = 𝑔 → (dom 𝑝 ∩ dom 𝑞) = (dom 𝑔 ∩ dom 𝑞))
2019reseq2d 5982 . . . . . 6 (𝑝 = 𝑔 → (𝑝 ↾ (dom 𝑝 ∩ dom 𝑞)) = (𝑝 ↾ (dom 𝑔 ∩ dom 𝑞)))
21 reseq1 5976 . . . . . 6 (𝑝 = 𝑔 → (𝑝 ↾ (dom 𝑔 ∩ dom 𝑞)) = (𝑔 ↾ (dom 𝑔 ∩ dom 𝑞)))
2220, 21eqtrd 2773 . . . . 5 (𝑝 = 𝑔 → (𝑝 ↾ (dom 𝑝 ∩ dom 𝑞)) = (𝑔 ↾ (dom 𝑔 ∩ dom 𝑞)))
2319reseq2d 5982 . . . . 5 (𝑝 = 𝑔 → (𝑞 ↾ (dom 𝑝 ∩ dom 𝑞)) = (𝑞 ↾ (dom 𝑔 ∩ dom 𝑞)))
2422, 23eqeq12d 2749 . . . 4 (𝑝 = 𝑔 → ((𝑝 ↾ (dom 𝑝 ∩ dom 𝑞)) = (𝑞 ↾ (dom 𝑝 ∩ dom 𝑞)) ↔ (𝑔 ↾ (dom 𝑔 ∩ dom 𝑞)) = (𝑞 ↾ (dom 𝑔 ∩ dom 𝑞))))
2517, 24imbi12d 345 . . 3 (𝑝 = 𝑔 → (((𝑅 FrSe 𝐴𝑝𝐶𝑞𝐶) → (𝑝 ↾ (dom 𝑝 ∩ dom 𝑞)) = (𝑞 ↾ (dom 𝑝 ∩ dom 𝑞))) ↔ ((𝑅 FrSe 𝐴𝑔𝐶𝑞𝐶) → (𝑔 ↾ (dom 𝑔 ∩ dom 𝑞)) = (𝑞 ↾ (dom 𝑔 ∩ dom 𝑞)))))
26 bnj1326.1 . . . 4 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
27 bnj1326.2 . . . 4 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
28 bnj1326.3 . . . 4 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
29 eqid 2733 . . . 4 (dom 𝑝 ∩ dom 𝑞) = (dom 𝑝 ∩ dom 𝑞)
3026, 27, 28, 29bnj1311 34035 . . 3 ((𝑅 FrSe 𝐴𝑝𝐶𝑞𝐶) → (𝑝 ↾ (dom 𝑝 ∩ dom 𝑞)) = (𝑞 ↾ (dom 𝑝 ∩ dom 𝑞)))
3125, 30chvarvv 2003 . 2 ((𝑅 FrSe 𝐴𝑔𝐶𝑞𝐶) → (𝑔 ↾ (dom 𝑔 ∩ dom 𝑞)) = (𝑞 ↾ (dom 𝑔 ∩ dom 𝑞)))
3215, 31chvarvv 2003 1 ((𝑅 FrSe 𝐴𝑔𝐶𝐶) → (𝑔𝐷) = (𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  {cab 2710  wral 3062  wrex 3071  cin 3948  wss 3949  cop 4635  dom cdm 5677  cres 5679   Fn wfn 6539  cfv 6544   predc-bnj14 33699   FrSe w-bnj15 33703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-reg 9587  ax-inf2 9636
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-om 7856  df-1o 8466  df-bnj17 33698  df-bnj14 33700  df-bnj13 33702  df-bnj15 33704  df-bnj18 33706  df-bnj19 33708
This theorem is referenced by:  bnj1321  34038  bnj1384  34043
  Copyright terms: Public domain W3C validator