Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1326 Structured version   Visualization version   GIF version

Theorem bnj1326 31949
Description: Technical lemma for bnj60 31985. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1326.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1326.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1326.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1326.4 𝐷 = (dom 𝑔 ∩ dom )
Assertion
Ref Expression
bnj1326 ((𝑅 FrSe 𝐴𝑔𝐶𝐶) → (𝑔𝐷) = (𝐷))
Distinct variable groups:   𝐴,𝑑,𝑓,𝑥   𝐵,𝑓   𝐺,𝑑,𝑓   𝑅,𝑑,𝑓,𝑥
Allowed substitution hints:   𝐴(𝑔,)   𝐵(𝑥,𝑔,,𝑑)   𝐶(𝑥,𝑓,𝑔,,𝑑)   𝐷(𝑥,𝑓,𝑔,,𝑑)   𝑅(𝑔,)   𝐺(𝑥,𝑔,)   𝑌(𝑥,𝑓,𝑔,,𝑑)

Proof of Theorem bnj1326
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1w 2848 . . . 4 (𝑞 = → (𝑞𝐶𝐶))
213anbi3d 1421 . . 3 (𝑞 = → ((𝑅 FrSe 𝐴𝑔𝐶𝑞𝐶) ↔ (𝑅 FrSe 𝐴𝑔𝐶𝐶)))
3 dmeq 5622 . . . . . . 7 (𝑞 = → dom 𝑞 = dom )
43ineq2d 4076 . . . . . 6 (𝑞 = → (dom 𝑔 ∩ dom 𝑞) = (dom 𝑔 ∩ dom ))
54reseq2d 5695 . . . . 5 (𝑞 = → (𝑔 ↾ (dom 𝑔 ∩ dom 𝑞)) = (𝑔 ↾ (dom 𝑔 ∩ dom )))
6 bnj1326.4 . . . . . 6 𝐷 = (dom 𝑔 ∩ dom )
76reseq2i 5692 . . . . 5 (𝑔𝐷) = (𝑔 ↾ (dom 𝑔 ∩ dom ))
85, 7syl6eqr 2832 . . . 4 (𝑞 = → (𝑔 ↾ (dom 𝑔 ∩ dom 𝑞)) = (𝑔𝐷))
94reseq2d 5695 . . . . . 6 (𝑞 = → (𝑞 ↾ (dom 𝑔 ∩ dom 𝑞)) = (𝑞 ↾ (dom 𝑔 ∩ dom )))
10 reseq1 5689 . . . . . 6 (𝑞 = → (𝑞 ↾ (dom 𝑔 ∩ dom )) = ( ↾ (dom 𝑔 ∩ dom )))
119, 10eqtrd 2814 . . . . 5 (𝑞 = → (𝑞 ↾ (dom 𝑔 ∩ dom 𝑞)) = ( ↾ (dom 𝑔 ∩ dom )))
126reseq2i 5692 . . . . 5 (𝐷) = ( ↾ (dom 𝑔 ∩ dom ))
1311, 12syl6eqr 2832 . . . 4 (𝑞 = → (𝑞 ↾ (dom 𝑔 ∩ dom 𝑞)) = (𝐷))
148, 13eqeq12d 2793 . . 3 (𝑞 = → ((𝑔 ↾ (dom 𝑔 ∩ dom 𝑞)) = (𝑞 ↾ (dom 𝑔 ∩ dom 𝑞)) ↔ (𝑔𝐷) = (𝐷)))
152, 14imbi12d 337 . 2 (𝑞 = → (((𝑅 FrSe 𝐴𝑔𝐶𝑞𝐶) → (𝑔 ↾ (dom 𝑔 ∩ dom 𝑞)) = (𝑞 ↾ (dom 𝑔 ∩ dom 𝑞))) ↔ ((𝑅 FrSe 𝐴𝑔𝐶𝐶) → (𝑔𝐷) = (𝐷))))
16 eleq1w 2848 . . . . 5 (𝑝 = 𝑔 → (𝑝𝐶𝑔𝐶))
17163anbi2d 1420 . . . 4 (𝑝 = 𝑔 → ((𝑅 FrSe 𝐴𝑝𝐶𝑞𝐶) ↔ (𝑅 FrSe 𝐴𝑔𝐶𝑞𝐶)))
18 dmeq 5622 . . . . . . . 8 (𝑝 = 𝑔 → dom 𝑝 = dom 𝑔)
1918ineq1d 4075 . . . . . . 7 (𝑝 = 𝑔 → (dom 𝑝 ∩ dom 𝑞) = (dom 𝑔 ∩ dom 𝑞))
2019reseq2d 5695 . . . . . 6 (𝑝 = 𝑔 → (𝑝 ↾ (dom 𝑝 ∩ dom 𝑞)) = (𝑝 ↾ (dom 𝑔 ∩ dom 𝑞)))
21 reseq1 5689 . . . . . 6 (𝑝 = 𝑔 → (𝑝 ↾ (dom 𝑔 ∩ dom 𝑞)) = (𝑔 ↾ (dom 𝑔 ∩ dom 𝑞)))
2220, 21eqtrd 2814 . . . . 5 (𝑝 = 𝑔 → (𝑝 ↾ (dom 𝑝 ∩ dom 𝑞)) = (𝑔 ↾ (dom 𝑔 ∩ dom 𝑞)))
2319reseq2d 5695 . . . . 5 (𝑝 = 𝑔 → (𝑞 ↾ (dom 𝑝 ∩ dom 𝑞)) = (𝑞 ↾ (dom 𝑔 ∩ dom 𝑞)))
2422, 23eqeq12d 2793 . . . 4 (𝑝 = 𝑔 → ((𝑝 ↾ (dom 𝑝 ∩ dom 𝑞)) = (𝑞 ↾ (dom 𝑝 ∩ dom 𝑞)) ↔ (𝑔 ↾ (dom 𝑔 ∩ dom 𝑞)) = (𝑞 ↾ (dom 𝑔 ∩ dom 𝑞))))
2517, 24imbi12d 337 . . 3 (𝑝 = 𝑔 → (((𝑅 FrSe 𝐴𝑝𝐶𝑞𝐶) → (𝑝 ↾ (dom 𝑝 ∩ dom 𝑞)) = (𝑞 ↾ (dom 𝑝 ∩ dom 𝑞))) ↔ ((𝑅 FrSe 𝐴𝑔𝐶𝑞𝐶) → (𝑔 ↾ (dom 𝑔 ∩ dom 𝑞)) = (𝑞 ↾ (dom 𝑔 ∩ dom 𝑞)))))
26 bnj1326.1 . . . 4 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
27 bnj1326.2 . . . 4 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
28 bnj1326.3 . . . 4 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
29 eqid 2778 . . . 4 (dom 𝑝 ∩ dom 𝑞) = (dom 𝑝 ∩ dom 𝑞)
3026, 27, 28, 29bnj1311 31947 . . 3 ((𝑅 FrSe 𝐴𝑝𝐶𝑞𝐶) → (𝑝 ↾ (dom 𝑝 ∩ dom 𝑞)) = (𝑞 ↾ (dom 𝑝 ∩ dom 𝑞)))
3125, 30chvarv 2327 . 2 ((𝑅 FrSe 𝐴𝑔𝐶𝑞𝐶) → (𝑔 ↾ (dom 𝑔 ∩ dom 𝑞)) = (𝑞 ↾ (dom 𝑔 ∩ dom 𝑞)))
3215, 31chvarv 2327 1 ((𝑅 FrSe 𝐴𝑔𝐶𝐶) → (𝑔𝐷) = (𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387  w3a 1068   = wceq 1507  wcel 2050  {cab 2758  wral 3088  wrex 3089  cin 3828  wss 3829  cop 4447  dom cdm 5407  cres 5409   Fn wfn 6183  cfv 6188   predc-bnj14 31612   FrSe w-bnj15 31616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-reg 8851  ax-inf2 8898
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-fal 1520  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-ral 3093  df-rex 3094  df-reu 3095  df-rab 3097  df-v 3417  df-sbc 3682  df-csb 3787  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-pss 3845  df-nul 4179  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-om 7397  df-1o 7905  df-bnj17 31611  df-bnj14 31613  df-bnj13 31615  df-bnj15 31617  df-bnj18 31619  df-bnj19 31621
This theorem is referenced by:  bnj1321  31950  bnj1384  31955
  Copyright terms: Public domain W3C validator