Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1326 Structured version   Visualization version   GIF version

Theorem bnj1326 35019
Description: Technical lemma for bnj60 35055. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1326.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1326.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1326.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1326.4 𝐷 = (dom 𝑔 ∩ dom )
Assertion
Ref Expression
bnj1326 ((𝑅 FrSe 𝐴𝑔𝐶𝐶) → (𝑔𝐷) = (𝐷))
Distinct variable groups:   𝐴,𝑑,𝑓,𝑥   𝐵,𝑓   𝐺,𝑑,𝑓   𝑅,𝑑,𝑓,𝑥
Allowed substitution hints:   𝐴(𝑔,)   𝐵(𝑥,𝑔,,𝑑)   𝐶(𝑥,𝑓,𝑔,,𝑑)   𝐷(𝑥,𝑓,𝑔,,𝑑)   𝑅(𝑔,)   𝐺(𝑥,𝑔,)   𝑌(𝑥,𝑓,𝑔,,𝑑)

Proof of Theorem bnj1326
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1w 2822 . . . 4 (𝑞 = → (𝑞𝐶𝐶))
213anbi3d 1441 . . 3 (𝑞 = → ((𝑅 FrSe 𝐴𝑔𝐶𝑞𝐶) ↔ (𝑅 FrSe 𝐴𝑔𝐶𝐶)))
3 dmeq 5917 . . . . . . 7 (𝑞 = → dom 𝑞 = dom )
43ineq2d 4228 . . . . . 6 (𝑞 = → (dom 𝑔 ∩ dom 𝑞) = (dom 𝑔 ∩ dom ))
54reseq2d 6000 . . . . 5 (𝑞 = → (𝑔 ↾ (dom 𝑔 ∩ dom 𝑞)) = (𝑔 ↾ (dom 𝑔 ∩ dom )))
6 bnj1326.4 . . . . . 6 𝐷 = (dom 𝑔 ∩ dom )
76reseq2i 5997 . . . . 5 (𝑔𝐷) = (𝑔 ↾ (dom 𝑔 ∩ dom ))
85, 7eqtr4di 2793 . . . 4 (𝑞 = → (𝑔 ↾ (dom 𝑔 ∩ dom 𝑞)) = (𝑔𝐷))
94reseq2d 6000 . . . . . 6 (𝑞 = → (𝑞 ↾ (dom 𝑔 ∩ dom 𝑞)) = (𝑞 ↾ (dom 𝑔 ∩ dom )))
10 reseq1 5994 . . . . . 6 (𝑞 = → (𝑞 ↾ (dom 𝑔 ∩ dom )) = ( ↾ (dom 𝑔 ∩ dom )))
119, 10eqtrd 2775 . . . . 5 (𝑞 = → (𝑞 ↾ (dom 𝑔 ∩ dom 𝑞)) = ( ↾ (dom 𝑔 ∩ dom )))
126reseq2i 5997 . . . . 5 (𝐷) = ( ↾ (dom 𝑔 ∩ dom ))
1311, 12eqtr4di 2793 . . . 4 (𝑞 = → (𝑞 ↾ (dom 𝑔 ∩ dom 𝑞)) = (𝐷))
148, 13eqeq12d 2751 . . 3 (𝑞 = → ((𝑔 ↾ (dom 𝑔 ∩ dom 𝑞)) = (𝑞 ↾ (dom 𝑔 ∩ dom 𝑞)) ↔ (𝑔𝐷) = (𝐷)))
152, 14imbi12d 344 . 2 (𝑞 = → (((𝑅 FrSe 𝐴𝑔𝐶𝑞𝐶) → (𝑔 ↾ (dom 𝑔 ∩ dom 𝑞)) = (𝑞 ↾ (dom 𝑔 ∩ dom 𝑞))) ↔ ((𝑅 FrSe 𝐴𝑔𝐶𝐶) → (𝑔𝐷) = (𝐷))))
16 eleq1w 2822 . . . . 5 (𝑝 = 𝑔 → (𝑝𝐶𝑔𝐶))
17163anbi2d 1440 . . . 4 (𝑝 = 𝑔 → ((𝑅 FrSe 𝐴𝑝𝐶𝑞𝐶) ↔ (𝑅 FrSe 𝐴𝑔𝐶𝑞𝐶)))
18 dmeq 5917 . . . . . . . 8 (𝑝 = 𝑔 → dom 𝑝 = dom 𝑔)
1918ineq1d 4227 . . . . . . 7 (𝑝 = 𝑔 → (dom 𝑝 ∩ dom 𝑞) = (dom 𝑔 ∩ dom 𝑞))
2019reseq2d 6000 . . . . . 6 (𝑝 = 𝑔 → (𝑝 ↾ (dom 𝑝 ∩ dom 𝑞)) = (𝑝 ↾ (dom 𝑔 ∩ dom 𝑞)))
21 reseq1 5994 . . . . . 6 (𝑝 = 𝑔 → (𝑝 ↾ (dom 𝑔 ∩ dom 𝑞)) = (𝑔 ↾ (dom 𝑔 ∩ dom 𝑞)))
2220, 21eqtrd 2775 . . . . 5 (𝑝 = 𝑔 → (𝑝 ↾ (dom 𝑝 ∩ dom 𝑞)) = (𝑔 ↾ (dom 𝑔 ∩ dom 𝑞)))
2319reseq2d 6000 . . . . 5 (𝑝 = 𝑔 → (𝑞 ↾ (dom 𝑝 ∩ dom 𝑞)) = (𝑞 ↾ (dom 𝑔 ∩ dom 𝑞)))
2422, 23eqeq12d 2751 . . . 4 (𝑝 = 𝑔 → ((𝑝 ↾ (dom 𝑝 ∩ dom 𝑞)) = (𝑞 ↾ (dom 𝑝 ∩ dom 𝑞)) ↔ (𝑔 ↾ (dom 𝑔 ∩ dom 𝑞)) = (𝑞 ↾ (dom 𝑔 ∩ dom 𝑞))))
2517, 24imbi12d 344 . . 3 (𝑝 = 𝑔 → (((𝑅 FrSe 𝐴𝑝𝐶𝑞𝐶) → (𝑝 ↾ (dom 𝑝 ∩ dom 𝑞)) = (𝑞 ↾ (dom 𝑝 ∩ dom 𝑞))) ↔ ((𝑅 FrSe 𝐴𝑔𝐶𝑞𝐶) → (𝑔 ↾ (dom 𝑔 ∩ dom 𝑞)) = (𝑞 ↾ (dom 𝑔 ∩ dom 𝑞)))))
26 bnj1326.1 . . . 4 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
27 bnj1326.2 . . . 4 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
28 bnj1326.3 . . . 4 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
29 eqid 2735 . . . 4 (dom 𝑝 ∩ dom 𝑞) = (dom 𝑝 ∩ dom 𝑞)
3026, 27, 28, 29bnj1311 35017 . . 3 ((𝑅 FrSe 𝐴𝑝𝐶𝑞𝐶) → (𝑝 ↾ (dom 𝑝 ∩ dom 𝑞)) = (𝑞 ↾ (dom 𝑝 ∩ dom 𝑞)))
3125, 30chvarvv 1996 . 2 ((𝑅 FrSe 𝐴𝑔𝐶𝑞𝐶) → (𝑔 ↾ (dom 𝑔 ∩ dom 𝑞)) = (𝑞 ↾ (dom 𝑔 ∩ dom 𝑞)))
3215, 31chvarvv 1996 1 ((𝑅 FrSe 𝐴𝑔𝐶𝐶) → (𝑔𝐷) = (𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  {cab 2712  wral 3059  wrex 3068  cin 3962  wss 3963  cop 4637  dom cdm 5689  cres 5691   Fn wfn 6558  cfv 6563   predc-bnj14 34681   FrSe w-bnj15 34685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-reg 9630  ax-inf2 9679
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-om 7888  df-1o 8505  df-bnj17 34680  df-bnj14 34682  df-bnj13 34684  df-bnj15 34686  df-bnj18 34688  df-bnj19 34690
This theorem is referenced by:  bnj1321  35020  bnj1384  35025
  Copyright terms: Public domain W3C validator