Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem6 Structured version   Visualization version   GIF version

Theorem knoppndvlem6 33856
Description: Lemma for knoppndv 33873. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppndvlem6.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppndvlem6.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppndvlem6.w 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))
knoppndvlem6.a 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)
knoppndvlem6.c (𝜑𝐶 ∈ (-1(,)1))
knoppndvlem6.j (𝜑𝐽 ∈ ℕ0)
knoppndvlem6.m (𝜑𝑀 ∈ ℤ)
knoppndvlem6.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
knoppndvlem6 (𝜑 → (𝑊𝐴) = Σ𝑖 ∈ (0...𝐽)((𝐹𝐴)‘𝑖))
Distinct variable groups:   𝐴,𝑖,𝑛,𝑤,𝑦   𝑥,𝐴,𝑖,𝑤   𝐶,𝑛,𝑦   𝑖,𝐹,𝑤   𝑖,𝐽,𝑛,𝑦   𝑛,𝑁,𝑦   𝑥,𝑁   𝑇,𝑛,𝑦   𝜑,𝑖,𝑛,𝑤,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥,𝑤,𝑖)   𝑇(𝑥,𝑤,𝑖)   𝐹(𝑥,𝑦,𝑛)   𝐽(𝑥,𝑤)   𝑀(𝑥,𝑦,𝑤,𝑖,𝑛)   𝑁(𝑤,𝑖)   𝑊(𝑥,𝑦,𝑤,𝑖,𝑛)

Proof of Theorem knoppndvlem6
StepHypRef Expression
1 knoppndvlem6.w . . . 4 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))
2 fveq2 6669 . . . . . 6 (𝑤 = 𝐴 → (𝐹𝑤) = (𝐹𝐴))
32fveq1d 6671 . . . . 5 (𝑤 = 𝐴 → ((𝐹𝑤)‘𝑖) = ((𝐹𝐴)‘𝑖))
43sumeq2sdv 15060 . . . 4 (𝑤 = 𝐴 → Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖) = Σ𝑖 ∈ ℕ0 ((𝐹𝐴)‘𝑖))
5 knoppndvlem6.a . . . . . 6 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)
65a1i 11 . . . . 5 (𝜑𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀))
7 knoppndvlem6.n . . . . . 6 (𝜑𝑁 ∈ ℕ)
8 knoppndvlem6.j . . . . . . 7 (𝜑𝐽 ∈ ℕ0)
98nn0zd 12084 . . . . . 6 (𝜑𝐽 ∈ ℤ)
10 knoppndvlem6.m . . . . . 6 (𝜑𝑀 ∈ ℤ)
117, 9, 10knoppndvlem1 33851 . . . . 5 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) ∈ ℝ)
126, 11eqeltrd 2913 . . . 4 (𝜑𝐴 ∈ ℝ)
13 sumex 15043 . . . . 5 Σ𝑖 ∈ ℕ0 ((𝐹𝐴)‘𝑖) ∈ V
1413a1i 11 . . . 4 (𝜑 → Σ𝑖 ∈ ℕ0 ((𝐹𝐴)‘𝑖) ∈ V)
151, 4, 12, 14fvmptd3 6790 . . 3 (𝜑 → (𝑊𝐴) = Σ𝑖 ∈ ℕ0 ((𝐹𝐴)‘𝑖))
16 nn0uz 12279 . . . 4 0 = (ℤ‘0)
17 eqid 2821 . . . 4 (ℤ‘(𝐽 + 1)) = (ℤ‘(𝐽 + 1))
18 peano2nn0 11936 . . . . 5 (𝐽 ∈ ℕ0 → (𝐽 + 1) ∈ ℕ0)
198, 18syl 17 . . . 4 (𝜑 → (𝐽 + 1) ∈ ℕ0)
20 eqidd 2822 . . . 4 ((𝜑𝑖 ∈ ℕ0) → ((𝐹𝐴)‘𝑖) = ((𝐹𝐴)‘𝑖))
21 knoppndvlem6.t . . . . . 6 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
22 knoppndvlem6.f . . . . . 6 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
237adantr 483 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → 𝑁 ∈ ℕ)
24 knoppndvlem6.c . . . . . . . . 9 (𝜑𝐶 ∈ (-1(,)1))
2524knoppndvlem3 33853 . . . . . . . 8 (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1))
2625simpld 497 . . . . . . 7 (𝜑𝐶 ∈ ℝ)
2726adantr 483 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → 𝐶 ∈ ℝ)
2812adantr 483 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → 𝐴 ∈ ℝ)
29 simpr 487 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0)
3021, 22, 23, 27, 28, 29knoppcnlem3 33834 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → ((𝐹𝐴)‘𝑖) ∈ ℝ)
3130recnd 10668 . . . 4 ((𝜑𝑖 ∈ ℕ0) → ((𝐹𝐴)‘𝑖) ∈ ℂ)
3221, 22, 1, 12, 24, 7knoppndvlem4 33854 . . . . 5 (𝜑 → seq0( + , (𝐹𝐴)) ⇝ (𝑊𝐴))
33 seqex 13370 . . . . . 6 seq0( + , (𝐹𝐴)) ∈ V
34 fvex 6682 . . . . . 6 (𝑊𝐴) ∈ V
3533, 34breldm 5776 . . . . 5 (seq0( + , (𝐹𝐴)) ⇝ (𝑊𝐴) → seq0( + , (𝐹𝐴)) ∈ dom ⇝ )
3632, 35syl 17 . . . 4 (𝜑 → seq0( + , (𝐹𝐴)) ∈ dom ⇝ )
3716, 17, 19, 20, 31, 36isumsplit 15194 . . 3 (𝜑 → Σ𝑖 ∈ ℕ0 ((𝐹𝐴)‘𝑖) = (Σ𝑖 ∈ (0...((𝐽 + 1) − 1))((𝐹𝐴)‘𝑖) + Σ𝑖 ∈ (ℤ‘(𝐽 + 1))((𝐹𝐴)‘𝑖)))
388nn0cnd 11956 . . . . . . 7 (𝜑𝐽 ∈ ℂ)
39 1cnd 10635 . . . . . . 7 (𝜑 → 1 ∈ ℂ)
4038, 39pncand 10997 . . . . . 6 (𝜑 → ((𝐽 + 1) − 1) = 𝐽)
4140oveq2d 7171 . . . . 5 (𝜑 → (0...((𝐽 + 1) − 1)) = (0...𝐽))
4241sumeq1d 15057 . . . 4 (𝜑 → Σ𝑖 ∈ (0...((𝐽 + 1) − 1))((𝐹𝐴)‘𝑖) = Σ𝑖 ∈ (0...𝐽)((𝐹𝐴)‘𝑖))
4342oveq1d 7170 . . 3 (𝜑 → (Σ𝑖 ∈ (0...((𝐽 + 1) − 1))((𝐹𝐴)‘𝑖) + Σ𝑖 ∈ (ℤ‘(𝐽 + 1))((𝐹𝐴)‘𝑖)) = (Σ𝑖 ∈ (0...𝐽)((𝐹𝐴)‘𝑖) + Σ𝑖 ∈ (ℤ‘(𝐽 + 1))((𝐹𝐴)‘𝑖)))
4415, 37, 433eqtrd 2860 . 2 (𝜑 → (𝑊𝐴) = (Σ𝑖 ∈ (0...𝐽)((𝐹𝐴)‘𝑖) + Σ𝑖 ∈ (ℤ‘(𝐽 + 1))((𝐹𝐴)‘𝑖)))
4512adantr 483 . . . . . . . 8 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → 𝐴 ∈ ℝ)
46 eluznn0 12316 . . . . . . . . 9 (((𝐽 + 1) ∈ ℕ0𝑖 ∈ (ℤ‘(𝐽 + 1))) → 𝑖 ∈ ℕ0)
4719, 46sylan 582 . . . . . . . 8 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → 𝑖 ∈ ℕ0)
4822, 45, 47knoppcnlem1 33832 . . . . . . 7 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → ((𝐹𝐴)‘𝑖) = ((𝐶𝑖) · (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴))))
495a1i 11 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀))
5049oveq2d 7171 . . . . . . . . . 10 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → (((2 · 𝑁)↑𝑖) · 𝐴) = (((2 · 𝑁)↑𝑖) · ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)))
517adantr 483 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → 𝑁 ∈ ℕ)
5247nn0zd 12084 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → 𝑖 ∈ ℤ)
539adantr 483 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → 𝐽 ∈ ℤ)
5410adantr 483 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → 𝑀 ∈ ℤ)
55 eluzle 12255 . . . . . . . . . . . . 13 (𝑖 ∈ (ℤ‘(𝐽 + 1)) → (𝐽 + 1) ≤ 𝑖)
5655adantl 484 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → (𝐽 + 1) ≤ 𝑖)
5753, 52jca 514 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → (𝐽 ∈ ℤ ∧ 𝑖 ∈ ℤ))
58 zltp1le 12031 . . . . . . . . . . . . 13 ((𝐽 ∈ ℤ ∧ 𝑖 ∈ ℤ) → (𝐽 < 𝑖 ↔ (𝐽 + 1) ≤ 𝑖))
5957, 58syl 17 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → (𝐽 < 𝑖 ↔ (𝐽 + 1) ≤ 𝑖))
6056, 59mpbird 259 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → 𝐽 < 𝑖)
6151, 52, 53, 54, 60knoppndvlem2 33852 . . . . . . . . . 10 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → (((2 · 𝑁)↑𝑖) · ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)) ∈ ℤ)
6250, 61eqeltrd 2913 . . . . . . . . 9 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → (((2 · 𝑁)↑𝑖) · 𝐴) ∈ ℤ)
6321, 62dnizeq0 33814 . . . . . . . 8 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴)) = 0)
6463oveq2d 7171 . . . . . . 7 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → ((𝐶𝑖) · (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴))) = ((𝐶𝑖) · 0))
6526recnd 10668 . . . . . . . . . 10 (𝜑𝐶 ∈ ℂ)
6665adantr 483 . . . . . . . . 9 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → 𝐶 ∈ ℂ)
6766, 47expcld 13509 . . . . . . . 8 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → (𝐶𝑖) ∈ ℂ)
6867mul01d 10838 . . . . . . 7 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → ((𝐶𝑖) · 0) = 0)
6948, 64, 683eqtrd 2860 . . . . . 6 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → ((𝐹𝐴)‘𝑖) = 0)
7069sumeq2dv 15059 . . . . 5 (𝜑 → Σ𝑖 ∈ (ℤ‘(𝐽 + 1))((𝐹𝐴)‘𝑖) = Σ𝑖 ∈ (ℤ‘(𝐽 + 1))0)
71 ssidd 3989 . . . . . . 7 (𝜑 → (ℤ‘(𝐽 + 1)) ⊆ (ℤ‘(𝐽 + 1)))
7271orcd 869 . . . . . 6 (𝜑 → ((ℤ‘(𝐽 + 1)) ⊆ (ℤ‘(𝐽 + 1)) ∨ (ℤ‘(𝐽 + 1)) ∈ Fin))
73 sumz 15078 . . . . . 6 (((ℤ‘(𝐽 + 1)) ⊆ (ℤ‘(𝐽 + 1)) ∨ (ℤ‘(𝐽 + 1)) ∈ Fin) → Σ𝑖 ∈ (ℤ‘(𝐽 + 1))0 = 0)
7472, 73syl 17 . . . . 5 (𝜑 → Σ𝑖 ∈ (ℤ‘(𝐽 + 1))0 = 0)
7570, 74eqtrd 2856 . . . 4 (𝜑 → Σ𝑖 ∈ (ℤ‘(𝐽 + 1))((𝐹𝐴)‘𝑖) = 0)
7675oveq2d 7171 . . 3 (𝜑 → (Σ𝑖 ∈ (0...𝐽)((𝐹𝐴)‘𝑖) + Σ𝑖 ∈ (ℤ‘(𝐽 + 1))((𝐹𝐴)‘𝑖)) = (Σ𝑖 ∈ (0...𝐽)((𝐹𝐴)‘𝑖) + 0))
7721, 22, 12, 26, 7knoppndvlem5 33855 . . . . 5 (𝜑 → Σ𝑖 ∈ (0...𝐽)((𝐹𝐴)‘𝑖) ∈ ℝ)
7877recnd 10668 . . . 4 (𝜑 → Σ𝑖 ∈ (0...𝐽)((𝐹𝐴)‘𝑖) ∈ ℂ)
7978addid1d 10839 . . 3 (𝜑 → (Σ𝑖 ∈ (0...𝐽)((𝐹𝐴)‘𝑖) + 0) = Σ𝑖 ∈ (0...𝐽)((𝐹𝐴)‘𝑖))
8076, 79eqtrd 2856 . 2 (𝜑 → (Σ𝑖 ∈ (0...𝐽)((𝐹𝐴)‘𝑖) + Σ𝑖 ∈ (ℤ‘(𝐽 + 1))((𝐹𝐴)‘𝑖)) = Σ𝑖 ∈ (0...𝐽)((𝐹𝐴)‘𝑖))
8144, 80eqtrd 2856 1 (𝜑 → (𝑊𝐴) = Σ𝑖 ∈ (0...𝐽)((𝐹𝐴)‘𝑖))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843   = wceq 1533  wcel 2110  Vcvv 3494  wss 3935   class class class wbr 5065  cmpt 5145  dom cdm 5554  cfv 6354  (class class class)co 7155  Fincfn 8508  cc 10534  cr 10535  0cc0 10536  1c1 10537   + caddc 10539   · cmul 10541   < clt 10674  cle 10675  cmin 10869  -cneg 10870   / cdiv 11296  cn 11637  2c2 11691  0cn0 11896  cz 11980  cuz 12242  (,)cioo 12737  ...cfz 12891  cfl 13159  seqcseq 13368  cexp 13428  abscabs 14592  cli 14840  Σcsu 15041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-inf2 9103  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614  ax-addf 10615  ax-mulf 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7408  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-oadd 8105  df-er 8288  df-map 8407  df-pm 8408  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-sup 8905  df-inf 8906  df-oi 8973  df-card 9367  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-n0 11897  df-z 11981  df-uz 12243  df-rp 12389  df-ioo 12741  df-ico 12743  df-fz 12892  df-fzo 13033  df-fl 13161  df-seq 13369  df-exp 13429  df-hash 13690  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-limsup 14827  df-clim 14844  df-rlim 14845  df-sum 15042  df-ulm 24964
This theorem is referenced by:  knoppndvlem15  33865
  Copyright terms: Public domain W3C validator