Proof of Theorem knoppndvlem6
| Step | Hyp | Ref
| Expression |
| 1 | | knoppndvlem6.w |
. . . 4
⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0
((𝐹‘𝑤)‘𝑖)) |
| 2 | | fveq2 6881 |
. . . . . 6
⊢ (𝑤 = 𝐴 → (𝐹‘𝑤) = (𝐹‘𝐴)) |
| 3 | 2 | fveq1d 6883 |
. . . . 5
⊢ (𝑤 = 𝐴 → ((𝐹‘𝑤)‘𝑖) = ((𝐹‘𝐴)‘𝑖)) |
| 4 | 3 | sumeq2sdv 15724 |
. . . 4
⊢ (𝑤 = 𝐴 → Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖) = Σ𝑖 ∈ ℕ0 ((𝐹‘𝐴)‘𝑖)) |
| 5 | | knoppndvlem6.a |
. . . . . 6
⊢ 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) |
| 6 | 5 | a1i 11 |
. . . . 5
⊢ (𝜑 → 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)) |
| 7 | | knoppndvlem6.n |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 8 | | knoppndvlem6.j |
. . . . . . 7
⊢ (𝜑 → 𝐽 ∈
ℕ0) |
| 9 | 8 | nn0zd 12619 |
. . . . . 6
⊢ (𝜑 → 𝐽 ∈ ℤ) |
| 10 | | knoppndvlem6.m |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 11 | 7, 9, 10 | knoppndvlem1 36535 |
. . . . 5
⊢ (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) ∈ ℝ) |
| 12 | 6, 11 | eqeltrd 2835 |
. . . 4
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 13 | | sumex 15709 |
. . . . 5
⊢
Σ𝑖 ∈
ℕ0 ((𝐹‘𝐴)‘𝑖) ∈ V |
| 14 | 13 | a1i 11 |
. . . 4
⊢ (𝜑 → Σ𝑖 ∈ ℕ0 ((𝐹‘𝐴)‘𝑖) ∈ V) |
| 15 | 1, 4, 12, 14 | fvmptd3 7014 |
. . 3
⊢ (𝜑 → (𝑊‘𝐴) = Σ𝑖 ∈ ℕ0 ((𝐹‘𝐴)‘𝑖)) |
| 16 | | nn0uz 12899 |
. . . 4
⊢
ℕ0 = (ℤ≥‘0) |
| 17 | | eqid 2736 |
. . . 4
⊢
(ℤ≥‘(𝐽 + 1)) =
(ℤ≥‘(𝐽 + 1)) |
| 18 | | peano2nn0 12546 |
. . . . 5
⊢ (𝐽 ∈ ℕ0
→ (𝐽 + 1) ∈
ℕ0) |
| 19 | 8, 18 | syl 17 |
. . . 4
⊢ (𝜑 → (𝐽 + 1) ∈
ℕ0) |
| 20 | | eqidd 2737 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → ((𝐹‘𝐴)‘𝑖) = ((𝐹‘𝐴)‘𝑖)) |
| 21 | | knoppndvlem6.t |
. . . . . 6
⊢ 𝑇 = (𝑥 ∈ ℝ ↦
(abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) |
| 22 | | knoppndvlem6.f |
. . . . . 6
⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) |
| 23 | 7 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 𝑁 ∈
ℕ) |
| 24 | | knoppndvlem6.c |
. . . . . . . . 9
⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) |
| 25 | 24 | knoppndvlem3 36537 |
. . . . . . . 8
⊢ (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1)) |
| 26 | 25 | simpld 494 |
. . . . . . 7
⊢ (𝜑 → 𝐶 ∈ ℝ) |
| 27 | 26 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 𝐶 ∈
ℝ) |
| 28 | 12 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 𝐴 ∈
ℝ) |
| 29 | | simpr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 𝑖 ∈
ℕ0) |
| 30 | 21, 22, 23, 27, 28, 29 | knoppcnlem3 36518 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → ((𝐹‘𝐴)‘𝑖) ∈ ℝ) |
| 31 | 30 | recnd 11268 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → ((𝐹‘𝐴)‘𝑖) ∈ ℂ) |
| 32 | 21, 22, 1, 12, 24, 7 | knoppndvlem4 36538 |
. . . . 5
⊢ (𝜑 → seq0( + , (𝐹‘𝐴)) ⇝ (𝑊‘𝐴)) |
| 33 | | seqex 14026 |
. . . . . 6
⊢ seq0( + ,
(𝐹‘𝐴)) ∈ V |
| 34 | | fvex 6894 |
. . . . . 6
⊢ (𝑊‘𝐴) ∈ V |
| 35 | 33, 34 | breldm 5893 |
. . . . 5
⊢ (seq0( +
, (𝐹‘𝐴)) ⇝ (𝑊‘𝐴) → seq0( + , (𝐹‘𝐴)) ∈ dom ⇝ ) |
| 36 | 32, 35 | syl 17 |
. . . 4
⊢ (𝜑 → seq0( + , (𝐹‘𝐴)) ∈ dom ⇝ ) |
| 37 | 16, 17, 19, 20, 31, 36 | isumsplit 15861 |
. . 3
⊢ (𝜑 → Σ𝑖 ∈ ℕ0 ((𝐹‘𝐴)‘𝑖) = (Σ𝑖 ∈ (0...((𝐽 + 1) − 1))((𝐹‘𝐴)‘𝑖) + Σ𝑖 ∈ (ℤ≥‘(𝐽 + 1))((𝐹‘𝐴)‘𝑖))) |
| 38 | 8 | nn0cnd 12569 |
. . . . . . 7
⊢ (𝜑 → 𝐽 ∈ ℂ) |
| 39 | | 1cnd 11235 |
. . . . . . 7
⊢ (𝜑 → 1 ∈
ℂ) |
| 40 | 38, 39 | pncand 11600 |
. . . . . 6
⊢ (𝜑 → ((𝐽 + 1) − 1) = 𝐽) |
| 41 | 40 | oveq2d 7426 |
. . . . 5
⊢ (𝜑 → (0...((𝐽 + 1) − 1)) = (0...𝐽)) |
| 42 | 41 | sumeq1d 15721 |
. . . 4
⊢ (𝜑 → Σ𝑖 ∈ (0...((𝐽 + 1) − 1))((𝐹‘𝐴)‘𝑖) = Σ𝑖 ∈ (0...𝐽)((𝐹‘𝐴)‘𝑖)) |
| 43 | 42 | oveq1d 7425 |
. . 3
⊢ (𝜑 → (Σ𝑖 ∈ (0...((𝐽 + 1) − 1))((𝐹‘𝐴)‘𝑖) + Σ𝑖 ∈ (ℤ≥‘(𝐽 + 1))((𝐹‘𝐴)‘𝑖)) = (Σ𝑖 ∈ (0...𝐽)((𝐹‘𝐴)‘𝑖) + Σ𝑖 ∈ (ℤ≥‘(𝐽 + 1))((𝐹‘𝐴)‘𝑖))) |
| 44 | 15, 37, 43 | 3eqtrd 2775 |
. 2
⊢ (𝜑 → (𝑊‘𝐴) = (Σ𝑖 ∈ (0...𝐽)((𝐹‘𝐴)‘𝑖) + Σ𝑖 ∈ (ℤ≥‘(𝐽 + 1))((𝐹‘𝐴)‘𝑖))) |
| 45 | 12 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (ℤ≥‘(𝐽 + 1))) → 𝐴 ∈ ℝ) |
| 46 | | eluznn0 12938 |
. . . . . . . . 9
⊢ (((𝐽 + 1) ∈ ℕ0
∧ 𝑖 ∈
(ℤ≥‘(𝐽 + 1))) → 𝑖 ∈ ℕ0) |
| 47 | 19, 46 | sylan 580 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (ℤ≥‘(𝐽 + 1))) → 𝑖 ∈
ℕ0) |
| 48 | 22, 45, 47 | knoppcnlem1 36516 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (ℤ≥‘(𝐽 + 1))) → ((𝐹‘𝐴)‘𝑖) = ((𝐶↑𝑖) · (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴)))) |
| 49 | 5 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (ℤ≥‘(𝐽 + 1))) → 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)) |
| 50 | 49 | oveq2d 7426 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (ℤ≥‘(𝐽 + 1))) → (((2 ·
𝑁)↑𝑖) · 𝐴) = (((2 · 𝑁)↑𝑖) · ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀))) |
| 51 | 7 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (ℤ≥‘(𝐽 + 1))) → 𝑁 ∈ ℕ) |
| 52 | 47 | nn0zd 12619 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (ℤ≥‘(𝐽 + 1))) → 𝑖 ∈
ℤ) |
| 53 | 9 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (ℤ≥‘(𝐽 + 1))) → 𝐽 ∈ ℤ) |
| 54 | 10 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (ℤ≥‘(𝐽 + 1))) → 𝑀 ∈ ℤ) |
| 55 | | eluzle 12870 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈
(ℤ≥‘(𝐽 + 1)) → (𝐽 + 1) ≤ 𝑖) |
| 56 | 55 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (ℤ≥‘(𝐽 + 1))) → (𝐽 + 1) ≤ 𝑖) |
| 57 | 53, 52 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (ℤ≥‘(𝐽 + 1))) → (𝐽 ∈ ℤ ∧ 𝑖 ∈
ℤ)) |
| 58 | | zltp1le 12647 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ ℤ ∧ 𝑖 ∈ ℤ) → (𝐽 < 𝑖 ↔ (𝐽 + 1) ≤ 𝑖)) |
| 59 | 57, 58 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (ℤ≥‘(𝐽 + 1))) → (𝐽 < 𝑖 ↔ (𝐽 + 1) ≤ 𝑖)) |
| 60 | 56, 59 | mpbird 257 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (ℤ≥‘(𝐽 + 1))) → 𝐽 < 𝑖) |
| 61 | 51, 52, 53, 54, 60 | knoppndvlem2 36536 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (ℤ≥‘(𝐽 + 1))) → (((2 ·
𝑁)↑𝑖) · ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)) ∈ ℤ) |
| 62 | 50, 61 | eqeltrd 2835 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (ℤ≥‘(𝐽 + 1))) → (((2 ·
𝑁)↑𝑖) · 𝐴) ∈ ℤ) |
| 63 | 21, 62 | dnizeq0 36498 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (ℤ≥‘(𝐽 + 1))) → (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴)) = 0) |
| 64 | 63 | oveq2d 7426 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (ℤ≥‘(𝐽 + 1))) → ((𝐶↑𝑖) · (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴))) = ((𝐶↑𝑖) · 0)) |
| 65 | 26 | recnd 11268 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶 ∈ ℂ) |
| 66 | 65 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (ℤ≥‘(𝐽 + 1))) → 𝐶 ∈ ℂ) |
| 67 | 66, 47 | expcld 14169 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (ℤ≥‘(𝐽 + 1))) → (𝐶↑𝑖) ∈ ℂ) |
| 68 | 67 | mul01d 11439 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (ℤ≥‘(𝐽 + 1))) → ((𝐶↑𝑖) · 0) = 0) |
| 69 | 48, 64, 68 | 3eqtrd 2775 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (ℤ≥‘(𝐽 + 1))) → ((𝐹‘𝐴)‘𝑖) = 0) |
| 70 | 69 | sumeq2dv 15723 |
. . . . 5
⊢ (𝜑 → Σ𝑖 ∈ (ℤ≥‘(𝐽 + 1))((𝐹‘𝐴)‘𝑖) = Σ𝑖 ∈ (ℤ≥‘(𝐽 + 1))0) |
| 71 | | ssidd 3987 |
. . . . . . 7
⊢ (𝜑 →
(ℤ≥‘(𝐽 + 1)) ⊆
(ℤ≥‘(𝐽 + 1))) |
| 72 | 71 | orcd 873 |
. . . . . 6
⊢ (𝜑 →
((ℤ≥‘(𝐽 + 1)) ⊆
(ℤ≥‘(𝐽 + 1)) ∨
(ℤ≥‘(𝐽 + 1)) ∈ Fin)) |
| 73 | | sumz 15743 |
. . . . . 6
⊢
(((ℤ≥‘(𝐽 + 1)) ⊆
(ℤ≥‘(𝐽 + 1)) ∨
(ℤ≥‘(𝐽 + 1)) ∈ Fin) → Σ𝑖 ∈
(ℤ≥‘(𝐽 + 1))0 = 0) |
| 74 | 72, 73 | syl 17 |
. . . . 5
⊢ (𝜑 → Σ𝑖 ∈ (ℤ≥‘(𝐽 + 1))0 = 0) |
| 75 | 70, 74 | eqtrd 2771 |
. . . 4
⊢ (𝜑 → Σ𝑖 ∈ (ℤ≥‘(𝐽 + 1))((𝐹‘𝐴)‘𝑖) = 0) |
| 76 | 75 | oveq2d 7426 |
. . 3
⊢ (𝜑 → (Σ𝑖 ∈ (0...𝐽)((𝐹‘𝐴)‘𝑖) + Σ𝑖 ∈ (ℤ≥‘(𝐽 + 1))((𝐹‘𝐴)‘𝑖)) = (Σ𝑖 ∈ (0...𝐽)((𝐹‘𝐴)‘𝑖) + 0)) |
| 77 | 21, 22, 12, 26, 7 | knoppndvlem5 36539 |
. . . . 5
⊢ (𝜑 → Σ𝑖 ∈ (0...𝐽)((𝐹‘𝐴)‘𝑖) ∈ ℝ) |
| 78 | 77 | recnd 11268 |
. . . 4
⊢ (𝜑 → Σ𝑖 ∈ (0...𝐽)((𝐹‘𝐴)‘𝑖) ∈ ℂ) |
| 79 | 78 | addridd 11440 |
. . 3
⊢ (𝜑 → (Σ𝑖 ∈ (0...𝐽)((𝐹‘𝐴)‘𝑖) + 0) = Σ𝑖 ∈ (0...𝐽)((𝐹‘𝐴)‘𝑖)) |
| 80 | 76, 79 | eqtrd 2771 |
. 2
⊢ (𝜑 → (Σ𝑖 ∈ (0...𝐽)((𝐹‘𝐴)‘𝑖) + Σ𝑖 ∈ (ℤ≥‘(𝐽 + 1))((𝐹‘𝐴)‘𝑖)) = Σ𝑖 ∈ (0...𝐽)((𝐹‘𝐴)‘𝑖)) |
| 81 | 44, 80 | eqtrd 2771 |
1
⊢ (𝜑 → (𝑊‘𝐴) = Σ𝑖 ∈ (0...𝐽)((𝐹‘𝐴)‘𝑖)) |