Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem6 Structured version   Visualization version   GIF version

Theorem knoppndvlem6 34697
Description: Lemma for knoppndv 34714. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppndvlem6.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppndvlem6.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppndvlem6.w 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))
knoppndvlem6.a 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)
knoppndvlem6.c (𝜑𝐶 ∈ (-1(,)1))
knoppndvlem6.j (𝜑𝐽 ∈ ℕ0)
knoppndvlem6.m (𝜑𝑀 ∈ ℤ)
knoppndvlem6.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
knoppndvlem6 (𝜑 → (𝑊𝐴) = Σ𝑖 ∈ (0...𝐽)((𝐹𝐴)‘𝑖))
Distinct variable groups:   𝐴,𝑖,𝑛,𝑤,𝑦   𝑥,𝐴,𝑖,𝑤   𝐶,𝑛,𝑦   𝑖,𝐹,𝑤   𝑖,𝐽,𝑛,𝑦   𝑛,𝑁,𝑦   𝑥,𝑁   𝑇,𝑛,𝑦   𝜑,𝑖,𝑛,𝑤,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥,𝑤,𝑖)   𝑇(𝑥,𝑤,𝑖)   𝐹(𝑥,𝑦,𝑛)   𝐽(𝑥,𝑤)   𝑀(𝑥,𝑦,𝑤,𝑖,𝑛)   𝑁(𝑤,𝑖)   𝑊(𝑥,𝑦,𝑤,𝑖,𝑛)

Proof of Theorem knoppndvlem6
StepHypRef Expression
1 knoppndvlem6.w . . . 4 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))
2 fveq2 6774 . . . . . 6 (𝑤 = 𝐴 → (𝐹𝑤) = (𝐹𝐴))
32fveq1d 6776 . . . . 5 (𝑤 = 𝐴 → ((𝐹𝑤)‘𝑖) = ((𝐹𝐴)‘𝑖))
43sumeq2sdv 15416 . . . 4 (𝑤 = 𝐴 → Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖) = Σ𝑖 ∈ ℕ0 ((𝐹𝐴)‘𝑖))
5 knoppndvlem6.a . . . . . 6 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)
65a1i 11 . . . . 5 (𝜑𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀))
7 knoppndvlem6.n . . . . . 6 (𝜑𝑁 ∈ ℕ)
8 knoppndvlem6.j . . . . . . 7 (𝜑𝐽 ∈ ℕ0)
98nn0zd 12424 . . . . . 6 (𝜑𝐽 ∈ ℤ)
10 knoppndvlem6.m . . . . . 6 (𝜑𝑀 ∈ ℤ)
117, 9, 10knoppndvlem1 34692 . . . . 5 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) ∈ ℝ)
126, 11eqeltrd 2839 . . . 4 (𝜑𝐴 ∈ ℝ)
13 sumex 15399 . . . . 5 Σ𝑖 ∈ ℕ0 ((𝐹𝐴)‘𝑖) ∈ V
1413a1i 11 . . . 4 (𝜑 → Σ𝑖 ∈ ℕ0 ((𝐹𝐴)‘𝑖) ∈ V)
151, 4, 12, 14fvmptd3 6898 . . 3 (𝜑 → (𝑊𝐴) = Σ𝑖 ∈ ℕ0 ((𝐹𝐴)‘𝑖))
16 nn0uz 12620 . . . 4 0 = (ℤ‘0)
17 eqid 2738 . . . 4 (ℤ‘(𝐽 + 1)) = (ℤ‘(𝐽 + 1))
18 peano2nn0 12273 . . . . 5 (𝐽 ∈ ℕ0 → (𝐽 + 1) ∈ ℕ0)
198, 18syl 17 . . . 4 (𝜑 → (𝐽 + 1) ∈ ℕ0)
20 eqidd 2739 . . . 4 ((𝜑𝑖 ∈ ℕ0) → ((𝐹𝐴)‘𝑖) = ((𝐹𝐴)‘𝑖))
21 knoppndvlem6.t . . . . . 6 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
22 knoppndvlem6.f . . . . . 6 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
237adantr 481 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → 𝑁 ∈ ℕ)
24 knoppndvlem6.c . . . . . . . . 9 (𝜑𝐶 ∈ (-1(,)1))
2524knoppndvlem3 34694 . . . . . . . 8 (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1))
2625simpld 495 . . . . . . 7 (𝜑𝐶 ∈ ℝ)
2726adantr 481 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → 𝐶 ∈ ℝ)
2812adantr 481 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → 𝐴 ∈ ℝ)
29 simpr 485 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0)
3021, 22, 23, 27, 28, 29knoppcnlem3 34675 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → ((𝐹𝐴)‘𝑖) ∈ ℝ)
3130recnd 11003 . . . 4 ((𝜑𝑖 ∈ ℕ0) → ((𝐹𝐴)‘𝑖) ∈ ℂ)
3221, 22, 1, 12, 24, 7knoppndvlem4 34695 . . . . 5 (𝜑 → seq0( + , (𝐹𝐴)) ⇝ (𝑊𝐴))
33 seqex 13723 . . . . . 6 seq0( + , (𝐹𝐴)) ∈ V
34 fvex 6787 . . . . . 6 (𝑊𝐴) ∈ V
3533, 34breldm 5817 . . . . 5 (seq0( + , (𝐹𝐴)) ⇝ (𝑊𝐴) → seq0( + , (𝐹𝐴)) ∈ dom ⇝ )
3632, 35syl 17 . . . 4 (𝜑 → seq0( + , (𝐹𝐴)) ∈ dom ⇝ )
3716, 17, 19, 20, 31, 36isumsplit 15552 . . 3 (𝜑 → Σ𝑖 ∈ ℕ0 ((𝐹𝐴)‘𝑖) = (Σ𝑖 ∈ (0...((𝐽 + 1) − 1))((𝐹𝐴)‘𝑖) + Σ𝑖 ∈ (ℤ‘(𝐽 + 1))((𝐹𝐴)‘𝑖)))
388nn0cnd 12295 . . . . . . 7 (𝜑𝐽 ∈ ℂ)
39 1cnd 10970 . . . . . . 7 (𝜑 → 1 ∈ ℂ)
4038, 39pncand 11333 . . . . . 6 (𝜑 → ((𝐽 + 1) − 1) = 𝐽)
4140oveq2d 7291 . . . . 5 (𝜑 → (0...((𝐽 + 1) − 1)) = (0...𝐽))
4241sumeq1d 15413 . . . 4 (𝜑 → Σ𝑖 ∈ (0...((𝐽 + 1) − 1))((𝐹𝐴)‘𝑖) = Σ𝑖 ∈ (0...𝐽)((𝐹𝐴)‘𝑖))
4342oveq1d 7290 . . 3 (𝜑 → (Σ𝑖 ∈ (0...((𝐽 + 1) − 1))((𝐹𝐴)‘𝑖) + Σ𝑖 ∈ (ℤ‘(𝐽 + 1))((𝐹𝐴)‘𝑖)) = (Σ𝑖 ∈ (0...𝐽)((𝐹𝐴)‘𝑖) + Σ𝑖 ∈ (ℤ‘(𝐽 + 1))((𝐹𝐴)‘𝑖)))
4415, 37, 433eqtrd 2782 . 2 (𝜑 → (𝑊𝐴) = (Σ𝑖 ∈ (0...𝐽)((𝐹𝐴)‘𝑖) + Σ𝑖 ∈ (ℤ‘(𝐽 + 1))((𝐹𝐴)‘𝑖)))
4512adantr 481 . . . . . . . 8 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → 𝐴 ∈ ℝ)
46 eluznn0 12657 . . . . . . . . 9 (((𝐽 + 1) ∈ ℕ0𝑖 ∈ (ℤ‘(𝐽 + 1))) → 𝑖 ∈ ℕ0)
4719, 46sylan 580 . . . . . . . 8 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → 𝑖 ∈ ℕ0)
4822, 45, 47knoppcnlem1 34673 . . . . . . 7 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → ((𝐹𝐴)‘𝑖) = ((𝐶𝑖) · (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴))))
495a1i 11 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀))
5049oveq2d 7291 . . . . . . . . . 10 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → (((2 · 𝑁)↑𝑖) · 𝐴) = (((2 · 𝑁)↑𝑖) · ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)))
517adantr 481 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → 𝑁 ∈ ℕ)
5247nn0zd 12424 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → 𝑖 ∈ ℤ)
539adantr 481 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → 𝐽 ∈ ℤ)
5410adantr 481 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → 𝑀 ∈ ℤ)
55 eluzle 12595 . . . . . . . . . . . . 13 (𝑖 ∈ (ℤ‘(𝐽 + 1)) → (𝐽 + 1) ≤ 𝑖)
5655adantl 482 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → (𝐽 + 1) ≤ 𝑖)
5753, 52jca 512 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → (𝐽 ∈ ℤ ∧ 𝑖 ∈ ℤ))
58 zltp1le 12370 . . . . . . . . . . . . 13 ((𝐽 ∈ ℤ ∧ 𝑖 ∈ ℤ) → (𝐽 < 𝑖 ↔ (𝐽 + 1) ≤ 𝑖))
5957, 58syl 17 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → (𝐽 < 𝑖 ↔ (𝐽 + 1) ≤ 𝑖))
6056, 59mpbird 256 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → 𝐽 < 𝑖)
6151, 52, 53, 54, 60knoppndvlem2 34693 . . . . . . . . . 10 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → (((2 · 𝑁)↑𝑖) · ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)) ∈ ℤ)
6250, 61eqeltrd 2839 . . . . . . . . 9 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → (((2 · 𝑁)↑𝑖) · 𝐴) ∈ ℤ)
6321, 62dnizeq0 34655 . . . . . . . 8 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴)) = 0)
6463oveq2d 7291 . . . . . . 7 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → ((𝐶𝑖) · (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴))) = ((𝐶𝑖) · 0))
6526recnd 11003 . . . . . . . . . 10 (𝜑𝐶 ∈ ℂ)
6665adantr 481 . . . . . . . . 9 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → 𝐶 ∈ ℂ)
6766, 47expcld 13864 . . . . . . . 8 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → (𝐶𝑖) ∈ ℂ)
6867mul01d 11174 . . . . . . 7 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → ((𝐶𝑖) · 0) = 0)
6948, 64, 683eqtrd 2782 . . . . . 6 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → ((𝐹𝐴)‘𝑖) = 0)
7069sumeq2dv 15415 . . . . 5 (𝜑 → Σ𝑖 ∈ (ℤ‘(𝐽 + 1))((𝐹𝐴)‘𝑖) = Σ𝑖 ∈ (ℤ‘(𝐽 + 1))0)
71 ssidd 3944 . . . . . . 7 (𝜑 → (ℤ‘(𝐽 + 1)) ⊆ (ℤ‘(𝐽 + 1)))
7271orcd 870 . . . . . 6 (𝜑 → ((ℤ‘(𝐽 + 1)) ⊆ (ℤ‘(𝐽 + 1)) ∨ (ℤ‘(𝐽 + 1)) ∈ Fin))
73 sumz 15434 . . . . . 6 (((ℤ‘(𝐽 + 1)) ⊆ (ℤ‘(𝐽 + 1)) ∨ (ℤ‘(𝐽 + 1)) ∈ Fin) → Σ𝑖 ∈ (ℤ‘(𝐽 + 1))0 = 0)
7472, 73syl 17 . . . . 5 (𝜑 → Σ𝑖 ∈ (ℤ‘(𝐽 + 1))0 = 0)
7570, 74eqtrd 2778 . . . 4 (𝜑 → Σ𝑖 ∈ (ℤ‘(𝐽 + 1))((𝐹𝐴)‘𝑖) = 0)
7675oveq2d 7291 . . 3 (𝜑 → (Σ𝑖 ∈ (0...𝐽)((𝐹𝐴)‘𝑖) + Σ𝑖 ∈ (ℤ‘(𝐽 + 1))((𝐹𝐴)‘𝑖)) = (Σ𝑖 ∈ (0...𝐽)((𝐹𝐴)‘𝑖) + 0))
7721, 22, 12, 26, 7knoppndvlem5 34696 . . . . 5 (𝜑 → Σ𝑖 ∈ (0...𝐽)((𝐹𝐴)‘𝑖) ∈ ℝ)
7877recnd 11003 . . . 4 (𝜑 → Σ𝑖 ∈ (0...𝐽)((𝐹𝐴)‘𝑖) ∈ ℂ)
7978addid1d 11175 . . 3 (𝜑 → (Σ𝑖 ∈ (0...𝐽)((𝐹𝐴)‘𝑖) + 0) = Σ𝑖 ∈ (0...𝐽)((𝐹𝐴)‘𝑖))
8076, 79eqtrd 2778 . 2 (𝜑 → (Σ𝑖 ∈ (0...𝐽)((𝐹𝐴)‘𝑖) + Σ𝑖 ∈ (ℤ‘(𝐽 + 1))((𝐹𝐴)‘𝑖)) = Σ𝑖 ∈ (0...𝐽)((𝐹𝐴)‘𝑖))
8144, 80eqtrd 2778 1 (𝜑 → (𝑊𝐴) = Σ𝑖 ∈ (0...𝐽)((𝐹𝐴)‘𝑖))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wcel 2106  Vcvv 3432  wss 3887   class class class wbr 5074  cmpt 5157  dom cdm 5589  cfv 6433  (class class class)co 7275  Fincfn 8733  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876   < clt 11009  cle 11010  cmin 11205  -cneg 11206   / cdiv 11632  cn 11973  2c2 12028  0cn0 12233  cz 12319  cuz 12582  (,)cioo 13079  ...cfz 13239  cfl 13510  seqcseq 13721  cexp 13782  abscabs 14945  cli 15193  Σcsu 15397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-ioo 13083  df-ico 13085  df-fz 13240  df-fzo 13383  df-fl 13512  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398  df-ulm 25536
This theorem is referenced by:  knoppndvlem15  34706
  Copyright terms: Public domain W3C validator