Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem6 Structured version   Visualization version   GIF version

Theorem knoppndvlem6 36633
Description: Lemma for knoppndv 36650. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppndvlem6.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppndvlem6.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppndvlem6.w 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))
knoppndvlem6.a 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)
knoppndvlem6.c (𝜑𝐶 ∈ (-1(,)1))
knoppndvlem6.j (𝜑𝐽 ∈ ℕ0)
knoppndvlem6.m (𝜑𝑀 ∈ ℤ)
knoppndvlem6.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
knoppndvlem6 (𝜑 → (𝑊𝐴) = Σ𝑖 ∈ (0...𝐽)((𝐹𝐴)‘𝑖))
Distinct variable groups:   𝐴,𝑖,𝑛,𝑤,𝑦   𝑥,𝐴,𝑖,𝑤   𝐶,𝑛,𝑦   𝑖,𝐹,𝑤   𝑖,𝐽,𝑛,𝑦   𝑛,𝑁,𝑦   𝑥,𝑁   𝑇,𝑛,𝑦   𝜑,𝑖,𝑛,𝑤,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥,𝑤,𝑖)   𝑇(𝑥,𝑤,𝑖)   𝐹(𝑥,𝑦,𝑛)   𝐽(𝑥,𝑤)   𝑀(𝑥,𝑦,𝑤,𝑖,𝑛)   𝑁(𝑤,𝑖)   𝑊(𝑥,𝑦,𝑤,𝑖,𝑛)

Proof of Theorem knoppndvlem6
StepHypRef Expression
1 knoppndvlem6.w . . . 4 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))
2 fveq2 6831 . . . . . 6 (𝑤 = 𝐴 → (𝐹𝑤) = (𝐹𝐴))
32fveq1d 6833 . . . . 5 (𝑤 = 𝐴 → ((𝐹𝑤)‘𝑖) = ((𝐹𝐴)‘𝑖))
43sumeq2sdv 15617 . . . 4 (𝑤 = 𝐴 → Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖) = Σ𝑖 ∈ ℕ0 ((𝐹𝐴)‘𝑖))
5 knoppndvlem6.a . . . . . 6 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)
65a1i 11 . . . . 5 (𝜑𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀))
7 knoppndvlem6.n . . . . . 6 (𝜑𝑁 ∈ ℕ)
8 knoppndvlem6.j . . . . . . 7 (𝜑𝐽 ∈ ℕ0)
98nn0zd 12504 . . . . . 6 (𝜑𝐽 ∈ ℤ)
10 knoppndvlem6.m . . . . . 6 (𝜑𝑀 ∈ ℤ)
117, 9, 10knoppndvlem1 36628 . . . . 5 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) ∈ ℝ)
126, 11eqeltrd 2833 . . . 4 (𝜑𝐴 ∈ ℝ)
13 sumex 15602 . . . . 5 Σ𝑖 ∈ ℕ0 ((𝐹𝐴)‘𝑖) ∈ V
1413a1i 11 . . . 4 (𝜑 → Σ𝑖 ∈ ℕ0 ((𝐹𝐴)‘𝑖) ∈ V)
151, 4, 12, 14fvmptd3 6961 . . 3 (𝜑 → (𝑊𝐴) = Σ𝑖 ∈ ℕ0 ((𝐹𝐴)‘𝑖))
16 nn0uz 12780 . . . 4 0 = (ℤ‘0)
17 eqid 2733 . . . 4 (ℤ‘(𝐽 + 1)) = (ℤ‘(𝐽 + 1))
18 peano2nn0 12432 . . . . 5 (𝐽 ∈ ℕ0 → (𝐽 + 1) ∈ ℕ0)
198, 18syl 17 . . . 4 (𝜑 → (𝐽 + 1) ∈ ℕ0)
20 eqidd 2734 . . . 4 ((𝜑𝑖 ∈ ℕ0) → ((𝐹𝐴)‘𝑖) = ((𝐹𝐴)‘𝑖))
21 knoppndvlem6.t . . . . . 6 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
22 knoppndvlem6.f . . . . . 6 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
237adantr 480 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → 𝑁 ∈ ℕ)
24 knoppndvlem6.c . . . . . . . . 9 (𝜑𝐶 ∈ (-1(,)1))
2524knoppndvlem3 36630 . . . . . . . 8 (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1))
2625simpld 494 . . . . . . 7 (𝜑𝐶 ∈ ℝ)
2726adantr 480 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → 𝐶 ∈ ℝ)
2812adantr 480 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → 𝐴 ∈ ℝ)
29 simpr 484 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0)
3021, 22, 23, 27, 28, 29knoppcnlem3 36611 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → ((𝐹𝐴)‘𝑖) ∈ ℝ)
3130recnd 11151 . . . 4 ((𝜑𝑖 ∈ ℕ0) → ((𝐹𝐴)‘𝑖) ∈ ℂ)
3221, 22, 1, 12, 24, 7knoppndvlem4 36631 . . . . 5 (𝜑 → seq0( + , (𝐹𝐴)) ⇝ (𝑊𝐴))
33 seqex 13917 . . . . . 6 seq0( + , (𝐹𝐴)) ∈ V
34 fvex 6844 . . . . . 6 (𝑊𝐴) ∈ V
3533, 34breldm 5854 . . . . 5 (seq0( + , (𝐹𝐴)) ⇝ (𝑊𝐴) → seq0( + , (𝐹𝐴)) ∈ dom ⇝ )
3632, 35syl 17 . . . 4 (𝜑 → seq0( + , (𝐹𝐴)) ∈ dom ⇝ )
3716, 17, 19, 20, 31, 36isumsplit 15754 . . 3 (𝜑 → Σ𝑖 ∈ ℕ0 ((𝐹𝐴)‘𝑖) = (Σ𝑖 ∈ (0...((𝐽 + 1) − 1))((𝐹𝐴)‘𝑖) + Σ𝑖 ∈ (ℤ‘(𝐽 + 1))((𝐹𝐴)‘𝑖)))
388nn0cnd 12455 . . . . . . 7 (𝜑𝐽 ∈ ℂ)
39 1cnd 11118 . . . . . . 7 (𝜑 → 1 ∈ ℂ)
4038, 39pncand 11484 . . . . . 6 (𝜑 → ((𝐽 + 1) − 1) = 𝐽)
4140oveq2d 7371 . . . . 5 (𝜑 → (0...((𝐽 + 1) − 1)) = (0...𝐽))
4241sumeq1d 15614 . . . 4 (𝜑 → Σ𝑖 ∈ (0...((𝐽 + 1) − 1))((𝐹𝐴)‘𝑖) = Σ𝑖 ∈ (0...𝐽)((𝐹𝐴)‘𝑖))
4342oveq1d 7370 . . 3 (𝜑 → (Σ𝑖 ∈ (0...((𝐽 + 1) − 1))((𝐹𝐴)‘𝑖) + Σ𝑖 ∈ (ℤ‘(𝐽 + 1))((𝐹𝐴)‘𝑖)) = (Σ𝑖 ∈ (0...𝐽)((𝐹𝐴)‘𝑖) + Σ𝑖 ∈ (ℤ‘(𝐽 + 1))((𝐹𝐴)‘𝑖)))
4415, 37, 433eqtrd 2772 . 2 (𝜑 → (𝑊𝐴) = (Σ𝑖 ∈ (0...𝐽)((𝐹𝐴)‘𝑖) + Σ𝑖 ∈ (ℤ‘(𝐽 + 1))((𝐹𝐴)‘𝑖)))
4512adantr 480 . . . . . . . 8 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → 𝐴 ∈ ℝ)
46 eluznn0 12821 . . . . . . . . 9 (((𝐽 + 1) ∈ ℕ0𝑖 ∈ (ℤ‘(𝐽 + 1))) → 𝑖 ∈ ℕ0)
4719, 46sylan 580 . . . . . . . 8 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → 𝑖 ∈ ℕ0)
4822, 45, 47knoppcnlem1 36609 . . . . . . 7 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → ((𝐹𝐴)‘𝑖) = ((𝐶𝑖) · (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴))))
495a1i 11 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀))
5049oveq2d 7371 . . . . . . . . . 10 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → (((2 · 𝑁)↑𝑖) · 𝐴) = (((2 · 𝑁)↑𝑖) · ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)))
517adantr 480 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → 𝑁 ∈ ℕ)
5247nn0zd 12504 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → 𝑖 ∈ ℤ)
539adantr 480 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → 𝐽 ∈ ℤ)
5410adantr 480 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → 𝑀 ∈ ℤ)
55 eluzle 12755 . . . . . . . . . . . . 13 (𝑖 ∈ (ℤ‘(𝐽 + 1)) → (𝐽 + 1) ≤ 𝑖)
5655adantl 481 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → (𝐽 + 1) ≤ 𝑖)
5753, 52jca 511 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → (𝐽 ∈ ℤ ∧ 𝑖 ∈ ℤ))
58 zltp1le 12532 . . . . . . . . . . . . 13 ((𝐽 ∈ ℤ ∧ 𝑖 ∈ ℤ) → (𝐽 < 𝑖 ↔ (𝐽 + 1) ≤ 𝑖))
5957, 58syl 17 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → (𝐽 < 𝑖 ↔ (𝐽 + 1) ≤ 𝑖))
6056, 59mpbird 257 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → 𝐽 < 𝑖)
6151, 52, 53, 54, 60knoppndvlem2 36629 . . . . . . . . . 10 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → (((2 · 𝑁)↑𝑖) · ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)) ∈ ℤ)
6250, 61eqeltrd 2833 . . . . . . . . 9 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → (((2 · 𝑁)↑𝑖) · 𝐴) ∈ ℤ)
6321, 62dnizeq0 36591 . . . . . . . 8 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴)) = 0)
6463oveq2d 7371 . . . . . . 7 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → ((𝐶𝑖) · (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴))) = ((𝐶𝑖) · 0))
6526recnd 11151 . . . . . . . . . 10 (𝜑𝐶 ∈ ℂ)
6665adantr 480 . . . . . . . . 9 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → 𝐶 ∈ ℂ)
6766, 47expcld 14060 . . . . . . . 8 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → (𝐶𝑖) ∈ ℂ)
6867mul01d 11323 . . . . . . 7 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → ((𝐶𝑖) · 0) = 0)
6948, 64, 683eqtrd 2772 . . . . . 6 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → ((𝐹𝐴)‘𝑖) = 0)
7069sumeq2dv 15616 . . . . 5 (𝜑 → Σ𝑖 ∈ (ℤ‘(𝐽 + 1))((𝐹𝐴)‘𝑖) = Σ𝑖 ∈ (ℤ‘(𝐽 + 1))0)
71 ssidd 3954 . . . . . . 7 (𝜑 → (ℤ‘(𝐽 + 1)) ⊆ (ℤ‘(𝐽 + 1)))
7271orcd 873 . . . . . 6 (𝜑 → ((ℤ‘(𝐽 + 1)) ⊆ (ℤ‘(𝐽 + 1)) ∨ (ℤ‘(𝐽 + 1)) ∈ Fin))
73 sumz 15636 . . . . . 6 (((ℤ‘(𝐽 + 1)) ⊆ (ℤ‘(𝐽 + 1)) ∨ (ℤ‘(𝐽 + 1)) ∈ Fin) → Σ𝑖 ∈ (ℤ‘(𝐽 + 1))0 = 0)
7472, 73syl 17 . . . . 5 (𝜑 → Σ𝑖 ∈ (ℤ‘(𝐽 + 1))0 = 0)
7570, 74eqtrd 2768 . . . 4 (𝜑 → Σ𝑖 ∈ (ℤ‘(𝐽 + 1))((𝐹𝐴)‘𝑖) = 0)
7675oveq2d 7371 . . 3 (𝜑 → (Σ𝑖 ∈ (0...𝐽)((𝐹𝐴)‘𝑖) + Σ𝑖 ∈ (ℤ‘(𝐽 + 1))((𝐹𝐴)‘𝑖)) = (Σ𝑖 ∈ (0...𝐽)((𝐹𝐴)‘𝑖) + 0))
7721, 22, 12, 26, 7knoppndvlem5 36632 . . . . 5 (𝜑 → Σ𝑖 ∈ (0...𝐽)((𝐹𝐴)‘𝑖) ∈ ℝ)
7877recnd 11151 . . . 4 (𝜑 → Σ𝑖 ∈ (0...𝐽)((𝐹𝐴)‘𝑖) ∈ ℂ)
7978addridd 11324 . . 3 (𝜑 → (Σ𝑖 ∈ (0...𝐽)((𝐹𝐴)‘𝑖) + 0) = Σ𝑖 ∈ (0...𝐽)((𝐹𝐴)‘𝑖))
8076, 79eqtrd 2768 . 2 (𝜑 → (Σ𝑖 ∈ (0...𝐽)((𝐹𝐴)‘𝑖) + Σ𝑖 ∈ (ℤ‘(𝐽 + 1))((𝐹𝐴)‘𝑖)) = Σ𝑖 ∈ (0...𝐽)((𝐹𝐴)‘𝑖))
8144, 80eqtrd 2768 1 (𝜑 → (𝑊𝐴) = Σ𝑖 ∈ (0...𝐽)((𝐹𝐴)‘𝑖))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2113  Vcvv 3437  wss 3898   class class class wbr 5095  cmpt 5176  dom cdm 5621  cfv 6489  (class class class)co 7355  Fincfn 8879  cc 11015  cr 11016  0cc0 11017  1c1 11018   + caddc 11020   · cmul 11022   < clt 11157  cle 11158  cmin 11355  -cneg 11356   / cdiv 11785  cn 12136  2c2 12191  0cn0 12392  cz 12479  cuz 12742  (,)cioo 13252  ...cfz 13414  cfl 13701  seqcseq 13915  cexp 13975  abscabs 15148  cli 15398  Σcsu 15600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9542  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-map 8761  df-pm 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9337  df-inf 9338  df-oi 9407  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-n0 12393  df-z 12480  df-uz 12743  df-rp 12897  df-ioo 13256  df-ico 13258  df-fz 13415  df-fzo 13562  df-fl 13703  df-seq 13916  df-exp 13976  df-hash 14245  df-cj 15013  df-re 15014  df-im 15015  df-sqrt 15149  df-abs 15150  df-limsup 15385  df-clim 15402  df-rlim 15403  df-sum 15601  df-ulm 26333
This theorem is referenced by:  knoppndvlem15  36642
  Copyright terms: Public domain W3C validator