Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem6 Structured version   Visualization version   GIF version

Theorem knoppndvlem6 34624
Description: Lemma for knoppndv 34641. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppndvlem6.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppndvlem6.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppndvlem6.w 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))
knoppndvlem6.a 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)
knoppndvlem6.c (𝜑𝐶 ∈ (-1(,)1))
knoppndvlem6.j (𝜑𝐽 ∈ ℕ0)
knoppndvlem6.m (𝜑𝑀 ∈ ℤ)
knoppndvlem6.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
knoppndvlem6 (𝜑 → (𝑊𝐴) = Σ𝑖 ∈ (0...𝐽)((𝐹𝐴)‘𝑖))
Distinct variable groups:   𝐴,𝑖,𝑛,𝑤,𝑦   𝑥,𝐴,𝑖,𝑤   𝐶,𝑛,𝑦   𝑖,𝐹,𝑤   𝑖,𝐽,𝑛,𝑦   𝑛,𝑁,𝑦   𝑥,𝑁   𝑇,𝑛,𝑦   𝜑,𝑖,𝑛,𝑤,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥,𝑤,𝑖)   𝑇(𝑥,𝑤,𝑖)   𝐹(𝑥,𝑦,𝑛)   𝐽(𝑥,𝑤)   𝑀(𝑥,𝑦,𝑤,𝑖,𝑛)   𝑁(𝑤,𝑖)   𝑊(𝑥,𝑦,𝑤,𝑖,𝑛)

Proof of Theorem knoppndvlem6
StepHypRef Expression
1 knoppndvlem6.w . . . 4 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))
2 fveq2 6756 . . . . . 6 (𝑤 = 𝐴 → (𝐹𝑤) = (𝐹𝐴))
32fveq1d 6758 . . . . 5 (𝑤 = 𝐴 → ((𝐹𝑤)‘𝑖) = ((𝐹𝐴)‘𝑖))
43sumeq2sdv 15344 . . . 4 (𝑤 = 𝐴 → Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖) = Σ𝑖 ∈ ℕ0 ((𝐹𝐴)‘𝑖))
5 knoppndvlem6.a . . . . . 6 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)
65a1i 11 . . . . 5 (𝜑𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀))
7 knoppndvlem6.n . . . . . 6 (𝜑𝑁 ∈ ℕ)
8 knoppndvlem6.j . . . . . . 7 (𝜑𝐽 ∈ ℕ0)
98nn0zd 12353 . . . . . 6 (𝜑𝐽 ∈ ℤ)
10 knoppndvlem6.m . . . . . 6 (𝜑𝑀 ∈ ℤ)
117, 9, 10knoppndvlem1 34619 . . . . 5 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) ∈ ℝ)
126, 11eqeltrd 2839 . . . 4 (𝜑𝐴 ∈ ℝ)
13 sumex 15327 . . . . 5 Σ𝑖 ∈ ℕ0 ((𝐹𝐴)‘𝑖) ∈ V
1413a1i 11 . . . 4 (𝜑 → Σ𝑖 ∈ ℕ0 ((𝐹𝐴)‘𝑖) ∈ V)
151, 4, 12, 14fvmptd3 6880 . . 3 (𝜑 → (𝑊𝐴) = Σ𝑖 ∈ ℕ0 ((𝐹𝐴)‘𝑖))
16 nn0uz 12549 . . . 4 0 = (ℤ‘0)
17 eqid 2738 . . . 4 (ℤ‘(𝐽 + 1)) = (ℤ‘(𝐽 + 1))
18 peano2nn0 12203 . . . . 5 (𝐽 ∈ ℕ0 → (𝐽 + 1) ∈ ℕ0)
198, 18syl 17 . . . 4 (𝜑 → (𝐽 + 1) ∈ ℕ0)
20 eqidd 2739 . . . 4 ((𝜑𝑖 ∈ ℕ0) → ((𝐹𝐴)‘𝑖) = ((𝐹𝐴)‘𝑖))
21 knoppndvlem6.t . . . . . 6 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
22 knoppndvlem6.f . . . . . 6 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
237adantr 480 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → 𝑁 ∈ ℕ)
24 knoppndvlem6.c . . . . . . . . 9 (𝜑𝐶 ∈ (-1(,)1))
2524knoppndvlem3 34621 . . . . . . . 8 (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1))
2625simpld 494 . . . . . . 7 (𝜑𝐶 ∈ ℝ)
2726adantr 480 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → 𝐶 ∈ ℝ)
2812adantr 480 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → 𝐴 ∈ ℝ)
29 simpr 484 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0)
3021, 22, 23, 27, 28, 29knoppcnlem3 34602 . . . . 5 ((𝜑𝑖 ∈ ℕ0) → ((𝐹𝐴)‘𝑖) ∈ ℝ)
3130recnd 10934 . . . 4 ((𝜑𝑖 ∈ ℕ0) → ((𝐹𝐴)‘𝑖) ∈ ℂ)
3221, 22, 1, 12, 24, 7knoppndvlem4 34622 . . . . 5 (𝜑 → seq0( + , (𝐹𝐴)) ⇝ (𝑊𝐴))
33 seqex 13651 . . . . . 6 seq0( + , (𝐹𝐴)) ∈ V
34 fvex 6769 . . . . . 6 (𝑊𝐴) ∈ V
3533, 34breldm 5806 . . . . 5 (seq0( + , (𝐹𝐴)) ⇝ (𝑊𝐴) → seq0( + , (𝐹𝐴)) ∈ dom ⇝ )
3632, 35syl 17 . . . 4 (𝜑 → seq0( + , (𝐹𝐴)) ∈ dom ⇝ )
3716, 17, 19, 20, 31, 36isumsplit 15480 . . 3 (𝜑 → Σ𝑖 ∈ ℕ0 ((𝐹𝐴)‘𝑖) = (Σ𝑖 ∈ (0...((𝐽 + 1) − 1))((𝐹𝐴)‘𝑖) + Σ𝑖 ∈ (ℤ‘(𝐽 + 1))((𝐹𝐴)‘𝑖)))
388nn0cnd 12225 . . . . . . 7 (𝜑𝐽 ∈ ℂ)
39 1cnd 10901 . . . . . . 7 (𝜑 → 1 ∈ ℂ)
4038, 39pncand 11263 . . . . . 6 (𝜑 → ((𝐽 + 1) − 1) = 𝐽)
4140oveq2d 7271 . . . . 5 (𝜑 → (0...((𝐽 + 1) − 1)) = (0...𝐽))
4241sumeq1d 15341 . . . 4 (𝜑 → Σ𝑖 ∈ (0...((𝐽 + 1) − 1))((𝐹𝐴)‘𝑖) = Σ𝑖 ∈ (0...𝐽)((𝐹𝐴)‘𝑖))
4342oveq1d 7270 . . 3 (𝜑 → (Σ𝑖 ∈ (0...((𝐽 + 1) − 1))((𝐹𝐴)‘𝑖) + Σ𝑖 ∈ (ℤ‘(𝐽 + 1))((𝐹𝐴)‘𝑖)) = (Σ𝑖 ∈ (0...𝐽)((𝐹𝐴)‘𝑖) + Σ𝑖 ∈ (ℤ‘(𝐽 + 1))((𝐹𝐴)‘𝑖)))
4415, 37, 433eqtrd 2782 . 2 (𝜑 → (𝑊𝐴) = (Σ𝑖 ∈ (0...𝐽)((𝐹𝐴)‘𝑖) + Σ𝑖 ∈ (ℤ‘(𝐽 + 1))((𝐹𝐴)‘𝑖)))
4512adantr 480 . . . . . . . 8 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → 𝐴 ∈ ℝ)
46 eluznn0 12586 . . . . . . . . 9 (((𝐽 + 1) ∈ ℕ0𝑖 ∈ (ℤ‘(𝐽 + 1))) → 𝑖 ∈ ℕ0)
4719, 46sylan 579 . . . . . . . 8 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → 𝑖 ∈ ℕ0)
4822, 45, 47knoppcnlem1 34600 . . . . . . 7 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → ((𝐹𝐴)‘𝑖) = ((𝐶𝑖) · (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴))))
495a1i 11 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀))
5049oveq2d 7271 . . . . . . . . . 10 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → (((2 · 𝑁)↑𝑖) · 𝐴) = (((2 · 𝑁)↑𝑖) · ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)))
517adantr 480 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → 𝑁 ∈ ℕ)
5247nn0zd 12353 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → 𝑖 ∈ ℤ)
539adantr 480 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → 𝐽 ∈ ℤ)
5410adantr 480 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → 𝑀 ∈ ℤ)
55 eluzle 12524 . . . . . . . . . . . . 13 (𝑖 ∈ (ℤ‘(𝐽 + 1)) → (𝐽 + 1) ≤ 𝑖)
5655adantl 481 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → (𝐽 + 1) ≤ 𝑖)
5753, 52jca 511 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → (𝐽 ∈ ℤ ∧ 𝑖 ∈ ℤ))
58 zltp1le 12300 . . . . . . . . . . . . 13 ((𝐽 ∈ ℤ ∧ 𝑖 ∈ ℤ) → (𝐽 < 𝑖 ↔ (𝐽 + 1) ≤ 𝑖))
5957, 58syl 17 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → (𝐽 < 𝑖 ↔ (𝐽 + 1) ≤ 𝑖))
6056, 59mpbird 256 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → 𝐽 < 𝑖)
6151, 52, 53, 54, 60knoppndvlem2 34620 . . . . . . . . . 10 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → (((2 · 𝑁)↑𝑖) · ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)) ∈ ℤ)
6250, 61eqeltrd 2839 . . . . . . . . 9 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → (((2 · 𝑁)↑𝑖) · 𝐴) ∈ ℤ)
6321, 62dnizeq0 34582 . . . . . . . 8 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴)) = 0)
6463oveq2d 7271 . . . . . . 7 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → ((𝐶𝑖) · (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴))) = ((𝐶𝑖) · 0))
6526recnd 10934 . . . . . . . . . 10 (𝜑𝐶 ∈ ℂ)
6665adantr 480 . . . . . . . . 9 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → 𝐶 ∈ ℂ)
6766, 47expcld 13792 . . . . . . . 8 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → (𝐶𝑖) ∈ ℂ)
6867mul01d 11104 . . . . . . 7 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → ((𝐶𝑖) · 0) = 0)
6948, 64, 683eqtrd 2782 . . . . . 6 ((𝜑𝑖 ∈ (ℤ‘(𝐽 + 1))) → ((𝐹𝐴)‘𝑖) = 0)
7069sumeq2dv 15343 . . . . 5 (𝜑 → Σ𝑖 ∈ (ℤ‘(𝐽 + 1))((𝐹𝐴)‘𝑖) = Σ𝑖 ∈ (ℤ‘(𝐽 + 1))0)
71 ssidd 3940 . . . . . . 7 (𝜑 → (ℤ‘(𝐽 + 1)) ⊆ (ℤ‘(𝐽 + 1)))
7271orcd 869 . . . . . 6 (𝜑 → ((ℤ‘(𝐽 + 1)) ⊆ (ℤ‘(𝐽 + 1)) ∨ (ℤ‘(𝐽 + 1)) ∈ Fin))
73 sumz 15362 . . . . . 6 (((ℤ‘(𝐽 + 1)) ⊆ (ℤ‘(𝐽 + 1)) ∨ (ℤ‘(𝐽 + 1)) ∈ Fin) → Σ𝑖 ∈ (ℤ‘(𝐽 + 1))0 = 0)
7472, 73syl 17 . . . . 5 (𝜑 → Σ𝑖 ∈ (ℤ‘(𝐽 + 1))0 = 0)
7570, 74eqtrd 2778 . . . 4 (𝜑 → Σ𝑖 ∈ (ℤ‘(𝐽 + 1))((𝐹𝐴)‘𝑖) = 0)
7675oveq2d 7271 . . 3 (𝜑 → (Σ𝑖 ∈ (0...𝐽)((𝐹𝐴)‘𝑖) + Σ𝑖 ∈ (ℤ‘(𝐽 + 1))((𝐹𝐴)‘𝑖)) = (Σ𝑖 ∈ (0...𝐽)((𝐹𝐴)‘𝑖) + 0))
7721, 22, 12, 26, 7knoppndvlem5 34623 . . . . 5 (𝜑 → Σ𝑖 ∈ (0...𝐽)((𝐹𝐴)‘𝑖) ∈ ℝ)
7877recnd 10934 . . . 4 (𝜑 → Σ𝑖 ∈ (0...𝐽)((𝐹𝐴)‘𝑖) ∈ ℂ)
7978addid1d 11105 . . 3 (𝜑 → (Σ𝑖 ∈ (0...𝐽)((𝐹𝐴)‘𝑖) + 0) = Σ𝑖 ∈ (0...𝐽)((𝐹𝐴)‘𝑖))
8076, 79eqtrd 2778 . 2 (𝜑 → (Σ𝑖 ∈ (0...𝐽)((𝐹𝐴)‘𝑖) + Σ𝑖 ∈ (ℤ‘(𝐽 + 1))((𝐹𝐴)‘𝑖)) = Σ𝑖 ∈ (0...𝐽)((𝐹𝐴)‘𝑖))
8144, 80eqtrd 2778 1 (𝜑 → (𝑊𝐴) = Σ𝑖 ∈ (0...𝐽)((𝐹𝐴)‘𝑖))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  Vcvv 3422  wss 3883   class class class wbr 5070  cmpt 5153  dom cdm 5580  cfv 6418  (class class class)co 7255  Fincfn 8691  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807   < clt 10940  cle 10941  cmin 11135  -cneg 11136   / cdiv 11562  cn 11903  2c2 11958  0cn0 12163  cz 12249  cuz 12511  (,)cioo 13008  ...cfz 13168  cfl 13438  seqcseq 13649  cexp 13710  abscabs 14873  cli 15121  Σcsu 15325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-ioo 13012  df-ico 13014  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ulm 25441
This theorem is referenced by:  knoppndvlem15  34633
  Copyright terms: Public domain W3C validator