Step | Hyp | Ref
| Expression |
1 | | dvf 24976 |
. . . . 5
⊢ (ℝ
D (∗ ∘ 𝐹)):dom
(ℝ D (∗ ∘ 𝐹))⟶ℂ |
2 | | ffun 6587 |
. . . . 5
⊢ ((ℝ
D (∗ ∘ 𝐹)):dom
(ℝ D (∗ ∘ 𝐹))⟶ℂ → Fun (ℝ D
(∗ ∘ 𝐹))) |
3 | 1, 2 | ax-mp 5 |
. . . 4
⊢ Fun
(ℝ D (∗ ∘ 𝐹)) |
4 | | simpll 763 |
. . . . 5
⊢ (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → 𝐹:𝑋⟶ℂ) |
5 | | simplr 765 |
. . . . 5
⊢ (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → 𝑋 ⊆ ℝ) |
6 | | simpr 484 |
. . . . 5
⊢ (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → 𝑥 ∈ dom (ℝ D 𝐹)) |
7 | 4, 5, 6 | dvcjbr 25018 |
. . . 4
⊢ (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → 𝑥(ℝ D (∗ ∘ 𝐹))(∗‘((ℝ D
𝐹)‘𝑥))) |
8 | | funbrfv 6802 |
. . . 4
⊢ (Fun
(ℝ D (∗ ∘ 𝐹)) → (𝑥(ℝ D (∗ ∘ 𝐹))(∗‘((ℝ D
𝐹)‘𝑥)) → ((ℝ D (∗ ∘ 𝐹))‘𝑥) = (∗‘((ℝ D 𝐹)‘𝑥)))) |
9 | 3, 7, 8 | mpsyl 68 |
. . 3
⊢ (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → ((ℝ D (∗ ∘
𝐹))‘𝑥) = (∗‘((ℝ D
𝐹)‘𝑥))) |
10 | 9 | mpteq2dva 5170 |
. 2
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (𝑥 ∈ dom (ℝ D 𝐹) ↦ ((ℝ D (∗ ∘
𝐹))‘𝑥)) = (𝑥 ∈ dom (ℝ D 𝐹) ↦ (∗‘((ℝ D 𝐹)‘𝑥)))) |
11 | | cjf 14743 |
. . . . . . . . . . . . 13
⊢
∗:ℂ⟶ℂ |
12 | | fco 6608 |
. . . . . . . . . . . . 13
⊢
((∗:ℂ⟶ℂ ∧ 𝐹:𝑋⟶ℂ) → (∗ ∘
𝐹):𝑋⟶ℂ) |
13 | 11, 12 | mpan 686 |
. . . . . . . . . . . 12
⊢ (𝐹:𝑋⟶ℂ → (∗ ∘
𝐹):𝑋⟶ℂ) |
14 | 13 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D (∗ ∘
𝐹))) → (∗
∘ 𝐹):𝑋⟶ℂ) |
15 | | simplr 765 |
. . . . . . . . . . 11
⊢ (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D (∗ ∘
𝐹))) → 𝑋 ⊆
ℝ) |
16 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D (∗ ∘
𝐹))) → 𝑥 ∈ dom (ℝ D (∗
∘ 𝐹))) |
17 | 14, 15, 16 | dvcjbr 25018 |
. . . . . . . . . 10
⊢ (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D (∗ ∘
𝐹))) → 𝑥(ℝ D (∗ ∘
(∗ ∘ 𝐹)))(∗‘((ℝ D (∗
∘ 𝐹))‘𝑥))) |
18 | | vex 3426 |
. . . . . . . . . . 11
⊢ 𝑥 ∈ V |
19 | | fvex 6769 |
. . . . . . . . . . 11
⊢
(∗‘((ℝ D (∗ ∘ 𝐹))‘𝑥)) ∈ V |
20 | 18, 19 | breldm 5806 |
. . . . . . . . . 10
⊢ (𝑥(ℝ D (∗ ∘
(∗ ∘ 𝐹)))(∗‘((ℝ D (∗
∘ 𝐹))‘𝑥)) → 𝑥 ∈ dom (ℝ D (∗ ∘
(∗ ∘ 𝐹)))) |
21 | 17, 20 | syl 17 |
. . . . . . . . 9
⊢ (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D (∗ ∘
𝐹))) → 𝑥 ∈ dom (ℝ D (∗
∘ (∗ ∘ 𝐹)))) |
22 | 21 | ex 412 |
. . . . . . . 8
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (𝑥 ∈ dom (ℝ D (∗ ∘
𝐹)) → 𝑥 ∈ dom (ℝ D (∗
∘ (∗ ∘ 𝐹))))) |
23 | 22 | ssrdv 3923 |
. . . . . . 7
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → dom (ℝ D
(∗ ∘ 𝐹))
⊆ dom (ℝ D (∗ ∘ (∗ ∘ 𝐹)))) |
24 | | ffvelrn 6941 |
. . . . . . . . . . . . 13
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑥 ∈ 𝑋) → (𝐹‘𝑥) ∈ ℂ) |
25 | 24 | adantlr 711 |
. . . . . . . . . . . 12
⊢ (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ 𝑋) → (𝐹‘𝑥) ∈ ℂ) |
26 | 25 | cjcjd 14838 |
. . . . . . . . . . 11
⊢ (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ 𝑋) →
(∗‘(∗‘(𝐹‘𝑥))) = (𝐹‘𝑥)) |
27 | 26 | mpteq2dva 5170 |
. . . . . . . . . 10
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (𝑥 ∈ 𝑋 ↦
(∗‘(∗‘(𝐹‘𝑥)))) = (𝑥 ∈ 𝑋 ↦ (𝐹‘𝑥))) |
28 | 25 | cjcld 14835 |
. . . . . . . . . . 11
⊢ (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ 𝑋) → (∗‘(𝐹‘𝑥)) ∈ ℂ) |
29 | | simpl 482 |
. . . . . . . . . . . . 13
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → 𝐹:𝑋⟶ℂ) |
30 | 29 | feqmptd 6819 |
. . . . . . . . . . . 12
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → 𝐹 = (𝑥 ∈ 𝑋 ↦ (𝐹‘𝑥))) |
31 | 11 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) →
∗:ℂ⟶ℂ) |
32 | 31 | feqmptd 6819 |
. . . . . . . . . . . 12
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → ∗ = (𝑦 ∈ ℂ ↦
(∗‘𝑦))) |
33 | | fveq2 6756 |
. . . . . . . . . . . 12
⊢ (𝑦 = (𝐹‘𝑥) → (∗‘𝑦) = (∗‘(𝐹‘𝑥))) |
34 | 25, 30, 32, 33 | fmptco 6983 |
. . . . . . . . . . 11
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (∗ ∘
𝐹) = (𝑥 ∈ 𝑋 ↦ (∗‘(𝐹‘𝑥)))) |
35 | | fveq2 6756 |
. . . . . . . . . . 11
⊢ (𝑦 = (∗‘(𝐹‘𝑥)) → (∗‘𝑦) = (∗‘(∗‘(𝐹‘𝑥)))) |
36 | 28, 34, 32, 35 | fmptco 6983 |
. . . . . . . . . 10
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (∗ ∘
(∗ ∘ 𝐹)) =
(𝑥 ∈ 𝑋 ↦
(∗‘(∗‘(𝐹‘𝑥))))) |
37 | 27, 36, 30 | 3eqtr4d 2788 |
. . . . . . . . 9
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (∗ ∘
(∗ ∘ 𝐹)) =
𝐹) |
38 | 37 | oveq2d 7271 |
. . . . . . . 8
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (ℝ D
(∗ ∘ (∗ ∘ 𝐹))) = (ℝ D 𝐹)) |
39 | 38 | dmeqd 5803 |
. . . . . . 7
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → dom (ℝ D
(∗ ∘ (∗ ∘ 𝐹))) = dom (ℝ D 𝐹)) |
40 | 23, 39 | sseqtrd 3957 |
. . . . . 6
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → dom (ℝ D
(∗ ∘ 𝐹))
⊆ dom (ℝ D 𝐹)) |
41 | | fvex 6769 |
. . . . . . . 8
⊢
(∗‘((ℝ D 𝐹)‘𝑥)) ∈ V |
42 | 18, 41 | breldm 5806 |
. . . . . . 7
⊢ (𝑥(ℝ D (∗ ∘
𝐹))(∗‘((ℝ D 𝐹)‘𝑥)) → 𝑥 ∈ dom (ℝ D (∗ ∘
𝐹))) |
43 | 7, 42 | syl 17 |
. . . . . 6
⊢ (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → 𝑥 ∈ dom (ℝ D (∗ ∘
𝐹))) |
44 | 40, 43 | eqelssd 3938 |
. . . . 5
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → dom (ℝ D
(∗ ∘ 𝐹)) = dom
(ℝ D 𝐹)) |
45 | 44 | feq2d 6570 |
. . . 4
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → ((ℝ D
(∗ ∘ 𝐹)):dom
(ℝ D (∗ ∘ 𝐹))⟶ℂ ↔ (ℝ D
(∗ ∘ 𝐹)):dom
(ℝ D 𝐹)⟶ℂ)) |
46 | 1, 45 | mpbii 232 |
. . 3
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (ℝ D
(∗ ∘ 𝐹)):dom
(ℝ D 𝐹)⟶ℂ) |
47 | 46 | feqmptd 6819 |
. 2
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (ℝ D
(∗ ∘ 𝐹)) =
(𝑥 ∈ dom (ℝ D
𝐹) ↦ ((ℝ D
(∗ ∘ 𝐹))‘𝑥))) |
48 | | dvf 24976 |
. . . . 5
⊢ (ℝ
D 𝐹):dom (ℝ D 𝐹)⟶ℂ |
49 | 48 | ffvelrni 6942 |
. . . 4
⊢ (𝑥 ∈ dom (ℝ D 𝐹) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ) |
50 | 49 | adantl 481 |
. . 3
⊢ (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ) |
51 | 48 | a1i 11 |
. . . 4
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ) |
52 | 51 | feqmptd 6819 |
. . 3
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (ℝ D 𝐹) = (𝑥 ∈ dom (ℝ D 𝐹) ↦ ((ℝ D 𝐹)‘𝑥))) |
53 | | fveq2 6756 |
. . 3
⊢ (𝑦 = ((ℝ D 𝐹)‘𝑥) → (∗‘𝑦) = (∗‘((ℝ D 𝐹)‘𝑥))) |
54 | 50, 52, 32, 53 | fmptco 6983 |
. 2
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (∗ ∘
(ℝ D 𝐹)) = (𝑥 ∈ dom (ℝ D 𝐹) ↦
(∗‘((ℝ D 𝐹)‘𝑥)))) |
55 | 10, 47, 54 | 3eqtr4d 2788 |
1
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (ℝ D
(∗ ∘ 𝐹)) =
(∗ ∘ (ℝ D 𝐹))) |