MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvcj Structured version   Visualization version   GIF version

Theorem dvcj 26008
Description: The derivative of the conjugate of a function. For the (more general) relation version, see dvcjbr 26007. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
Assertion
Ref Expression
dvcj ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (ℝ D (∗ ∘ 𝐹)) = (∗ ∘ (ℝ D 𝐹)))

Proof of Theorem dvcj
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvf 25962 . . . . 5 (ℝ D (∗ ∘ 𝐹)):dom (ℝ D (∗ ∘ 𝐹))⟶ℂ
2 ffun 6750 . . . . 5 ((ℝ D (∗ ∘ 𝐹)):dom (ℝ D (∗ ∘ 𝐹))⟶ℂ → Fun (ℝ D (∗ ∘ 𝐹)))
31, 2ax-mp 5 . . . 4 Fun (ℝ D (∗ ∘ 𝐹))
4 simpll 766 . . . . 5 (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → 𝐹:𝑋⟶ℂ)
5 simplr 768 . . . . 5 (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → 𝑋 ⊆ ℝ)
6 simpr 484 . . . . 5 (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → 𝑥 ∈ dom (ℝ D 𝐹))
74, 5, 6dvcjbr 26007 . . . 4 (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → 𝑥(ℝ D (∗ ∘ 𝐹))(∗‘((ℝ D 𝐹)‘𝑥)))
8 funbrfv 6971 . . . 4 (Fun (ℝ D (∗ ∘ 𝐹)) → (𝑥(ℝ D (∗ ∘ 𝐹))(∗‘((ℝ D 𝐹)‘𝑥)) → ((ℝ D (∗ ∘ 𝐹))‘𝑥) = (∗‘((ℝ D 𝐹)‘𝑥))))
93, 7, 8mpsyl 68 . . 3 (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → ((ℝ D (∗ ∘ 𝐹))‘𝑥) = (∗‘((ℝ D 𝐹)‘𝑥)))
109mpteq2dva 5266 . 2 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (𝑥 ∈ dom (ℝ D 𝐹) ↦ ((ℝ D (∗ ∘ 𝐹))‘𝑥)) = (𝑥 ∈ dom (ℝ D 𝐹) ↦ (∗‘((ℝ D 𝐹)‘𝑥))))
11 cjf 15153 . . . . . . . . . . . . 13 ∗:ℂ⟶ℂ
12 fco 6771 . . . . . . . . . . . . 13 ((∗:ℂ⟶ℂ ∧ 𝐹:𝑋⟶ℂ) → (∗ ∘ 𝐹):𝑋⟶ℂ)
1311, 12mpan 689 . . . . . . . . . . . 12 (𝐹:𝑋⟶ℂ → (∗ ∘ 𝐹):𝑋⟶ℂ)
1413ad2antrr 725 . . . . . . . . . . 11 (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D (∗ ∘ 𝐹))) → (∗ ∘ 𝐹):𝑋⟶ℂ)
15 simplr 768 . . . . . . . . . . 11 (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D (∗ ∘ 𝐹))) → 𝑋 ⊆ ℝ)
16 simpr 484 . . . . . . . . . . 11 (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D (∗ ∘ 𝐹))) → 𝑥 ∈ dom (ℝ D (∗ ∘ 𝐹)))
1714, 15, 16dvcjbr 26007 . . . . . . . . . 10 (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D (∗ ∘ 𝐹))) → 𝑥(ℝ D (∗ ∘ (∗ ∘ 𝐹)))(∗‘((ℝ D (∗ ∘ 𝐹))‘𝑥)))
18 vex 3492 . . . . . . . . . . 11 𝑥 ∈ V
19 fvex 6933 . . . . . . . . . . 11 (∗‘((ℝ D (∗ ∘ 𝐹))‘𝑥)) ∈ V
2018, 19breldm 5933 . . . . . . . . . 10 (𝑥(ℝ D (∗ ∘ (∗ ∘ 𝐹)))(∗‘((ℝ D (∗ ∘ 𝐹))‘𝑥)) → 𝑥 ∈ dom (ℝ D (∗ ∘ (∗ ∘ 𝐹))))
2117, 20syl 17 . . . . . . . . 9 (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D (∗ ∘ 𝐹))) → 𝑥 ∈ dom (ℝ D (∗ ∘ (∗ ∘ 𝐹))))
2221ex 412 . . . . . . . 8 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (𝑥 ∈ dom (ℝ D (∗ ∘ 𝐹)) → 𝑥 ∈ dom (ℝ D (∗ ∘ (∗ ∘ 𝐹)))))
2322ssrdv 4014 . . . . . . 7 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → dom (ℝ D (∗ ∘ 𝐹)) ⊆ dom (ℝ D (∗ ∘ (∗ ∘ 𝐹))))
24 ffvelcdm 7115 . . . . . . . . . . . . 13 ((𝐹:𝑋⟶ℂ ∧ 𝑥𝑋) → (𝐹𝑥) ∈ ℂ)
2524adantlr 714 . . . . . . . . . . . 12 (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥𝑋) → (𝐹𝑥) ∈ ℂ)
2625cjcjd 15248 . . . . . . . . . . 11 (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥𝑋) → (∗‘(∗‘(𝐹𝑥))) = (𝐹𝑥))
2726mpteq2dva 5266 . . . . . . . . . 10 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (𝑥𝑋 ↦ (∗‘(∗‘(𝐹𝑥)))) = (𝑥𝑋 ↦ (𝐹𝑥)))
2825cjcld 15245 . . . . . . . . . . 11 (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥𝑋) → (∗‘(𝐹𝑥)) ∈ ℂ)
29 simpl 482 . . . . . . . . . . . . 13 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → 𝐹:𝑋⟶ℂ)
3029feqmptd 6990 . . . . . . . . . . . 12 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → 𝐹 = (𝑥𝑋 ↦ (𝐹𝑥)))
3111a1i 11 . . . . . . . . . . . . 13 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → ∗:ℂ⟶ℂ)
3231feqmptd 6990 . . . . . . . . . . . 12 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → ∗ = (𝑦 ∈ ℂ ↦ (∗‘𝑦)))
33 fveq2 6920 . . . . . . . . . . . 12 (𝑦 = (𝐹𝑥) → (∗‘𝑦) = (∗‘(𝐹𝑥)))
3425, 30, 32, 33fmptco 7163 . . . . . . . . . . 11 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (∗ ∘ 𝐹) = (𝑥𝑋 ↦ (∗‘(𝐹𝑥))))
35 fveq2 6920 . . . . . . . . . . 11 (𝑦 = (∗‘(𝐹𝑥)) → (∗‘𝑦) = (∗‘(∗‘(𝐹𝑥))))
3628, 34, 32, 35fmptco 7163 . . . . . . . . . 10 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (∗ ∘ (∗ ∘ 𝐹)) = (𝑥𝑋 ↦ (∗‘(∗‘(𝐹𝑥)))))
3727, 36, 303eqtr4d 2790 . . . . . . . . 9 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (∗ ∘ (∗ ∘ 𝐹)) = 𝐹)
3837oveq2d 7464 . . . . . . . 8 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (ℝ D (∗ ∘ (∗ ∘ 𝐹))) = (ℝ D 𝐹))
3938dmeqd 5930 . . . . . . 7 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → dom (ℝ D (∗ ∘ (∗ ∘ 𝐹))) = dom (ℝ D 𝐹))
4023, 39sseqtrd 4049 . . . . . 6 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → dom (ℝ D (∗ ∘ 𝐹)) ⊆ dom (ℝ D 𝐹))
41 fvex 6933 . . . . . . . 8 (∗‘((ℝ D 𝐹)‘𝑥)) ∈ V
4218, 41breldm 5933 . . . . . . 7 (𝑥(ℝ D (∗ ∘ 𝐹))(∗‘((ℝ D 𝐹)‘𝑥)) → 𝑥 ∈ dom (ℝ D (∗ ∘ 𝐹)))
437, 42syl 17 . . . . . 6 (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → 𝑥 ∈ dom (ℝ D (∗ ∘ 𝐹)))
4440, 43eqelssd 4030 . . . . 5 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → dom (ℝ D (∗ ∘ 𝐹)) = dom (ℝ D 𝐹))
4544feq2d 6733 . . . 4 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → ((ℝ D (∗ ∘ 𝐹)):dom (ℝ D (∗ ∘ 𝐹))⟶ℂ ↔ (ℝ D (∗ ∘ 𝐹)):dom (ℝ D 𝐹)⟶ℂ))
461, 45mpbii 233 . . 3 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (ℝ D (∗ ∘ 𝐹)):dom (ℝ D 𝐹)⟶ℂ)
4746feqmptd 6990 . 2 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (ℝ D (∗ ∘ 𝐹)) = (𝑥 ∈ dom (ℝ D 𝐹) ↦ ((ℝ D (∗ ∘ 𝐹))‘𝑥)))
48 dvf 25962 . . . . 5 (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ
4948ffvelcdmi 7117 . . . 4 (𝑥 ∈ dom (ℝ D 𝐹) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ)
5049adantl 481 . . 3 (((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ)
5148a1i 11 . . . 4 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ)
5251feqmptd 6990 . . 3 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (ℝ D 𝐹) = (𝑥 ∈ dom (ℝ D 𝐹) ↦ ((ℝ D 𝐹)‘𝑥)))
53 fveq2 6920 . . 3 (𝑦 = ((ℝ D 𝐹)‘𝑥) → (∗‘𝑦) = (∗‘((ℝ D 𝐹)‘𝑥)))
5450, 52, 32, 53fmptco 7163 . 2 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (∗ ∘ (ℝ D 𝐹)) = (𝑥 ∈ dom (ℝ D 𝐹) ↦ (∗‘((ℝ D 𝐹)‘𝑥))))
5510, 47, 543eqtr4d 2790 1 ((𝐹:𝑋⟶ℂ ∧ 𝑋 ⊆ ℝ) → (ℝ D (∗ ∘ 𝐹)) = (∗ ∘ (ℝ D 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wss 3976   class class class wbr 5166  cmpt 5249  dom cdm 5700  ccom 5704  Fun wfun 6567  wf 6569  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  ccj 15145   D cdv 25918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fi 9480  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-icc 13414  df-fz 13568  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-struct 17194  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-mulr 17325  df-starv 17326  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-rest 17482  df-topn 17483  df-topgen 17503  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-cncf 24923  df-limc 25921  df-dv 25922
This theorem is referenced by:  dvfre  26009  dvmptcj  26026
  Copyright terms: Public domain W3C validator