MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftc1cn Structured version   Visualization version   GIF version

Theorem ftc1cn 24030
Description: Strengthen the assumptions of ftc1 24029 to when the function 𝐹 is continuous on the entire interval (𝐴, 𝐵); in this case we can calculate D 𝐺 exactly. (Contributed by Mario Carneiro, 1-Sep-2014.)
Hypotheses
Ref Expression
ftc1cn.g 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
ftc1cn.a (𝜑𝐴 ∈ ℝ)
ftc1cn.b (𝜑𝐵 ∈ ℝ)
ftc1cn.le (𝜑𝐴𝐵)
ftc1cn.f (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
ftc1cn.i (𝜑𝐹 ∈ 𝐿1)
Assertion
Ref Expression
ftc1cn (𝜑 → (ℝ D 𝐺) = 𝐹)
Distinct variable groups:   𝑥,𝑡,𝐴   𝑡,𝐵,𝑥   𝑡,𝐹,𝑥   𝜑,𝑡,𝑥
Allowed substitution hints:   𝐺(𝑥,𝑡)

Proof of Theorem ftc1cn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dvf 23895 . . . . 5 (ℝ D 𝐺):dom (ℝ D 𝐺)⟶ℂ
21a1i 11 . . . 4 (𝜑 → (ℝ D 𝐺):dom (ℝ D 𝐺)⟶ℂ)
32ffund 6267 . . 3 (𝜑 → Fun (ℝ D 𝐺))
4 ax-resscn 10285 . . . . . . 7 ℝ ⊆ ℂ
54a1i 11 . . . . . 6 (𝜑 → ℝ ⊆ ℂ)
6 ftc1cn.g . . . . . . 7 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
7 ftc1cn.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
8 ftc1cn.b . . . . . . 7 (𝜑𝐵 ∈ ℝ)
9 ftc1cn.le . . . . . . 7 (𝜑𝐴𝐵)
10 ssidd 3832 . . . . . . 7 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴(,)𝐵))
11 ioossre 12460 . . . . . . . 8 (𝐴(,)𝐵) ⊆ ℝ
1211a1i 11 . . . . . . 7 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
13 ftc1cn.i . . . . . . 7 (𝜑𝐹 ∈ 𝐿1)
14 ftc1cn.f . . . . . . . 8 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
15 cncff 22917 . . . . . . . 8 (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ) → 𝐹:(𝐴(,)𝐵)⟶ℂ)
1614, 15syl 17 . . . . . . 7 (𝜑𝐹:(𝐴(,)𝐵)⟶ℂ)
176, 7, 8, 9, 10, 12, 13, 16ftc1lem2 24023 . . . . . 6 (𝜑𝐺:(𝐴[,]𝐵)⟶ℂ)
18 iccssre 12480 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
197, 8, 18syl2anc 575 . . . . . 6 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
20 eqid 2817 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
2120tgioo2 22827 . . . . . 6 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
225, 17, 19, 21, 20dvbssntr 23888 . . . . 5 (𝜑 → dom (ℝ D 𝐺) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
23 iccntr 22845 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
247, 8, 23syl2anc 575 . . . . 5 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
2522, 24sseqtrd 3849 . . . 4 (𝜑 → dom (ℝ D 𝐺) ⊆ (𝐴(,)𝐵))
267adantr 468 . . . . . 6 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ)
278adantr 468 . . . . . 6 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ)
289adantr 468 . . . . . 6 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝐴𝐵)
29 ssidd 3832 . . . . . 6 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝐴(,)𝐵) ⊆ (𝐴(,)𝐵))
3011a1i 11 . . . . . 6 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝐴(,)𝐵) ⊆ ℝ)
3113adantr 468 . . . . . 6 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝐹 ∈ 𝐿1)
32 simpr 473 . . . . . 6 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ (𝐴(,)𝐵))
3311, 4sstri 3818 . . . . . . . . . 10 (𝐴(,)𝐵) ⊆ ℂ
34 ssid 3831 . . . . . . . . . 10 ℂ ⊆ ℂ
35 eqid 2817 . . . . . . . . . . 11 ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵))
3620cnfldtopon 22807 . . . . . . . . . . . 12 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
3736toponrestid 20947 . . . . . . . . . . 11 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
3820, 35, 37cncfcn 22933 . . . . . . . . . 10 (((𝐴(,)𝐵) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴(,)𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
3933, 34, 38mp2an 675 . . . . . . . . 9 ((𝐴(,)𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld))
4014, 39syl6eleq 2906 . . . . . . . 8 (𝜑𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
4140adantr 468 . . . . . . 7 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
4233a1i 11 . . . . . . . . . . 11 (𝜑 → (𝐴(,)𝐵) ⊆ ℂ)
43 resttopon 21187 . . . . . . . . . . 11 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (𝐴(,)𝐵) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵)))
4436, 42, 43sylancr 577 . . . . . . . . . 10 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵)))
45 toponuni 20940 . . . . . . . . . 10 (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵)) → (𝐴(,)𝐵) = ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)))
4644, 45syl 17 . . . . . . . . 9 (𝜑 → (𝐴(,)𝐵) = ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)))
4746eleq2d 2882 . . . . . . . 8 (𝜑 → (𝑦 ∈ (𝐴(,)𝐵) ↔ 𝑦 ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵))))
4847biimpa 464 . . . . . . 7 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)))
49 eqid 2817 . . . . . . . 8 ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵))
5049cncnpi 21304 . . . . . . 7 ((𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)) ∧ 𝑦 ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵))) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
5141, 48, 50syl2anc 575 . . . . . 6 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
526, 26, 27, 28, 29, 30, 31, 32, 51, 21, 35, 20ftc1 24029 . . . . 5 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝑦(ℝ D 𝐺)(𝐹𝑦))
53 vex 3405 . . . . . 6 𝑦 ∈ V
54 fvex 6428 . . . . . 6 (𝐹𝑦) ∈ V
5553, 54breldm 5541 . . . . 5 (𝑦(ℝ D 𝐺)(𝐹𝑦) → 𝑦 ∈ dom (ℝ D 𝐺))
5652, 55syl 17 . . . 4 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ dom (ℝ D 𝐺))
5725, 56eqelssd 3830 . . 3 (𝜑 → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
58 df-fn 6111 . . 3 ((ℝ D 𝐺) Fn (𝐴(,)𝐵) ↔ (Fun (ℝ D 𝐺) ∧ dom (ℝ D 𝐺) = (𝐴(,)𝐵)))
593, 57, 58sylanbrc 574 . 2 (𝜑 → (ℝ D 𝐺) Fn (𝐴(,)𝐵))
6016ffnd 6264 . 2 (𝜑𝐹 Fn (𝐴(,)𝐵))
613adantr 468 . . 3 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → Fun (ℝ D 𝐺))
62 funbrfv 6461 . . 3 (Fun (ℝ D 𝐺) → (𝑦(ℝ D 𝐺)(𝐹𝑦) → ((ℝ D 𝐺)‘𝑦) = (𝐹𝑦)))
6361, 52, 62sylc 65 . 2 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑦) = (𝐹𝑦))
6459, 60, 63eqfnfvd 6543 1 (𝜑 → (ℝ D 𝐺) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1637  wcel 2157  wss 3780   cuni 4641   class class class wbr 4855  cmpt 4934  dom cdm 5322  ran crn 5323  Fun wfun 6102   Fn wfn 6103  wf 6104  cfv 6108  (class class class)co 6881  cc 10226  cr 10227  cle 10367  (,)cioo 12400  [,]cicc 12403  t crest 16293  TopOpenctopn 16294  topGenctg 16310  fldccnfld 19961  TopOnctopon 20936  intcnt 21043   Cn ccn 21250   CnP ccnp 21251  cnccncf 22900  𝐿1cibl 23608  citg 23609   D cdv 23851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2795  ax-rep 4975  ax-sep 4986  ax-nul 4994  ax-pow 5046  ax-pr 5107  ax-un 7186  ax-inf2 8792  ax-cc 9549  ax-cnex 10284  ax-resscn 10285  ax-1cn 10286  ax-icn 10287  ax-addcl 10288  ax-addrcl 10289  ax-mulcl 10290  ax-mulrcl 10291  ax-mulcom 10292  ax-addass 10293  ax-mulass 10294  ax-distr 10295  ax-i2m1 10296  ax-1ne0 10297  ax-1rid 10298  ax-rnegex 10299  ax-rrecex 10300  ax-cnre 10301  ax-pre-lttri 10302  ax-pre-lttrn 10303  ax-pre-ltadd 10304  ax-pre-mulgt0 10305  ax-pre-sup 10306  ax-addf 10307  ax-mulf 10308
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-fal 1651  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2642  df-clab 2804  df-cleq 2810  df-clel 2813  df-nfc 2948  df-ne 2990  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3404  df-sbc 3645  df-csb 3740  df-dif 3783  df-un 3785  df-in 3787  df-ss 3794  df-pss 3796  df-symdif 4053  df-nul 4128  df-if 4291  df-pw 4364  df-sn 4382  df-pr 4384  df-tp 4386  df-op 4388  df-uni 4642  df-int 4681  df-iun 4725  df-iin 4726  df-disj 4824  df-br 4856  df-opab 4918  df-mpt 4935  df-tr 4958  df-id 5230  df-eprel 5235  df-po 5243  df-so 5244  df-fr 5281  df-se 5282  df-we 5283  df-xp 5328  df-rel 5329  df-cnv 5330  df-co 5331  df-dm 5332  df-rn 5333  df-res 5334  df-ima 5335  df-pred 5904  df-ord 5950  df-on 5951  df-lim 5952  df-suc 5953  df-iota 6071  df-fun 6110  df-fn 6111  df-f 6112  df-f1 6113  df-fo 6114  df-f1o 6115  df-fv 6116  df-isom 6117  df-riota 6842  df-ov 6884  df-oprab 6885  df-mpt2 6886  df-of 7134  df-ofr 7135  df-om 7303  df-1st 7405  df-2nd 7406  df-supp 7537  df-wrecs 7649  df-recs 7711  df-rdg 7749  df-1o 7803  df-2o 7804  df-oadd 7807  df-omul 7808  df-er 7986  df-map 8101  df-pm 8102  df-ixp 8153  df-en 8200  df-dom 8201  df-sdom 8202  df-fin 8203  df-fsupp 8522  df-fi 8563  df-sup 8594  df-inf 8595  df-oi 8661  df-card 9055  df-acn 9058  df-cda 9282  df-pnf 10368  df-mnf 10369  df-xr 10370  df-ltxr 10371  df-le 10372  df-sub 10560  df-neg 10561  df-div 10977  df-nn 11313  df-2 11371  df-3 11372  df-4 11373  df-5 11374  df-6 11375  df-7 11376  df-8 11377  df-9 11378  df-n0 11567  df-z 11651  df-dec 11767  df-uz 11912  df-q 12015  df-rp 12054  df-xneg 12169  df-xadd 12170  df-xmul 12171  df-ioo 12404  df-ioc 12405  df-ico 12406  df-icc 12407  df-fz 12557  df-fzo 12697  df-fl 12824  df-mod 12900  df-seq 13032  df-exp 13091  df-hash 13345  df-cj 14069  df-re 14070  df-im 14071  df-sqrt 14205  df-abs 14206  df-clim 14449  df-rlim 14450  df-sum 14647  df-struct 16077  df-ndx 16078  df-slot 16079  df-base 16081  df-sets 16082  df-ress 16083  df-plusg 16173  df-mulr 16174  df-starv 16175  df-sca 16176  df-vsca 16177  df-ip 16178  df-tset 16179  df-ple 16180  df-ds 16182  df-unif 16183  df-hom 16184  df-cco 16185  df-rest 16295  df-topn 16296  df-0g 16314  df-gsum 16315  df-topgen 16316  df-pt 16317  df-prds 16320  df-xrs 16374  df-qtop 16379  df-imas 16380  df-xps 16382  df-mre 16458  df-mrc 16459  df-acs 16461  df-mgm 17454  df-sgrp 17496  df-mnd 17507  df-submnd 17548  df-mulg 17753  df-cntz 17958  df-cmn 18403  df-psmet 19953  df-xmet 19954  df-met 19955  df-bl 19956  df-mopn 19957  df-fbas 19958  df-fg 19959  df-cnfld 19962  df-top 20920  df-topon 20937  df-topsp 20959  df-bases 20972  df-cld 21045  df-ntr 21046  df-cls 21047  df-nei 21124  df-lp 21162  df-perf 21163  df-cn 21253  df-cnp 21254  df-haus 21341  df-cmp 21412  df-tx 21587  df-hmeo 21780  df-fil 21871  df-fm 21963  df-flim 21964  df-flf 21965  df-xms 22346  df-ms 22347  df-tms 22348  df-cncf 22902  df-ovol 23455  df-vol 23456  df-mbf 23610  df-itg1 23611  df-itg2 23612  df-ibl 23613  df-itg 23614  df-0p 23661  df-limc 23854  df-dv 23855
This theorem is referenced by:  ftc2  24031  itgsubstlem  24035
  Copyright terms: Public domain W3C validator