MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ftc1cn Structured version   Visualization version   GIF version

Theorem ftc1cn 26084
Description: Strengthen the assumptions of ftc1 26083 to when the function 𝐹 is continuous on the entire interval (𝐴, 𝐵); in this case we can calculate D 𝐺 exactly. (Contributed by Mario Carneiro, 1-Sep-2014.)
Hypotheses
Ref Expression
ftc1cn.g 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
ftc1cn.a (𝜑𝐴 ∈ ℝ)
ftc1cn.b (𝜑𝐵 ∈ ℝ)
ftc1cn.le (𝜑𝐴𝐵)
ftc1cn.f (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
ftc1cn.i (𝜑𝐹 ∈ 𝐿1)
Assertion
Ref Expression
ftc1cn (𝜑 → (ℝ D 𝐺) = 𝐹)
Distinct variable groups:   𝑥,𝑡,𝐴   𝑡,𝐵,𝑥   𝑡,𝐹,𝑥   𝜑,𝑡,𝑥
Allowed substitution hints:   𝐺(𝑥,𝑡)

Proof of Theorem ftc1cn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dvf 25942 . . . . 5 (ℝ D 𝐺):dom (ℝ D 𝐺)⟶ℂ
21a1i 11 . . . 4 (𝜑 → (ℝ D 𝐺):dom (ℝ D 𝐺)⟶ℂ)
32ffund 6740 . . 3 (𝜑 → Fun (ℝ D 𝐺))
4 ax-resscn 11212 . . . . . . 7 ℝ ⊆ ℂ
54a1i 11 . . . . . 6 (𝜑 → ℝ ⊆ ℂ)
6 ftc1cn.g . . . . . . 7 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹𝑡) d𝑡)
7 ftc1cn.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
8 ftc1cn.b . . . . . . 7 (𝜑𝐵 ∈ ℝ)
9 ftc1cn.le . . . . . . 7 (𝜑𝐴𝐵)
10 ssidd 4007 . . . . . . 7 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴(,)𝐵))
11 ioossre 13448 . . . . . . . 8 (𝐴(,)𝐵) ⊆ ℝ
1211a1i 11 . . . . . . 7 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
13 ftc1cn.i . . . . . . 7 (𝜑𝐹 ∈ 𝐿1)
14 ftc1cn.f . . . . . . . 8 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
15 cncff 24919 . . . . . . . 8 (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ) → 𝐹:(𝐴(,)𝐵)⟶ℂ)
1614, 15syl 17 . . . . . . 7 (𝜑𝐹:(𝐴(,)𝐵)⟶ℂ)
176, 7, 8, 9, 10, 12, 13, 16ftc1lem2 26077 . . . . . 6 (𝜑𝐺:(𝐴[,]𝐵)⟶ℂ)
18 iccssre 13469 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
197, 8, 18syl2anc 584 . . . . . 6 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
20 tgioo4 24826 . . . . . 6 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
21 eqid 2737 . . . . . 6 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
225, 17, 19, 20, 21dvbssntr 25935 . . . . 5 (𝜑 → dom (ℝ D 𝐺) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)))
23 iccntr 24843 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
247, 8, 23syl2anc 584 . . . . 5 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
2522, 24sseqtrd 4020 . . . 4 (𝜑 → dom (ℝ D 𝐺) ⊆ (𝐴(,)𝐵))
267adantr 480 . . . . . 6 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ)
278adantr 480 . . . . . 6 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ)
289adantr 480 . . . . . 6 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝐴𝐵)
29 ssidd 4007 . . . . . 6 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝐴(,)𝐵) ⊆ (𝐴(,)𝐵))
3011a1i 11 . . . . . 6 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝐴(,)𝐵) ⊆ ℝ)
3113adantr 480 . . . . . 6 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝐹 ∈ 𝐿1)
32 simpr 484 . . . . . 6 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ (𝐴(,)𝐵))
3311, 4sstri 3993 . . . . . . . . . 10 (𝐴(,)𝐵) ⊆ ℂ
34 ssid 4006 . . . . . . . . . 10 ℂ ⊆ ℂ
35 eqid 2737 . . . . . . . . . . 11 ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵))
3621cnfldtopon 24803 . . . . . . . . . . . 12 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
3736toponrestid 22927 . . . . . . . . . . 11 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
3821, 35, 37cncfcn 24936 . . . . . . . . . 10 (((𝐴(,)𝐵) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴(,)𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
3933, 34, 38mp2an 692 . . . . . . . . 9 ((𝐴(,)𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld))
4014, 39eleqtrdi 2851 . . . . . . . 8 (𝜑𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
4140adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)))
4233a1i 11 . . . . . . . . . . 11 (𝜑 → (𝐴(,)𝐵) ⊆ ℂ)
43 resttopon 23169 . . . . . . . . . . 11 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (𝐴(,)𝐵) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵)))
4436, 42, 43sylancr 587 . . . . . . . . . 10 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵)))
45 toponuni 22920 . . . . . . . . . 10 (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵)) → (𝐴(,)𝐵) = ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)))
4644, 45syl 17 . . . . . . . . 9 (𝜑 → (𝐴(,)𝐵) = ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)))
4746eleq2d 2827 . . . . . . . 8 (𝜑 → (𝑦 ∈ (𝐴(,)𝐵) ↔ 𝑦 ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵))))
4847biimpa 476 . . . . . . 7 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)))
49 eqid 2737 . . . . . . . 8 ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵))
5049cncnpi 23286 . . . . . . 7 ((𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)) ∧ 𝑦 ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵))) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
5141, 48, 50syl2anc 584 . . . . . 6 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦))
526, 26, 27, 28, 29, 30, 31, 32, 51, 20, 35, 21ftc1 26083 . . . . 5 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝑦(ℝ D 𝐺)(𝐹𝑦))
53 vex 3484 . . . . . 6 𝑦 ∈ V
54 fvex 6919 . . . . . 6 (𝐹𝑦) ∈ V
5553, 54breldm 5919 . . . . 5 (𝑦(ℝ D 𝐺)(𝐹𝑦) → 𝑦 ∈ dom (ℝ D 𝐺))
5652, 55syl 17 . . . 4 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ dom (ℝ D 𝐺))
5725, 56eqelssd 4005 . . 3 (𝜑 → dom (ℝ D 𝐺) = (𝐴(,)𝐵))
58 df-fn 6564 . . 3 ((ℝ D 𝐺) Fn (𝐴(,)𝐵) ↔ (Fun (ℝ D 𝐺) ∧ dom (ℝ D 𝐺) = (𝐴(,)𝐵)))
593, 57, 58sylanbrc 583 . 2 (𝜑 → (ℝ D 𝐺) Fn (𝐴(,)𝐵))
6016ffnd 6737 . 2 (𝜑𝐹 Fn (𝐴(,)𝐵))
613adantr 480 . . 3 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → Fun (ℝ D 𝐺))
62 funbrfv 6957 . . 3 (Fun (ℝ D 𝐺) → (𝑦(ℝ D 𝐺)(𝐹𝑦) → ((ℝ D 𝐺)‘𝑦) = (𝐹𝑦)))
6361, 52, 62sylc 65 . 2 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑦) = (𝐹𝑦))
6459, 60, 63eqfnfvd 7054 1 (𝜑 → (ℝ D 𝐺) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wss 3951   cuni 4907   class class class wbr 5143  cmpt 5225  dom cdm 5685  ran crn 5686  Fun wfun 6555   Fn wfn 6556  wf 6557  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  cle 11296  (,)cioo 13387  [,]cicc 13390  t crest 17465  TopOpenctopn 17466  topGenctg 17482  fldccnfld 21364  TopOnctopon 22916  intcnt 23025   Cn ccn 23232   CnP ccnp 23233  cnccncf 24902  𝐿1cibl 25652  citg 25653   D cdv 25898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cc 10475  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-symdif 4253  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-disj 5111  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-omul 8511  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-dju 9941  df-card 9979  df-acn 9982  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-rlim 15525  df-sum 15723  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-cmp 23395  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-ovol 25499  df-vol 25500  df-mbf 25654  df-itg1 25655  df-itg2 25656  df-ibl 25657  df-itg 25658  df-0p 25705  df-limc 25901  df-dv 25902
This theorem is referenced by:  ftc2  26085  itgsubstlem  26089
  Copyright terms: Public domain W3C validator