![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ftc1cn | Structured version Visualization version GIF version |
Description: Strengthen the assumptions of ftc1 26103 to when the function 𝐹 is continuous on the entire interval (𝐴, 𝐵); in this case we can calculate D 𝐺 exactly. (Contributed by Mario Carneiro, 1-Sep-2014.) |
Ref | Expression |
---|---|
ftc1cn.g | ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹‘𝑡) d𝑡) |
ftc1cn.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ftc1cn.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
ftc1cn.le | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
ftc1cn.f | ⊢ (𝜑 → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ)) |
ftc1cn.i | ⊢ (𝜑 → 𝐹 ∈ 𝐿1) |
Ref | Expression |
---|---|
ftc1cn | ⊢ (𝜑 → (ℝ D 𝐺) = 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvf 25962 | . . . . 5 ⊢ (ℝ D 𝐺):dom (ℝ D 𝐺)⟶ℂ | |
2 | 1 | a1i 11 | . . . 4 ⊢ (𝜑 → (ℝ D 𝐺):dom (ℝ D 𝐺)⟶ℂ) |
3 | 2 | ffund 6751 | . . 3 ⊢ (𝜑 → Fun (ℝ D 𝐺)) |
4 | ax-resscn 11241 | . . . . . . 7 ⊢ ℝ ⊆ ℂ | |
5 | 4 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ℝ ⊆ ℂ) |
6 | ftc1cn.g | . . . . . . 7 ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹‘𝑡) d𝑡) | |
7 | ftc1cn.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
8 | ftc1cn.b | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
9 | ftc1cn.le | . . . . . . 7 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
10 | ssidd 4032 | . . . . . . 7 ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴(,)𝐵)) | |
11 | ioossre 13468 | . . . . . . . 8 ⊢ (𝐴(,)𝐵) ⊆ ℝ | |
12 | 11 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ ℝ) |
13 | ftc1cn.i | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ 𝐿1) | |
14 | ftc1cn.f | . . . . . . . 8 ⊢ (𝜑 → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ)) | |
15 | cncff 24938 | . . . . . . . 8 ⊢ (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ) → 𝐹:(𝐴(,)𝐵)⟶ℂ) | |
16 | 14, 15 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℂ) |
17 | 6, 7, 8, 9, 10, 12, 13, 16 | ftc1lem2 26097 | . . . . . 6 ⊢ (𝜑 → 𝐺:(𝐴[,]𝐵)⟶ℂ) |
18 | iccssre 13489 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) | |
19 | 7, 8, 18 | syl2anc 583 | . . . . . 6 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) |
20 | eqid 2740 | . . . . . . 7 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
21 | 20 | tgioo2 24844 | . . . . . 6 ⊢ (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ) |
22 | 5, 17, 19, 21, 20 | dvbssntr 25955 | . . . . 5 ⊢ (𝜑 → dom (ℝ D 𝐺) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) |
23 | iccntr 24862 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵)) | |
24 | 7, 8, 23 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵)) |
25 | 22, 24 | sseqtrd 4049 | . . . 4 ⊢ (𝜑 → dom (ℝ D 𝐺) ⊆ (𝐴(,)𝐵)) |
26 | 7 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ) |
27 | 8 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ) |
28 | 9 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝐴 ≤ 𝐵) |
29 | ssidd 4032 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (𝐴(,)𝐵) ⊆ (𝐴(,)𝐵)) | |
30 | 11 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (𝐴(,)𝐵) ⊆ ℝ) |
31 | 13 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝐹 ∈ 𝐿1) |
32 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ (𝐴(,)𝐵)) | |
33 | 11, 4 | sstri 4018 | . . . . . . . . . 10 ⊢ (𝐴(,)𝐵) ⊆ ℂ |
34 | ssid 4031 | . . . . . . . . . 10 ⊢ ℂ ⊆ ℂ | |
35 | eqid 2740 | . . . . . . . . . . 11 ⊢ ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) | |
36 | 20 | cnfldtopon 24824 | . . . . . . . . . . . 12 ⊢ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ) |
37 | 36 | toponrestid 22948 | . . . . . . . . . . 11 ⊢ (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ) |
38 | 20, 35, 37 | cncfcn 24955 | . . . . . . . . . 10 ⊢ (((𝐴(,)𝐵) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴(,)𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld))) |
39 | 33, 34, 38 | mp2an 691 | . . . . . . . . 9 ⊢ ((𝐴(,)𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)) |
40 | 14, 39 | eleqtrdi 2854 | . . . . . . . 8 ⊢ (𝜑 → 𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld))) |
41 | 40 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld))) |
42 | 33 | a1i 11 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ ℂ) |
43 | resttopon 23190 | . . . . . . . . . . 11 ⊢ (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (𝐴(,)𝐵) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵))) | |
44 | 36, 42, 43 | sylancr 586 | . . . . . . . . . 10 ⊢ (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵))) |
45 | toponuni 22941 | . . . . . . . . . 10 ⊢ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵)) → (𝐴(,)𝐵) = ∪ ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵))) | |
46 | 44, 45 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → (𝐴(,)𝐵) = ∪ ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵))) |
47 | 46 | eleq2d 2830 | . . . . . . . 8 ⊢ (𝜑 → (𝑦 ∈ (𝐴(,)𝐵) ↔ 𝑦 ∈ ∪ ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)))) |
48 | 47 | biimpa 476 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ ∪ ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵))) |
49 | eqid 2740 | . . . . . . . 8 ⊢ ∪ ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) = ∪ ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) | |
50 | 49 | cncnpi 23307 | . . . . . . 7 ⊢ ((𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)) ∧ 𝑦 ∈ ∪ ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵))) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦)) |
51 | 41, 48, 50 | syl2anc 583 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦)) |
52 | 6, 26, 27, 28, 29, 30, 31, 32, 51, 21, 35, 20 | ftc1 26103 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝑦(ℝ D 𝐺)(𝐹‘𝑦)) |
53 | vex 3492 | . . . . . 6 ⊢ 𝑦 ∈ V | |
54 | fvex 6933 | . . . . . 6 ⊢ (𝐹‘𝑦) ∈ V | |
55 | 53, 54 | breldm 5933 | . . . . 5 ⊢ (𝑦(ℝ D 𝐺)(𝐹‘𝑦) → 𝑦 ∈ dom (ℝ D 𝐺)) |
56 | 52, 55 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ dom (ℝ D 𝐺)) |
57 | 25, 56 | eqelssd 4030 | . . 3 ⊢ (𝜑 → dom (ℝ D 𝐺) = (𝐴(,)𝐵)) |
58 | df-fn 6576 | . . 3 ⊢ ((ℝ D 𝐺) Fn (𝐴(,)𝐵) ↔ (Fun (ℝ D 𝐺) ∧ dom (ℝ D 𝐺) = (𝐴(,)𝐵))) | |
59 | 3, 57, 58 | sylanbrc 582 | . 2 ⊢ (𝜑 → (ℝ D 𝐺) Fn (𝐴(,)𝐵)) |
60 | 16 | ffnd 6748 | . 2 ⊢ (𝜑 → 𝐹 Fn (𝐴(,)𝐵)) |
61 | 3 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → Fun (ℝ D 𝐺)) |
62 | funbrfv 6971 | . . 3 ⊢ (Fun (ℝ D 𝐺) → (𝑦(ℝ D 𝐺)(𝐹‘𝑦) → ((ℝ D 𝐺)‘𝑦) = (𝐹‘𝑦))) | |
63 | 61, 52, 62 | sylc 65 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑦) = (𝐹‘𝑦)) |
64 | 59, 60, 63 | eqfnfvd 7067 | 1 ⊢ (𝜑 → (ℝ D 𝐺) = 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 ∪ cuni 4931 class class class wbr 5166 ↦ cmpt 5249 dom cdm 5700 ran crn 5701 Fun wfun 6567 Fn wfn 6568 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 ℝcr 11183 ≤ cle 11325 (,)cioo 13407 [,]cicc 13410 ↾t crest 17480 TopOpenctopn 17481 topGenctg 17497 ℂfldccnfld 21387 TopOnctopon 22937 intcnt 23046 Cn ccn 23253 CnP ccnp 23254 –cn→ccncf 24921 𝐿1cibl 25671 ∫citg 25672 D cdv 25918 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cc 10504 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 ax-addf 11263 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-symdif 4272 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-disj 5134 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-ofr 7715 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-oadd 8526 df-omul 8527 df-er 8763 df-map 8886 df-pm 8887 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-fi 9480 df-sup 9511 df-inf 9512 df-oi 9579 df-dju 9970 df-card 10008 df-acn 10011 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-ioo 13411 df-ioc 13412 df-ico 13413 df-icc 13414 df-fz 13568 df-fzo 13712 df-fl 13843 df-mod 13921 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-rlim 15535 df-sum 15735 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-hom 17335 df-cco 17336 df-rest 17482 df-topn 17483 df-0g 17501 df-gsum 17502 df-topgen 17503 df-pt 17504 df-prds 17507 df-xrs 17562 df-qtop 17567 df-imas 17568 df-xps 17570 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-mulg 19108 df-cntz 19357 df-cmn 19824 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-fbas 21384 df-fg 21385 df-cnfld 21388 df-top 22921 df-topon 22938 df-topsp 22960 df-bases 22974 df-cld 23048 df-ntr 23049 df-cls 23050 df-nei 23127 df-lp 23165 df-perf 23166 df-cn 23256 df-cnp 23257 df-haus 23344 df-cmp 23416 df-tx 23591 df-hmeo 23784 df-fil 23875 df-fm 23967 df-flim 23968 df-flf 23969 df-xms 24351 df-ms 24352 df-tms 24353 df-cncf 24923 df-ovol 25518 df-vol 25519 df-mbf 25673 df-itg1 25674 df-itg2 25675 df-ibl 25676 df-itg 25677 df-0p 25724 df-limc 25921 df-dv 25922 |
This theorem is referenced by: ftc2 26105 itgsubstlem 26109 |
Copyright terms: Public domain | W3C validator |