| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ftc1cn | Structured version Visualization version GIF version | ||
| Description: Strengthen the assumptions of ftc1 25999 to when the function 𝐹 is continuous on the entire interval (𝐴, 𝐵); in this case we can calculate D 𝐺 exactly. (Contributed by Mario Carneiro, 1-Sep-2014.) |
| Ref | Expression |
|---|---|
| ftc1cn.g | ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹‘𝑡) d𝑡) |
| ftc1cn.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ftc1cn.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| ftc1cn.le | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| ftc1cn.f | ⊢ (𝜑 → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ)) |
| ftc1cn.i | ⊢ (𝜑 → 𝐹 ∈ 𝐿1) |
| Ref | Expression |
|---|---|
| ftc1cn | ⊢ (𝜑 → (ℝ D 𝐺) = 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvf 25858 | . . . . 5 ⊢ (ℝ D 𝐺):dom (ℝ D 𝐺)⟶ℂ | |
| 2 | 1 | a1i 11 | . . . 4 ⊢ (𝜑 → (ℝ D 𝐺):dom (ℝ D 𝐺)⟶ℂ) |
| 3 | 2 | ffund 6709 | . . 3 ⊢ (𝜑 → Fun (ℝ D 𝐺)) |
| 4 | ax-resscn 11184 | . . . . . . 7 ⊢ ℝ ⊆ ℂ | |
| 5 | 4 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ℝ ⊆ ℂ) |
| 6 | ftc1cn.g | . . . . . . 7 ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹‘𝑡) d𝑡) | |
| 7 | ftc1cn.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 8 | ftc1cn.b | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 9 | ftc1cn.le | . . . . . . 7 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
| 10 | ssidd 3982 | . . . . . . 7 ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴(,)𝐵)) | |
| 11 | ioossre 13422 | . . . . . . . 8 ⊢ (𝐴(,)𝐵) ⊆ ℝ | |
| 12 | 11 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ ℝ) |
| 13 | ftc1cn.i | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ 𝐿1) | |
| 14 | ftc1cn.f | . . . . . . . 8 ⊢ (𝜑 → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ)) | |
| 15 | cncff 24835 | . . . . . . . 8 ⊢ (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ) → 𝐹:(𝐴(,)𝐵)⟶ℂ) | |
| 16 | 14, 15 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℂ) |
| 17 | 6, 7, 8, 9, 10, 12, 13, 16 | ftc1lem2 25993 | . . . . . 6 ⊢ (𝜑 → 𝐺:(𝐴[,]𝐵)⟶ℂ) |
| 18 | iccssre 13444 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) | |
| 19 | 7, 8, 18 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) |
| 20 | tgioo4 24742 | . . . . . 6 ⊢ (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ) | |
| 21 | eqid 2735 | . . . . . 6 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 22 | 5, 17, 19, 20, 21 | dvbssntr 25851 | . . . . 5 ⊢ (𝜑 → dom (ℝ D 𝐺) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) |
| 23 | iccntr 24759 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵)) | |
| 24 | 7, 8, 23 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵)) |
| 25 | 22, 24 | sseqtrd 3995 | . . . 4 ⊢ (𝜑 → dom (ℝ D 𝐺) ⊆ (𝐴(,)𝐵)) |
| 26 | 7 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ) |
| 27 | 8 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ) |
| 28 | 9 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝐴 ≤ 𝐵) |
| 29 | ssidd 3982 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (𝐴(,)𝐵) ⊆ (𝐴(,)𝐵)) | |
| 30 | 11 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (𝐴(,)𝐵) ⊆ ℝ) |
| 31 | 13 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝐹 ∈ 𝐿1) |
| 32 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ (𝐴(,)𝐵)) | |
| 33 | 11, 4 | sstri 3968 | . . . . . . . . . 10 ⊢ (𝐴(,)𝐵) ⊆ ℂ |
| 34 | ssid 3981 | . . . . . . . . . 10 ⊢ ℂ ⊆ ℂ | |
| 35 | eqid 2735 | . . . . . . . . . . 11 ⊢ ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) | |
| 36 | 21 | cnfldtopon 24719 | . . . . . . . . . . . 12 ⊢ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ) |
| 37 | 36 | toponrestid 22857 | . . . . . . . . . . 11 ⊢ (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ) |
| 38 | 21, 35, 37 | cncfcn 24852 | . . . . . . . . . 10 ⊢ (((𝐴(,)𝐵) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴(,)𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld))) |
| 39 | 33, 34, 38 | mp2an 692 | . . . . . . . . 9 ⊢ ((𝐴(,)𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)) |
| 40 | 14, 39 | eleqtrdi 2844 | . . . . . . . 8 ⊢ (𝜑 → 𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld))) |
| 41 | 40 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld))) |
| 42 | 33 | a1i 11 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ ℂ) |
| 43 | resttopon 23097 | . . . . . . . . . . 11 ⊢ (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (𝐴(,)𝐵) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵))) | |
| 44 | 36, 42, 43 | sylancr 587 | . . . . . . . . . 10 ⊢ (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵))) |
| 45 | toponuni 22850 | . . . . . . . . . 10 ⊢ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵)) → (𝐴(,)𝐵) = ∪ ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵))) | |
| 46 | 44, 45 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → (𝐴(,)𝐵) = ∪ ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵))) |
| 47 | 46 | eleq2d 2820 | . . . . . . . 8 ⊢ (𝜑 → (𝑦 ∈ (𝐴(,)𝐵) ↔ 𝑦 ∈ ∪ ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)))) |
| 48 | 47 | biimpa 476 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ ∪ ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵))) |
| 49 | eqid 2735 | . . . . . . . 8 ⊢ ∪ ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) = ∪ ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) | |
| 50 | 49 | cncnpi 23214 | . . . . . . 7 ⊢ ((𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)) ∧ 𝑦 ∈ ∪ ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵))) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦)) |
| 51 | 41, 48, 50 | syl2anc 584 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦)) |
| 52 | 6, 26, 27, 28, 29, 30, 31, 32, 51, 20, 35, 21 | ftc1 25999 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝑦(ℝ D 𝐺)(𝐹‘𝑦)) |
| 53 | vex 3463 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 54 | fvex 6888 | . . . . . 6 ⊢ (𝐹‘𝑦) ∈ V | |
| 55 | 53, 54 | breldm 5888 | . . . . 5 ⊢ (𝑦(ℝ D 𝐺)(𝐹‘𝑦) → 𝑦 ∈ dom (ℝ D 𝐺)) |
| 56 | 52, 55 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ dom (ℝ D 𝐺)) |
| 57 | 25, 56 | eqelssd 3980 | . . 3 ⊢ (𝜑 → dom (ℝ D 𝐺) = (𝐴(,)𝐵)) |
| 58 | df-fn 6533 | . . 3 ⊢ ((ℝ D 𝐺) Fn (𝐴(,)𝐵) ↔ (Fun (ℝ D 𝐺) ∧ dom (ℝ D 𝐺) = (𝐴(,)𝐵))) | |
| 59 | 3, 57, 58 | sylanbrc 583 | . 2 ⊢ (𝜑 → (ℝ D 𝐺) Fn (𝐴(,)𝐵)) |
| 60 | 16 | ffnd 6706 | . 2 ⊢ (𝜑 → 𝐹 Fn (𝐴(,)𝐵)) |
| 61 | 3 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → Fun (ℝ D 𝐺)) |
| 62 | funbrfv 6926 | . . 3 ⊢ (Fun (ℝ D 𝐺) → (𝑦(ℝ D 𝐺)(𝐹‘𝑦) → ((ℝ D 𝐺)‘𝑦) = (𝐹‘𝑦))) | |
| 63 | 61, 52, 62 | sylc 65 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑦) = (𝐹‘𝑦)) |
| 64 | 59, 60, 63 | eqfnfvd 7023 | 1 ⊢ (𝜑 → (ℝ D 𝐺) = 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ⊆ wss 3926 ∪ cuni 4883 class class class wbr 5119 ↦ cmpt 5201 dom cdm 5654 ran crn 5655 Fun wfun 6524 Fn wfn 6525 ⟶wf 6526 ‘cfv 6530 (class class class)co 7403 ℂcc 11125 ℝcr 11126 ≤ cle 11268 (,)cioo 13360 [,]cicc 13363 ↾t crest 17432 TopOpenctopn 17433 topGenctg 17449 ℂfldccnfld 21313 TopOnctopon 22846 intcnt 22953 Cn ccn 23160 CnP ccnp 23161 –cn→ccncf 24818 𝐿1cibl 25568 ∫citg 25569 D cdv 25814 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-inf2 9653 ax-cc 10447 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-pre-sup 11205 ax-addf 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-symdif 4228 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-disj 5087 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-isom 6539 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-of 7669 df-ofr 7670 df-om 7860 df-1st 7986 df-2nd 7987 df-supp 8158 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-2o 8479 df-oadd 8482 df-omul 8483 df-er 8717 df-map 8840 df-pm 8841 df-ixp 8910 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-fsupp 9372 df-fi 9421 df-sup 9452 df-inf 9453 df-oi 9522 df-dju 9913 df-card 9951 df-acn 9954 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-z 12587 df-dec 12707 df-uz 12851 df-q 12963 df-rp 13007 df-xneg 13126 df-xadd 13127 df-xmul 13128 df-ioo 13364 df-ioc 13365 df-ico 13366 df-icc 13367 df-fz 13523 df-fzo 13670 df-fl 13807 df-mod 13885 df-seq 14018 df-exp 14078 df-hash 14347 df-cj 15116 df-re 15117 df-im 15118 df-sqrt 15252 df-abs 15253 df-clim 15502 df-rlim 15503 df-sum 15701 df-struct 17164 df-sets 17181 df-slot 17199 df-ndx 17211 df-base 17227 df-ress 17250 df-plusg 17282 df-mulr 17283 df-starv 17284 df-sca 17285 df-vsca 17286 df-ip 17287 df-tset 17288 df-ple 17289 df-ds 17291 df-unif 17292 df-hom 17293 df-cco 17294 df-rest 17434 df-topn 17435 df-0g 17453 df-gsum 17454 df-topgen 17455 df-pt 17456 df-prds 17459 df-xrs 17514 df-qtop 17519 df-imas 17520 df-xps 17522 df-mre 17596 df-mrc 17597 df-acs 17599 df-mgm 18616 df-sgrp 18695 df-mnd 18711 df-submnd 18760 df-mulg 19049 df-cntz 19298 df-cmn 19761 df-psmet 21305 df-xmet 21306 df-met 21307 df-bl 21308 df-mopn 21309 df-fbas 21310 df-fg 21311 df-cnfld 21314 df-top 22830 df-topon 22847 df-topsp 22869 df-bases 22882 df-cld 22955 df-ntr 22956 df-cls 22957 df-nei 23034 df-lp 23072 df-perf 23073 df-cn 23163 df-cnp 23164 df-haus 23251 df-cmp 23323 df-tx 23498 df-hmeo 23691 df-fil 23782 df-fm 23874 df-flim 23875 df-flf 23876 df-xms 24257 df-ms 24258 df-tms 24259 df-cncf 24820 df-ovol 25415 df-vol 25416 df-mbf 25570 df-itg1 25571 df-itg2 25572 df-ibl 25573 df-itg 25574 df-0p 25621 df-limc 25817 df-dv 25818 |
| This theorem is referenced by: ftc2 26001 itgsubstlem 26005 |
| Copyright terms: Public domain | W3C validator |