| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ftc1cn | Structured version Visualization version GIF version | ||
| Description: Strengthen the assumptions of ftc1 25949 to when the function 𝐹 is continuous on the entire interval (𝐴, 𝐵); in this case we can calculate D 𝐺 exactly. (Contributed by Mario Carneiro, 1-Sep-2014.) |
| Ref | Expression |
|---|---|
| ftc1cn.g | ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹‘𝑡) d𝑡) |
| ftc1cn.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ftc1cn.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| ftc1cn.le | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| ftc1cn.f | ⊢ (𝜑 → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ)) |
| ftc1cn.i | ⊢ (𝜑 → 𝐹 ∈ 𝐿1) |
| Ref | Expression |
|---|---|
| ftc1cn | ⊢ (𝜑 → (ℝ D 𝐺) = 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvf 25808 | . . . . 5 ⊢ (ℝ D 𝐺):dom (ℝ D 𝐺)⟶ℂ | |
| 2 | 1 | a1i 11 | . . . 4 ⊢ (𝜑 → (ℝ D 𝐺):dom (ℝ D 𝐺)⟶ℂ) |
| 3 | 2 | ffund 6692 | . . 3 ⊢ (𝜑 → Fun (ℝ D 𝐺)) |
| 4 | ax-resscn 11125 | . . . . . . 7 ⊢ ℝ ⊆ ℂ | |
| 5 | 4 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ℝ ⊆ ℂ) |
| 6 | ftc1cn.g | . . . . . . 7 ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹‘𝑡) d𝑡) | |
| 7 | ftc1cn.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 8 | ftc1cn.b | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 9 | ftc1cn.le | . . . . . . 7 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
| 10 | ssidd 3970 | . . . . . . 7 ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴(,)𝐵)) | |
| 11 | ioossre 13368 | . . . . . . . 8 ⊢ (𝐴(,)𝐵) ⊆ ℝ | |
| 12 | 11 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ ℝ) |
| 13 | ftc1cn.i | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ 𝐿1) | |
| 14 | ftc1cn.f | . . . . . . . 8 ⊢ (𝜑 → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ)) | |
| 15 | cncff 24786 | . . . . . . . 8 ⊢ (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ) → 𝐹:(𝐴(,)𝐵)⟶ℂ) | |
| 16 | 14, 15 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℂ) |
| 17 | 6, 7, 8, 9, 10, 12, 13, 16 | ftc1lem2 25943 | . . . . . 6 ⊢ (𝜑 → 𝐺:(𝐴[,]𝐵)⟶ℂ) |
| 18 | iccssre 13390 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) | |
| 19 | 7, 8, 18 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) |
| 20 | tgioo4 24693 | . . . . . 6 ⊢ (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ) | |
| 21 | eqid 2729 | . . . . . 6 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 22 | 5, 17, 19, 20, 21 | dvbssntr 25801 | . . . . 5 ⊢ (𝜑 → dom (ℝ D 𝐺) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) |
| 23 | iccntr 24710 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵)) | |
| 24 | 7, 8, 23 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵)) |
| 25 | 22, 24 | sseqtrd 3983 | . . . 4 ⊢ (𝜑 → dom (ℝ D 𝐺) ⊆ (𝐴(,)𝐵)) |
| 26 | 7 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ) |
| 27 | 8 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ) |
| 28 | 9 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝐴 ≤ 𝐵) |
| 29 | ssidd 3970 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (𝐴(,)𝐵) ⊆ (𝐴(,)𝐵)) | |
| 30 | 11 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (𝐴(,)𝐵) ⊆ ℝ) |
| 31 | 13 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝐹 ∈ 𝐿1) |
| 32 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ (𝐴(,)𝐵)) | |
| 33 | 11, 4 | sstri 3956 | . . . . . . . . . 10 ⊢ (𝐴(,)𝐵) ⊆ ℂ |
| 34 | ssid 3969 | . . . . . . . . . 10 ⊢ ℂ ⊆ ℂ | |
| 35 | eqid 2729 | . . . . . . . . . . 11 ⊢ ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) | |
| 36 | 21 | cnfldtopon 24670 | . . . . . . . . . . . 12 ⊢ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ) |
| 37 | 36 | toponrestid 22808 | . . . . . . . . . . 11 ⊢ (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ) |
| 38 | 21, 35, 37 | cncfcn 24803 | . . . . . . . . . 10 ⊢ (((𝐴(,)𝐵) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴(,)𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld))) |
| 39 | 33, 34, 38 | mp2an 692 | . . . . . . . . 9 ⊢ ((𝐴(,)𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)) |
| 40 | 14, 39 | eleqtrdi 2838 | . . . . . . . 8 ⊢ (𝜑 → 𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld))) |
| 41 | 40 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld))) |
| 42 | 33 | a1i 11 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ ℂ) |
| 43 | resttopon 23048 | . . . . . . . . . . 11 ⊢ (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (𝐴(,)𝐵) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵))) | |
| 44 | 36, 42, 43 | sylancr 587 | . . . . . . . . . 10 ⊢ (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵))) |
| 45 | toponuni 22801 | . . . . . . . . . 10 ⊢ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵)) → (𝐴(,)𝐵) = ∪ ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵))) | |
| 46 | 44, 45 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → (𝐴(,)𝐵) = ∪ ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵))) |
| 47 | 46 | eleq2d 2814 | . . . . . . . 8 ⊢ (𝜑 → (𝑦 ∈ (𝐴(,)𝐵) ↔ 𝑦 ∈ ∪ ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)))) |
| 48 | 47 | biimpa 476 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ ∪ ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵))) |
| 49 | eqid 2729 | . . . . . . . 8 ⊢ ∪ ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) = ∪ ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) | |
| 50 | 49 | cncnpi 23165 | . . . . . . 7 ⊢ ((𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)) ∧ 𝑦 ∈ ∪ ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵))) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦)) |
| 51 | 41, 48, 50 | syl2anc 584 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦)) |
| 52 | 6, 26, 27, 28, 29, 30, 31, 32, 51, 20, 35, 21 | ftc1 25949 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝑦(ℝ D 𝐺)(𝐹‘𝑦)) |
| 53 | vex 3451 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 54 | fvex 6871 | . . . . . 6 ⊢ (𝐹‘𝑦) ∈ V | |
| 55 | 53, 54 | breldm 5872 | . . . . 5 ⊢ (𝑦(ℝ D 𝐺)(𝐹‘𝑦) → 𝑦 ∈ dom (ℝ D 𝐺)) |
| 56 | 52, 55 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ dom (ℝ D 𝐺)) |
| 57 | 25, 56 | eqelssd 3968 | . . 3 ⊢ (𝜑 → dom (ℝ D 𝐺) = (𝐴(,)𝐵)) |
| 58 | df-fn 6514 | . . 3 ⊢ ((ℝ D 𝐺) Fn (𝐴(,)𝐵) ↔ (Fun (ℝ D 𝐺) ∧ dom (ℝ D 𝐺) = (𝐴(,)𝐵))) | |
| 59 | 3, 57, 58 | sylanbrc 583 | . 2 ⊢ (𝜑 → (ℝ D 𝐺) Fn (𝐴(,)𝐵)) |
| 60 | 16 | ffnd 6689 | . 2 ⊢ (𝜑 → 𝐹 Fn (𝐴(,)𝐵)) |
| 61 | 3 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → Fun (ℝ D 𝐺)) |
| 62 | funbrfv 6909 | . . 3 ⊢ (Fun (ℝ D 𝐺) → (𝑦(ℝ D 𝐺)(𝐹‘𝑦) → ((ℝ D 𝐺)‘𝑦) = (𝐹‘𝑦))) | |
| 63 | 61, 52, 62 | sylc 65 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑦) = (𝐹‘𝑦)) |
| 64 | 59, 60, 63 | eqfnfvd 7006 | 1 ⊢ (𝜑 → (ℝ D 𝐺) = 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3914 ∪ cuni 4871 class class class wbr 5107 ↦ cmpt 5188 dom cdm 5638 ran crn 5639 Fun wfun 6505 Fn wfn 6506 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 ℝcr 11067 ≤ cle 11209 (,)cioo 13306 [,]cicc 13309 ↾t crest 17383 TopOpenctopn 17384 topGenctg 17400 ℂfldccnfld 21264 TopOnctopon 22797 intcnt 22904 Cn ccn 23111 CnP ccnp 23112 –cn→ccncf 24769 𝐿1cibl 25518 ∫citg 25519 D cdv 25764 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cc 10388 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 ax-addf 11147 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-symdif 4216 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-disj 5075 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-ofr 7654 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-oadd 8438 df-omul 8439 df-er 8671 df-map 8801 df-pm 8802 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-fi 9362 df-sup 9393 df-inf 9394 df-oi 9463 df-dju 9854 df-card 9892 df-acn 9895 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-ioo 13310 df-ioc 13311 df-ico 13312 df-icc 13313 df-fz 13469 df-fzo 13616 df-fl 13754 df-mod 13832 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 df-rlim 15455 df-sum 15653 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-hom 17244 df-cco 17245 df-rest 17385 df-topn 17386 df-0g 17404 df-gsum 17405 df-topgen 17406 df-pt 17407 df-prds 17410 df-xrs 17465 df-qtop 17470 df-imas 17471 df-xps 17473 df-mre 17547 df-mrc 17548 df-acs 17550 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-submnd 18711 df-mulg 19000 df-cntz 19249 df-cmn 19712 df-psmet 21256 df-xmet 21257 df-met 21258 df-bl 21259 df-mopn 21260 df-fbas 21261 df-fg 21262 df-cnfld 21265 df-top 22781 df-topon 22798 df-topsp 22820 df-bases 22833 df-cld 22906 df-ntr 22907 df-cls 22908 df-nei 22985 df-lp 23023 df-perf 23024 df-cn 23114 df-cnp 23115 df-haus 23202 df-cmp 23274 df-tx 23449 df-hmeo 23642 df-fil 23733 df-fm 23825 df-flim 23826 df-flf 23827 df-xms 24208 df-ms 24209 df-tms 24210 df-cncf 24771 df-ovol 25365 df-vol 25366 df-mbf 25520 df-itg1 25521 df-itg2 25522 df-ibl 25523 df-itg 25524 df-0p 25571 df-limc 25767 df-dv 25768 |
| This theorem is referenced by: ftc2 25951 itgsubstlem 25955 |
| Copyright terms: Public domain | W3C validator |