| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ftc1cn | Structured version Visualization version GIF version | ||
| Description: Strengthen the assumptions of ftc1 25977 to when the function 𝐹 is continuous on the entire interval (𝐴, 𝐵); in this case we can calculate D 𝐺 exactly. (Contributed by Mario Carneiro, 1-Sep-2014.) |
| Ref | Expression |
|---|---|
| ftc1cn.g | ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹‘𝑡) d𝑡) |
| ftc1cn.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ftc1cn.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| ftc1cn.le | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| ftc1cn.f | ⊢ (𝜑 → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ)) |
| ftc1cn.i | ⊢ (𝜑 → 𝐹 ∈ 𝐿1) |
| Ref | Expression |
|---|---|
| ftc1cn | ⊢ (𝜑 → (ℝ D 𝐺) = 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvf 25836 | . . . . 5 ⊢ (ℝ D 𝐺):dom (ℝ D 𝐺)⟶ℂ | |
| 2 | 1 | a1i 11 | . . . 4 ⊢ (𝜑 → (ℝ D 𝐺):dom (ℝ D 𝐺)⟶ℂ) |
| 3 | 2 | ffund 6655 | . . 3 ⊢ (𝜑 → Fun (ℝ D 𝐺)) |
| 4 | ax-resscn 11063 | . . . . . . 7 ⊢ ℝ ⊆ ℂ | |
| 5 | 4 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ℝ ⊆ ℂ) |
| 6 | ftc1cn.g | . . . . . . 7 ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹‘𝑡) d𝑡) | |
| 7 | ftc1cn.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 8 | ftc1cn.b | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 9 | ftc1cn.le | . . . . . . 7 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
| 10 | ssidd 3958 | . . . . . . 7 ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴(,)𝐵)) | |
| 11 | ioossre 13307 | . . . . . . . 8 ⊢ (𝐴(,)𝐵) ⊆ ℝ | |
| 12 | 11 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ ℝ) |
| 13 | ftc1cn.i | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ 𝐿1) | |
| 14 | ftc1cn.f | . . . . . . . 8 ⊢ (𝜑 → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ)) | |
| 15 | cncff 24814 | . . . . . . . 8 ⊢ (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ) → 𝐹:(𝐴(,)𝐵)⟶ℂ) | |
| 16 | 14, 15 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℂ) |
| 17 | 6, 7, 8, 9, 10, 12, 13, 16 | ftc1lem2 25971 | . . . . . 6 ⊢ (𝜑 → 𝐺:(𝐴[,]𝐵)⟶ℂ) |
| 18 | iccssre 13329 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) | |
| 19 | 7, 8, 18 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) |
| 20 | tgioo4 24721 | . . . . . 6 ⊢ (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ) | |
| 21 | eqid 2731 | . . . . . 6 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 22 | 5, 17, 19, 20, 21 | dvbssntr 25829 | . . . . 5 ⊢ (𝜑 → dom (ℝ D 𝐺) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) |
| 23 | iccntr 24738 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵)) | |
| 24 | 7, 8, 23 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵)) |
| 25 | 22, 24 | sseqtrd 3971 | . . . 4 ⊢ (𝜑 → dom (ℝ D 𝐺) ⊆ (𝐴(,)𝐵)) |
| 26 | 7 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ) |
| 27 | 8 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ) |
| 28 | 9 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝐴 ≤ 𝐵) |
| 29 | ssidd 3958 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (𝐴(,)𝐵) ⊆ (𝐴(,)𝐵)) | |
| 30 | 11 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (𝐴(,)𝐵) ⊆ ℝ) |
| 31 | 13 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝐹 ∈ 𝐿1) |
| 32 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ (𝐴(,)𝐵)) | |
| 33 | 11, 4 | sstri 3944 | . . . . . . . . . 10 ⊢ (𝐴(,)𝐵) ⊆ ℂ |
| 34 | ssid 3957 | . . . . . . . . . 10 ⊢ ℂ ⊆ ℂ | |
| 35 | eqid 2731 | . . . . . . . . . . 11 ⊢ ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) | |
| 36 | 21 | cnfldtopon 24698 | . . . . . . . . . . . 12 ⊢ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ) |
| 37 | 36 | toponrestid 22837 | . . . . . . . . . . 11 ⊢ (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ) |
| 38 | 21, 35, 37 | cncfcn 24831 | . . . . . . . . . 10 ⊢ (((𝐴(,)𝐵) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴(,)𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld))) |
| 39 | 33, 34, 38 | mp2an 692 | . . . . . . . . 9 ⊢ ((𝐴(,)𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)) |
| 40 | 14, 39 | eleqtrdi 2841 | . . . . . . . 8 ⊢ (𝜑 → 𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld))) |
| 41 | 40 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld))) |
| 42 | 33 | a1i 11 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ ℂ) |
| 43 | resttopon 23077 | . . . . . . . . . . 11 ⊢ (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (𝐴(,)𝐵) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵))) | |
| 44 | 36, 42, 43 | sylancr 587 | . . . . . . . . . 10 ⊢ (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵))) |
| 45 | toponuni 22830 | . . . . . . . . . 10 ⊢ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵)) → (𝐴(,)𝐵) = ∪ ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵))) | |
| 46 | 44, 45 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → (𝐴(,)𝐵) = ∪ ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵))) |
| 47 | 46 | eleq2d 2817 | . . . . . . . 8 ⊢ (𝜑 → (𝑦 ∈ (𝐴(,)𝐵) ↔ 𝑦 ∈ ∪ ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)))) |
| 48 | 47 | biimpa 476 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ ∪ ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵))) |
| 49 | eqid 2731 | . . . . . . . 8 ⊢ ∪ ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) = ∪ ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) | |
| 50 | 49 | cncnpi 23194 | . . . . . . 7 ⊢ ((𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)) ∧ 𝑦 ∈ ∪ ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵))) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦)) |
| 51 | 41, 48, 50 | syl2anc 584 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦)) |
| 52 | 6, 26, 27, 28, 29, 30, 31, 32, 51, 20, 35, 21 | ftc1 25977 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝑦(ℝ D 𝐺)(𝐹‘𝑦)) |
| 53 | vex 3440 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 54 | fvex 6835 | . . . . . 6 ⊢ (𝐹‘𝑦) ∈ V | |
| 55 | 53, 54 | breldm 5848 | . . . . 5 ⊢ (𝑦(ℝ D 𝐺)(𝐹‘𝑦) → 𝑦 ∈ dom (ℝ D 𝐺)) |
| 56 | 52, 55 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ dom (ℝ D 𝐺)) |
| 57 | 25, 56 | eqelssd 3956 | . . 3 ⊢ (𝜑 → dom (ℝ D 𝐺) = (𝐴(,)𝐵)) |
| 58 | df-fn 6484 | . . 3 ⊢ ((ℝ D 𝐺) Fn (𝐴(,)𝐵) ↔ (Fun (ℝ D 𝐺) ∧ dom (ℝ D 𝐺) = (𝐴(,)𝐵))) | |
| 59 | 3, 57, 58 | sylanbrc 583 | . 2 ⊢ (𝜑 → (ℝ D 𝐺) Fn (𝐴(,)𝐵)) |
| 60 | 16 | ffnd 6652 | . 2 ⊢ (𝜑 → 𝐹 Fn (𝐴(,)𝐵)) |
| 61 | 3 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → Fun (ℝ D 𝐺)) |
| 62 | funbrfv 6870 | . . 3 ⊢ (Fun (ℝ D 𝐺) → (𝑦(ℝ D 𝐺)(𝐹‘𝑦) → ((ℝ D 𝐺)‘𝑦) = (𝐹‘𝑦))) | |
| 63 | 61, 52, 62 | sylc 65 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑦) = (𝐹‘𝑦)) |
| 64 | 59, 60, 63 | eqfnfvd 6967 | 1 ⊢ (𝜑 → (ℝ D 𝐺) = 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ⊆ wss 3902 ∪ cuni 4859 class class class wbr 5091 ↦ cmpt 5172 dom cdm 5616 ran crn 5617 Fun wfun 6475 Fn wfn 6476 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 ℝcr 11005 ≤ cle 11147 (,)cioo 13245 [,]cicc 13248 ↾t crest 17324 TopOpenctopn 17325 topGenctg 17341 ℂfldccnfld 21292 TopOnctopon 22826 intcnt 22933 Cn ccn 23140 CnP ccnp 23141 –cn→ccncf 24797 𝐿1cibl 25546 ∫citg 25547 D cdv 25792 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-cc 10326 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 ax-addf 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-symdif 4203 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-disj 5059 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-ofr 7611 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-oadd 8389 df-omul 8390 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-fi 9295 df-sup 9326 df-inf 9327 df-oi 9396 df-dju 9794 df-card 9832 df-acn 9835 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-q 12847 df-rp 12891 df-xneg 13011 df-xadd 13012 df-xmul 13013 df-ioo 13249 df-ioc 13250 df-ico 13251 df-icc 13252 df-fz 13408 df-fzo 13555 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-rlim 15396 df-sum 15594 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-pt 17348 df-prds 17351 df-xrs 17406 df-qtop 17411 df-imas 17412 df-xps 17414 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-submnd 18692 df-mulg 18981 df-cntz 19230 df-cmn 19695 df-psmet 21284 df-xmet 21285 df-met 21286 df-bl 21287 df-mopn 21288 df-fbas 21289 df-fg 21290 df-cnfld 21293 df-top 22810 df-topon 22827 df-topsp 22849 df-bases 22862 df-cld 22935 df-ntr 22936 df-cls 22937 df-nei 23014 df-lp 23052 df-perf 23053 df-cn 23143 df-cnp 23144 df-haus 23231 df-cmp 23303 df-tx 23478 df-hmeo 23671 df-fil 23762 df-fm 23854 df-flim 23855 df-flf 23856 df-xms 24236 df-ms 24237 df-tms 24238 df-cncf 24799 df-ovol 25393 df-vol 25394 df-mbf 25548 df-itg1 25549 df-itg2 25550 df-ibl 25551 df-itg 25552 df-0p 25599 df-limc 25795 df-dv 25796 |
| This theorem is referenced by: ftc2 25979 itgsubstlem 25983 |
| Copyright terms: Public domain | W3C validator |