| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ftc1cn | Structured version Visualization version GIF version | ||
| Description: Strengthen the assumptions of ftc1 25965 to when the function 𝐹 is continuous on the entire interval (𝐴, 𝐵); in this case we can calculate D 𝐺 exactly. (Contributed by Mario Carneiro, 1-Sep-2014.) |
| Ref | Expression |
|---|---|
| ftc1cn.g | ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹‘𝑡) d𝑡) |
| ftc1cn.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ftc1cn.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| ftc1cn.le | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| ftc1cn.f | ⊢ (𝜑 → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ)) |
| ftc1cn.i | ⊢ (𝜑 → 𝐹 ∈ 𝐿1) |
| Ref | Expression |
|---|---|
| ftc1cn | ⊢ (𝜑 → (ℝ D 𝐺) = 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvf 25824 | . . . . 5 ⊢ (ℝ D 𝐺):dom (ℝ D 𝐺)⟶ℂ | |
| 2 | 1 | a1i 11 | . . . 4 ⊢ (𝜑 → (ℝ D 𝐺):dom (ℝ D 𝐺)⟶ℂ) |
| 3 | 2 | ffund 6660 | . . 3 ⊢ (𝜑 → Fun (ℝ D 𝐺)) |
| 4 | ax-resscn 11085 | . . . . . . 7 ⊢ ℝ ⊆ ℂ | |
| 5 | 4 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ℝ ⊆ ℂ) |
| 6 | ftc1cn.g | . . . . . . 7 ⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹‘𝑡) d𝑡) | |
| 7 | ftc1cn.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 8 | ftc1cn.b | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 9 | ftc1cn.le | . . . . . . 7 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
| 10 | ssidd 3961 | . . . . . . 7 ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴(,)𝐵)) | |
| 11 | ioossre 13328 | . . . . . . . 8 ⊢ (𝐴(,)𝐵) ⊆ ℝ | |
| 12 | 11 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ ℝ) |
| 13 | ftc1cn.i | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ 𝐿1) | |
| 14 | ftc1cn.f | . . . . . . . 8 ⊢ (𝜑 → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ)) | |
| 15 | cncff 24802 | . . . . . . . 8 ⊢ (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ) → 𝐹:(𝐴(,)𝐵)⟶ℂ) | |
| 16 | 14, 15 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℂ) |
| 17 | 6, 7, 8, 9, 10, 12, 13, 16 | ftc1lem2 25959 | . . . . . 6 ⊢ (𝜑 → 𝐺:(𝐴[,]𝐵)⟶ℂ) |
| 18 | iccssre 13350 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) | |
| 19 | 7, 8, 18 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) |
| 20 | tgioo4 24709 | . . . . . 6 ⊢ (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ) | |
| 21 | eqid 2729 | . . . . . 6 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 22 | 5, 17, 19, 20, 21 | dvbssntr 25817 | . . . . 5 ⊢ (𝜑 → dom (ℝ D 𝐺) ⊆ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) |
| 23 | iccntr 24726 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵)) | |
| 24 | 7, 8, 23 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵)) |
| 25 | 22, 24 | sseqtrd 3974 | . . . 4 ⊢ (𝜑 → dom (ℝ D 𝐺) ⊆ (𝐴(,)𝐵)) |
| 26 | 7 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ) |
| 27 | 8 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ) |
| 28 | 9 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝐴 ≤ 𝐵) |
| 29 | ssidd 3961 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (𝐴(,)𝐵) ⊆ (𝐴(,)𝐵)) | |
| 30 | 11 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (𝐴(,)𝐵) ⊆ ℝ) |
| 31 | 13 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝐹 ∈ 𝐿1) |
| 32 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ (𝐴(,)𝐵)) | |
| 33 | 11, 4 | sstri 3947 | . . . . . . . . . 10 ⊢ (𝐴(,)𝐵) ⊆ ℂ |
| 34 | ssid 3960 | . . . . . . . . . 10 ⊢ ℂ ⊆ ℂ | |
| 35 | eqid 2729 | . . . . . . . . . . 11 ⊢ ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) | |
| 36 | 21 | cnfldtopon 24686 | . . . . . . . . . . . 12 ⊢ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ) |
| 37 | 36 | toponrestid 22824 | . . . . . . . . . . 11 ⊢ (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ) |
| 38 | 21, 35, 37 | cncfcn 24819 | . . . . . . . . . 10 ⊢ (((𝐴(,)𝐵) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴(,)𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld))) |
| 39 | 33, 34, 38 | mp2an 692 | . . . . . . . . 9 ⊢ ((𝐴(,)𝐵)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)) |
| 40 | 14, 39 | eleqtrdi 2838 | . . . . . . . 8 ⊢ (𝜑 → 𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld))) |
| 41 | 40 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld))) |
| 42 | 33 | a1i 11 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝐴(,)𝐵) ⊆ ℂ) |
| 43 | resttopon 23064 | . . . . . . . . . . 11 ⊢ (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (𝐴(,)𝐵) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵))) | |
| 44 | 36, 42, 43 | sylancr 587 | . . . . . . . . . 10 ⊢ (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵))) |
| 45 | toponuni 22817 | . . . . . . . . . 10 ⊢ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) ∈ (TopOn‘(𝐴(,)𝐵)) → (𝐴(,)𝐵) = ∪ ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵))) | |
| 46 | 44, 45 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → (𝐴(,)𝐵) = ∪ ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵))) |
| 47 | 46 | eleq2d 2814 | . . . . . . . 8 ⊢ (𝜑 → (𝑦 ∈ (𝐴(,)𝐵) ↔ 𝑦 ∈ ∪ ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)))) |
| 48 | 47 | biimpa 476 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ ∪ ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵))) |
| 49 | eqid 2729 | . . . . . . . 8 ⊢ ∪ ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) = ∪ ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) | |
| 50 | 49 | cncnpi 23181 | . . . . . . 7 ⊢ ((𝐹 ∈ (((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) Cn (TopOpen‘ℂfld)) ∧ 𝑦 ∈ ∪ ((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵))) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦)) |
| 51 | 41, 48, 50 | syl2anc 584 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝐹 ∈ ((((TopOpen‘ℂfld) ↾t (𝐴(,)𝐵)) CnP (TopOpen‘ℂfld))‘𝑦)) |
| 52 | 6, 26, 27, 28, 29, 30, 31, 32, 51, 20, 35, 21 | ftc1 25965 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝑦(ℝ D 𝐺)(𝐹‘𝑦)) |
| 53 | vex 3442 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 54 | fvex 6839 | . . . . . 6 ⊢ (𝐹‘𝑦) ∈ V | |
| 55 | 53, 54 | breldm 5855 | . . . . 5 ⊢ (𝑦(ℝ D 𝐺)(𝐹‘𝑦) → 𝑦 ∈ dom (ℝ D 𝐺)) |
| 56 | 52, 55 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ dom (ℝ D 𝐺)) |
| 57 | 25, 56 | eqelssd 3959 | . . 3 ⊢ (𝜑 → dom (ℝ D 𝐺) = (𝐴(,)𝐵)) |
| 58 | df-fn 6489 | . . 3 ⊢ ((ℝ D 𝐺) Fn (𝐴(,)𝐵) ↔ (Fun (ℝ D 𝐺) ∧ dom (ℝ D 𝐺) = (𝐴(,)𝐵))) | |
| 59 | 3, 57, 58 | sylanbrc 583 | . 2 ⊢ (𝜑 → (ℝ D 𝐺) Fn (𝐴(,)𝐵)) |
| 60 | 16 | ffnd 6657 | . 2 ⊢ (𝜑 → 𝐹 Fn (𝐴(,)𝐵)) |
| 61 | 3 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → Fun (ℝ D 𝐺)) |
| 62 | funbrfv 6875 | . . 3 ⊢ (Fun (ℝ D 𝐺) → (𝑦(ℝ D 𝐺)(𝐹‘𝑦) → ((ℝ D 𝐺)‘𝑦) = (𝐹‘𝑦))) | |
| 63 | 61, 52, 62 | sylc 65 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐺)‘𝑦) = (𝐹‘𝑦)) |
| 64 | 59, 60, 63 | eqfnfvd 6972 | 1 ⊢ (𝜑 → (ℝ D 𝐺) = 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3905 ∪ cuni 4861 class class class wbr 5095 ↦ cmpt 5176 dom cdm 5623 ran crn 5624 Fun wfun 6480 Fn wfn 6481 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 ℂcc 11026 ℝcr 11027 ≤ cle 11169 (,)cioo 13266 [,]cicc 13269 ↾t crest 17342 TopOpenctopn 17343 topGenctg 17359 ℂfldccnfld 21279 TopOnctopon 22813 intcnt 22920 Cn ccn 23127 CnP ccnp 23128 –cn→ccncf 24785 𝐿1cibl 25534 ∫citg 25535 D cdv 25780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 ax-cc 10348 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 ax-addf 11107 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-symdif 4206 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-disj 5063 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-ofr 7618 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-oadd 8399 df-omul 8400 df-er 8632 df-map 8762 df-pm 8763 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-fi 9320 df-sup 9351 df-inf 9352 df-oi 9421 df-dju 9816 df-card 9854 df-acn 9857 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-q 12868 df-rp 12912 df-xneg 13032 df-xadd 13033 df-xmul 13034 df-ioo 13270 df-ioc 13271 df-ico 13272 df-icc 13273 df-fz 13429 df-fzo 13576 df-fl 13714 df-mod 13792 df-seq 13927 df-exp 13987 df-hash 14256 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-clim 15413 df-rlim 15414 df-sum 15612 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-starv 17194 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-unif 17202 df-hom 17203 df-cco 17204 df-rest 17344 df-topn 17345 df-0g 17363 df-gsum 17364 df-topgen 17365 df-pt 17366 df-prds 17369 df-xrs 17424 df-qtop 17429 df-imas 17430 df-xps 17432 df-mre 17506 df-mrc 17507 df-acs 17509 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-submnd 18676 df-mulg 18965 df-cntz 19214 df-cmn 19679 df-psmet 21271 df-xmet 21272 df-met 21273 df-bl 21274 df-mopn 21275 df-fbas 21276 df-fg 21277 df-cnfld 21280 df-top 22797 df-topon 22814 df-topsp 22836 df-bases 22849 df-cld 22922 df-ntr 22923 df-cls 22924 df-nei 23001 df-lp 23039 df-perf 23040 df-cn 23130 df-cnp 23131 df-haus 23218 df-cmp 23290 df-tx 23465 df-hmeo 23658 df-fil 23749 df-fm 23841 df-flim 23842 df-flf 23843 df-xms 24224 df-ms 24225 df-tms 24226 df-cncf 24787 df-ovol 25381 df-vol 25382 df-mbf 25536 df-itg1 25537 df-itg2 25538 df-ibl 25539 df-itg 25540 df-0p 25587 df-limc 25783 df-dv 25784 |
| This theorem is referenced by: ftc2 25967 itgsubstlem 25971 |
| Copyright terms: Public domain | W3C validator |