Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  geomcau Structured version   Visualization version   GIF version

Theorem geomcau 35917
Description: If the distance between consecutive points in a sequence is bounded by a geometric sequence, then the sequence is Cauchy. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 5-Jun-2014.)
Hypotheses
Ref Expression
lmclim2.2 (𝜑𝐷 ∈ (Met‘𝑋))
lmclim2.3 (𝜑𝐹:ℕ⟶𝑋)
geomcau.4 (𝜑𝐴 ∈ ℝ)
geomcau.5 (𝜑𝐵 ∈ ℝ+)
geomcau.6 (𝜑𝐵 < 1)
geomcau.7 ((𝜑𝑘 ∈ ℕ) → ((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (𝐵𝑘)))
Assertion
Ref Expression
geomcau (𝜑𝐹 ∈ (Cau‘𝐷))
Distinct variable groups:   𝐷,𝑘   𝑘,𝐹   𝑘,𝑋   𝐴,𝑘   𝐵,𝑘   𝜑,𝑘

Proof of Theorem geomcau
Dummy variables 𝑗 𝑛 𝑥 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 12621 . . . . . 6 ℕ = (ℤ‘1)
2 1zzd 12351 . . . . . 6 (𝜑 → 1 ∈ ℤ)
3 geomcau.5 . . . . . . . 8 (𝜑𝐵 ∈ ℝ+)
43rpcnd 12774 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
53rpred 12772 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ)
63rpge0d 12776 . . . . . . . . 9 (𝜑 → 0 ≤ 𝐵)
75, 6absidd 15134 . . . . . . . 8 (𝜑 → (abs‘𝐵) = 𝐵)
8 geomcau.6 . . . . . . . 8 (𝜑𝐵 < 1)
97, 8eqbrtrd 5096 . . . . . . 7 (𝜑 → (abs‘𝐵) < 1)
104, 9expcnv 15576 . . . . . 6 (𝜑 → (𝑚 ∈ ℕ0 ↦ (𝐵𝑚)) ⇝ 0)
11 geomcau.4 . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
12 1re 10975 . . . . . . . . . 10 1 ∈ ℝ
13 resubcl 11285 . . . . . . . . . 10 ((1 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 − 𝐵) ∈ ℝ)
1412, 5, 13sylancr 587 . . . . . . . . 9 (𝜑 → (1 − 𝐵) ∈ ℝ)
15 posdif 11468 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐵 < 1 ↔ 0 < (1 − 𝐵)))
165, 12, 15sylancl 586 . . . . . . . . . 10 (𝜑 → (𝐵 < 1 ↔ 0 < (1 − 𝐵)))
178, 16mpbid 231 . . . . . . . . 9 (𝜑 → 0 < (1 − 𝐵))
1814, 17elrpd 12769 . . . . . . . 8 (𝜑 → (1 − 𝐵) ∈ ℝ+)
1911, 18rerpdivcld 12803 . . . . . . 7 (𝜑 → (𝐴 / (1 − 𝐵)) ∈ ℝ)
2019recnd 11003 . . . . . 6 (𝜑 → (𝐴 / (1 − 𝐵)) ∈ ℂ)
21 nnex 11979 . . . . . . . 8 ℕ ∈ V
2221mptex 7099 . . . . . . 7 (𝑚 ∈ ℕ ↦ ((𝐵𝑚) · (𝐴 / (1 − 𝐵)))) ∈ V
2322a1i 11 . . . . . 6 (𝜑 → (𝑚 ∈ ℕ ↦ ((𝐵𝑚) · (𝐴 / (1 − 𝐵)))) ∈ V)
24 nnnn0 12240 . . . . . . . . 9 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
2524adantl 482 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
26 oveq2 7283 . . . . . . . . 9 (𝑚 = 𝑛 → (𝐵𝑚) = (𝐵𝑛))
27 eqid 2738 . . . . . . . . 9 (𝑚 ∈ ℕ0 ↦ (𝐵𝑚)) = (𝑚 ∈ ℕ0 ↦ (𝐵𝑚))
28 ovex 7308 . . . . . . . . 9 (𝐵𝑛) ∈ V
2926, 27, 28fvmpt 6875 . . . . . . . 8 (𝑛 ∈ ℕ0 → ((𝑚 ∈ ℕ0 ↦ (𝐵𝑚))‘𝑛) = (𝐵𝑛))
3025, 29syl 17 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ0 ↦ (𝐵𝑚))‘𝑛) = (𝐵𝑛))
31 nnz 12342 . . . . . . . . 9 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
32 rpexpcl 13801 . . . . . . . . 9 ((𝐵 ∈ ℝ+𝑛 ∈ ℤ) → (𝐵𝑛) ∈ ℝ+)
333, 31, 32syl2an 596 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝐵𝑛) ∈ ℝ+)
3433rpcnd 12774 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐵𝑛) ∈ ℂ)
3530, 34eqeltrd 2839 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ0 ↦ (𝐵𝑚))‘𝑛) ∈ ℂ)
3620adantr 481 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝐴 / (1 − 𝐵)) ∈ ℂ)
3734, 36mulcomd 10996 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((𝐵𝑛) · (𝐴 / (1 − 𝐵))) = ((𝐴 / (1 − 𝐵)) · (𝐵𝑛)))
3826oveq1d 7290 . . . . . . . . 9 (𝑚 = 𝑛 → ((𝐵𝑚) · (𝐴 / (1 − 𝐵))) = ((𝐵𝑛) · (𝐴 / (1 − 𝐵))))
39 eqid 2738 . . . . . . . . 9 (𝑚 ∈ ℕ ↦ ((𝐵𝑚) · (𝐴 / (1 − 𝐵)))) = (𝑚 ∈ ℕ ↦ ((𝐵𝑚) · (𝐴 / (1 − 𝐵))))
40 ovex 7308 . . . . . . . . 9 ((𝐵𝑛) · (𝐴 / (1 − 𝐵))) ∈ V
4138, 39, 40fvmpt 6875 . . . . . . . 8 (𝑛 ∈ ℕ → ((𝑚 ∈ ℕ ↦ ((𝐵𝑚) · (𝐴 / (1 − 𝐵))))‘𝑛) = ((𝐵𝑛) · (𝐴 / (1 − 𝐵))))
4241adantl 482 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((𝐵𝑚) · (𝐴 / (1 − 𝐵))))‘𝑛) = ((𝐵𝑛) · (𝐴 / (1 − 𝐵))))
4330oveq2d 7291 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((𝐴 / (1 − 𝐵)) · ((𝑚 ∈ ℕ0 ↦ (𝐵𝑚))‘𝑛)) = ((𝐴 / (1 − 𝐵)) · (𝐵𝑛)))
4437, 42, 433eqtr4d 2788 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((𝐵𝑚) · (𝐴 / (1 − 𝐵))))‘𝑛) = ((𝐴 / (1 − 𝐵)) · ((𝑚 ∈ ℕ0 ↦ (𝐵𝑚))‘𝑛)))
451, 2, 10, 20, 23, 35, 44climmulc2 15346 . . . . 5 (𝜑 → (𝑚 ∈ ℕ ↦ ((𝐵𝑚) · (𝐴 / (1 − 𝐵)))) ⇝ ((𝐴 / (1 − 𝐵)) · 0))
4620mul01d 11174 . . . . 5 (𝜑 → ((𝐴 / (1 − 𝐵)) · 0) = 0)
4745, 46breqtrd 5100 . . . 4 (𝜑 → (𝑚 ∈ ℕ ↦ ((𝐵𝑚) · (𝐴 / (1 − 𝐵)))) ⇝ 0)
4833rpred 12772 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐵𝑛) ∈ ℝ)
4919adantr 481 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐴 / (1 − 𝐵)) ∈ ℝ)
5048, 49remulcld 11005 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝐵𝑛) · (𝐴 / (1 − 𝐵))) ∈ ℝ)
5150recnd 11003 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝐵𝑛) · (𝐴 / (1 − 𝐵))) ∈ ℂ)
521, 2, 23, 42, 51clim0c 15216 . . . 4 (𝜑 → ((𝑚 ∈ ℕ ↦ ((𝐵𝑚) · (𝐴 / (1 − 𝐵)))) ⇝ 0 ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗)(abs‘((𝐵𝑛) · (𝐴 / (1 − 𝐵)))) < 𝑥))
5347, 52mpbid 231 . . 3 (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗)(abs‘((𝐵𝑛) · (𝐴 / (1 − 𝐵)))) < 𝑥)
54 nnz 12342 . . . . . . . 8 (𝑗 ∈ ℕ → 𝑗 ∈ ℤ)
5554adantl 482 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℤ)
56 uzid 12597 . . . . . . 7 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
57 oveq2 7283 . . . . . . . . . 10 (𝑛 = 𝑗 → (𝐵𝑛) = (𝐵𝑗))
5857fvoveq1d 7297 . . . . . . . . 9 (𝑛 = 𝑗 → (abs‘((𝐵𝑛) · (𝐴 / (1 − 𝐵)))) = (abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))))
5958breq1d 5084 . . . . . . . 8 (𝑛 = 𝑗 → ((abs‘((𝐵𝑛) · (𝐴 / (1 − 𝐵)))) < 𝑥 ↔ (abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))) < 𝑥))
6059rspcv 3557 . . . . . . 7 (𝑗 ∈ (ℤ𝑗) → (∀𝑛 ∈ (ℤ𝑗)(abs‘((𝐵𝑛) · (𝐴 / (1 − 𝐵)))) < 𝑥 → (abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))) < 𝑥))
6155, 56, 603syl 18 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (∀𝑛 ∈ (ℤ𝑗)(abs‘((𝐵𝑛) · (𝐴 / (1 − 𝐵)))) < 𝑥 → (abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))) < 𝑥))
62 lmclim2.2 . . . . . . . . . . . . 13 (𝜑𝐷 ∈ (Met‘𝑋))
6362adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → 𝐷 ∈ (Met‘𝑋))
64 lmclim2.3 . . . . . . . . . . . . 13 (𝜑𝐹:ℕ⟶𝑋)
65 simpl 483 . . . . . . . . . . . . 13 ((𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗)) → 𝑗 ∈ ℕ)
66 ffvelrn 6959 . . . . . . . . . . . . 13 ((𝐹:ℕ⟶𝑋𝑗 ∈ ℕ) → (𝐹𝑗) ∈ 𝑋)
6764, 65, 66syl2an 596 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → (𝐹𝑗) ∈ 𝑋)
68 eluznn 12658 . . . . . . . . . . . . 13 ((𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗)) → 𝑛 ∈ ℕ)
69 ffvelrn 6959 . . . . . . . . . . . . 13 ((𝐹:ℕ⟶𝑋𝑛 ∈ ℕ) → (𝐹𝑛) ∈ 𝑋)
7064, 68, 69syl2an 596 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → (𝐹𝑛) ∈ 𝑋)
71 metcl 23485 . . . . . . . . . . . 12 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹𝑗) ∈ 𝑋 ∧ (𝐹𝑛) ∈ 𝑋) → ((𝐹𝑗)𝐷(𝐹𝑛)) ∈ ℝ)
7263, 67, 70, 71syl3anc 1370 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → ((𝐹𝑗)𝐷(𝐹𝑛)) ∈ ℝ)
73 eqid 2738 . . . . . . . . . . . . 13 (ℤ𝑗) = (ℤ𝑗)
74 nnnn0 12240 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → 𝑗 ∈ ℕ0)
7574ad2antrl 725 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → 𝑗 ∈ ℕ0)
7675nn0zd 12424 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → 𝑗 ∈ ℤ)
77 oveq2 7283 . . . . . . . . . . . . . . . 16 (𝑚 = 𝑘 → (𝐵𝑚) = (𝐵𝑘))
7877oveq2d 7291 . . . . . . . . . . . . . . 15 (𝑚 = 𝑘 → (𝐴 · (𝐵𝑚)) = (𝐴 · (𝐵𝑘)))
79 eqid 2738 . . . . . . . . . . . . . . 15 (𝑚 ∈ (ℤ𝑗) ↦ (𝐴 · (𝐵𝑚))) = (𝑚 ∈ (ℤ𝑗) ↦ (𝐴 · (𝐵𝑚)))
80 ovex 7308 . . . . . . . . . . . . . . 15 (𝐴 · (𝐵𝑘)) ∈ V
8178, 79, 80fvmpt 6875 . . . . . . . . . . . . . 14 (𝑘 ∈ (ℤ𝑗) → ((𝑚 ∈ (ℤ𝑗) ↦ (𝐴 · (𝐵𝑚)))‘𝑘) = (𝐴 · (𝐵𝑘)))
8281adantl 482 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝑚 ∈ (ℤ𝑗) ↦ (𝐴 · (𝐵𝑚)))‘𝑘) = (𝐴 · (𝐵𝑘)))
8311ad2antrr 723 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝐴 ∈ ℝ)
845ad2antrr 723 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝐵 ∈ ℝ)
85 eluznn0 12657 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ ℕ0𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ0)
8675, 85sylan 580 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ0)
8784, 86reexpcld 13881 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐵𝑘) ∈ ℝ)
8883, 87remulcld 11005 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐴 · (𝐵𝑘)) ∈ ℝ)
8988recnd 11003 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐴 · (𝐵𝑘)) ∈ ℂ)
9011recnd 11003 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ ℂ)
9190adantr 481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → 𝐴 ∈ ℂ)
924adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → 𝐵 ∈ ℂ)
939adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → (abs‘𝐵) < 1)
94 eqid 2738 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ (ℤ𝑗) ↦ (𝐵𝑚)) = (𝑚 ∈ (ℤ𝑗) ↦ (𝐵𝑚))
95 ovex 7308 . . . . . . . . . . . . . . . . . 18 (𝐵𝑘) ∈ V
9677, 94, 95fvmpt 6875 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (ℤ𝑗) → ((𝑚 ∈ (ℤ𝑗) ↦ (𝐵𝑚))‘𝑘) = (𝐵𝑘))
9796adantl 482 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝑚 ∈ (ℤ𝑗) ↦ (𝐵𝑚))‘𝑘) = (𝐵𝑘))
9892, 93, 75, 97geolim2 15583 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → seq𝑗( + , (𝑚 ∈ (ℤ𝑗) ↦ (𝐵𝑚))) ⇝ ((𝐵𝑗) / (1 − 𝐵)))
9987recnd 11003 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐵𝑘) ∈ ℂ)
10097, 99eqeltrd 2839 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝑚 ∈ (ℤ𝑗) ↦ (𝐵𝑚))‘𝑘) ∈ ℂ)
10197oveq2d 7291 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐴 · ((𝑚 ∈ (ℤ𝑗) ↦ (𝐵𝑚))‘𝑘)) = (𝐴 · (𝐵𝑘)))
10282, 101eqtr4d 2781 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝑚 ∈ (ℤ𝑗) ↦ (𝐴 · (𝐵𝑚)))‘𝑘) = (𝐴 · ((𝑚 ∈ (ℤ𝑗) ↦ (𝐵𝑚))‘𝑘)))
10373, 76, 91, 98, 100, 102isermulc2 15369 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → seq𝑗( + , (𝑚 ∈ (ℤ𝑗) ↦ (𝐴 · (𝐵𝑚)))) ⇝ (𝐴 · ((𝐵𝑗) / (1 − 𝐵))))
1043adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → 𝐵 ∈ ℝ+)
105104, 76rpexpcld 13962 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → (𝐵𝑗) ∈ ℝ+)
106105rpcnd 12774 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → (𝐵𝑗) ∈ ℂ)
10714recnd 11003 . . . . . . . . . . . . . . . 16 (𝜑 → (1 − 𝐵) ∈ ℂ)
108107adantr 481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → (1 − 𝐵) ∈ ℂ)
10918rpne0d 12777 . . . . . . . . . . . . . . . 16 (𝜑 → (1 − 𝐵) ≠ 0)
110109adantr 481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → (1 − 𝐵) ≠ 0)
11191, 106, 108, 110div12d 11787 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → (𝐴 · ((𝐵𝑗) / (1 − 𝐵))) = ((𝐵𝑗) · (𝐴 / (1 − 𝐵))))
112103, 111breqtrd 5100 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → seq𝑗( + , (𝑚 ∈ (ℤ𝑗) ↦ (𝐴 · (𝐵𝑚)))) ⇝ ((𝐵𝑗) · (𝐴 / (1 − 𝐵))))
11373, 76, 82, 89, 112isumclim 15469 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (ℤ𝑗)(𝐴 · (𝐵𝑘)) = ((𝐵𝑗) · (𝐴 / (1 − 𝐵))))
114 seqex 13723 . . . . . . . . . . . . . . 15 seq𝑗( + , (𝑚 ∈ (ℤ𝑗) ↦ (𝐴 · (𝐵𝑚)))) ∈ V
115 ovex 7308 . . . . . . . . . . . . . . 15 (𝐴 · ((𝐵𝑗) / (1 − 𝐵))) ∈ V
116114, 115breldm 5817 . . . . . . . . . . . . . 14 (seq𝑗( + , (𝑚 ∈ (ℤ𝑗) ↦ (𝐴 · (𝐵𝑚)))) ⇝ (𝐴 · ((𝐵𝑗) / (1 − 𝐵))) → seq𝑗( + , (𝑚 ∈ (ℤ𝑗) ↦ (𝐴 · (𝐵𝑚)))) ∈ dom ⇝ )
117103, 116syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → seq𝑗( + , (𝑚 ∈ (ℤ𝑗) ↦ (𝐴 · (𝐵𝑚)))) ∈ dom ⇝ )
11873, 76, 82, 88, 117isumrecl 15477 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (ℤ𝑗)(𝐴 · (𝐵𝑘)) ∈ ℝ)
119113, 118eqeltrrd 2840 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → ((𝐵𝑗) · (𝐴 / (1 − 𝐵))) ∈ ℝ)
120119recnd 11003 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → ((𝐵𝑗) · (𝐴 / (1 − 𝐵))) ∈ ℂ)
121120abscld 15148 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → (abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))) ∈ ℝ)
122 fzfid 13693 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → (𝑗...(𝑛 − 1)) ∈ Fin)
123 simpll 764 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑗...(𝑛 − 1))) → 𝜑)
124 elfzuz 13252 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (𝑗...(𝑛 − 1)) → 𝑘 ∈ (ℤ𝑗))
125 simprl 768 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → 𝑗 ∈ ℕ)
126 eluznn 12658 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
127125, 126sylan 580 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
128124, 127sylan2 593 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑗...(𝑛 − 1))) → 𝑘 ∈ ℕ)
12962adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ) → 𝐷 ∈ (Met‘𝑋))
13064ffvelrnda 6961 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ 𝑋)
131 peano2nn 11985 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
132 ffvelrn 6959 . . . . . . . . . . . . . . . . 17 ((𝐹:ℕ⟶𝑋 ∧ (𝑘 + 1) ∈ ℕ) → (𝐹‘(𝑘 + 1)) ∈ 𝑋)
13364, 131, 132syl2an 596 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ∈ 𝑋)
134 metcl 23485 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹𝑘) ∈ 𝑋 ∧ (𝐹‘(𝑘 + 1)) ∈ 𝑋) → ((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) ∈ ℝ)
135129, 130, 133, 134syl3anc 1370 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → ((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) ∈ ℝ)
136123, 128, 135syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑗...(𝑛 − 1))) → ((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) ∈ ℝ)
137122, 136fsumrecl 15446 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (𝑗...(𝑛 − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) ∈ ℝ)
138 simprr 770 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → 𝑛 ∈ (ℤ𝑗))
139 elfzuz 13252 . . . . . . . . . . . . . . 15 (𝑘 ∈ (𝑗...𝑛) → 𝑘 ∈ (ℤ𝑗))
140 simpll 764 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝜑)
141140, 127, 130syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ 𝑋)
142139, 141sylan2 593 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑗...𝑛)) → (𝐹𝑘) ∈ 𝑋)
14363, 138, 142mettrifi 35915 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → ((𝐹𝑗)𝐷(𝐹𝑛)) ≤ Σ𝑘 ∈ (𝑗...(𝑛 − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))))
144124, 88sylan2 593 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑗...(𝑛 − 1))) → (𝐴 · (𝐵𝑘)) ∈ ℝ)
145122, 144fsumrecl 15446 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (𝑗...(𝑛 − 1))(𝐴 · (𝐵𝑘)) ∈ ℝ)
146 geomcau.7 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ) → ((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (𝐵𝑘)))
147123, 128, 146syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑗...(𝑛 − 1))) → ((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (𝐵𝑘)))
148122, 136, 144, 147fsumle 15511 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (𝑗...(𝑛 − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) ≤ Σ𝑘 ∈ (𝑗...(𝑛 − 1))(𝐴 · (𝐵𝑘)))
149 fzssuz 13297 . . . . . . . . . . . . . . . 16 (𝑗...(𝑛 − 1)) ⊆ (ℤ𝑗)
150149a1i 11 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → (𝑗...(𝑛 − 1)) ⊆ (ℤ𝑗))
151 0red 10978 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℕ) → 0 ∈ ℝ)
152 nnz 12342 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
153 rpexpcl 13801 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ ℝ+𝑘 ∈ ℤ) → (𝐵𝑘) ∈ ℝ+)
1543, 152, 153syl2an 596 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ ℕ) → (𝐵𝑘) ∈ ℝ+)
155135, 154rerpdivcld 12803 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℕ) → (((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) / (𝐵𝑘)) ∈ ℝ)
15611adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ ℝ)
157 metge0 23498 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹𝑘) ∈ 𝑋 ∧ (𝐹‘(𝑘 + 1)) ∈ 𝑋) → 0 ≤ ((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))))
158129, 130, 133, 157syl3anc 1370 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ ℕ) → 0 ≤ ((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))))
159135, 154, 158divge0d 12812 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℕ) → 0 ≤ (((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) / (𝐵𝑘)))
160135, 156, 154ledivmul2d 12826 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ ℕ) → ((((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) / (𝐵𝑘)) ≤ 𝐴 ↔ ((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (𝐵𝑘))))
161146, 160mpbird 256 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℕ) → (((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) / (𝐵𝑘)) ≤ 𝐴)
162151, 155, 156, 159, 161letrd 11132 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ℕ) → 0 ≤ 𝐴)
163140, 127, 162syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → 0 ≤ 𝐴)
164140, 127, 154syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐵𝑘) ∈ ℝ+)
165164rpge0d 12776 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → 0 ≤ (𝐵𝑘))
16683, 87, 163, 165mulge0d 11552 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → 0 ≤ (𝐴 · (𝐵𝑘)))
16773, 76, 122, 150, 82, 88, 166, 117isumless 15557 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (𝑗...(𝑛 − 1))(𝐴 · (𝐵𝑘)) ≤ Σ𝑘 ∈ (ℤ𝑗)(𝐴 · (𝐵𝑘)))
168137, 145, 118, 148, 167letrd 11132 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (𝑗...(𝑛 − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) ≤ Σ𝑘 ∈ (ℤ𝑗)(𝐴 · (𝐵𝑘)))
16972, 137, 118, 143, 168letrd 11132 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → ((𝐹𝑗)𝐷(𝐹𝑛)) ≤ Σ𝑘 ∈ (ℤ𝑗)(𝐴 · (𝐵𝑘)))
170169, 113breqtrd 5100 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → ((𝐹𝑗)𝐷(𝐹𝑛)) ≤ ((𝐵𝑗) · (𝐴 / (1 − 𝐵))))
171119leabsd 15126 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → ((𝐵𝑗) · (𝐴 / (1 − 𝐵))) ≤ (abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))))
17272, 119, 121, 170, 171letrd 11132 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → ((𝐹𝑗)𝐷(𝐹𝑛)) ≤ (abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))))
173172adantlr 712 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → ((𝐹𝑗)𝐷(𝐹𝑛)) ≤ (abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))))
17472adantlr 712 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → ((𝐹𝑗)𝐷(𝐹𝑛)) ∈ ℝ)
175121adantlr 712 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → (abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))) ∈ ℝ)
176 rpre 12738 . . . . . . . . . . 11 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
177176ad2antlr 724 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → 𝑥 ∈ ℝ)
178 lelttr 11065 . . . . . . . . . 10 ((((𝐹𝑗)𝐷(𝐹𝑛)) ∈ ℝ ∧ (abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((((𝐹𝑗)𝐷(𝐹𝑛)) ≤ (abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))) ∧ (abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))) < 𝑥) → ((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥))
179174, 175, 177, 178syl3anc 1370 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → ((((𝐹𝑗)𝐷(𝐹𝑛)) ≤ (abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))) ∧ (abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))) < 𝑥) → ((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥))
180173, 179mpand 692 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → ((abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))) < 𝑥 → ((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥))
181180anassrs 468 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (ℤ𝑗)) → ((abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))) < 𝑥 → ((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥))
182181ralrimdva 3106 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → ((abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))) < 𝑥 → ∀𝑛 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥))
18361, 182syld 47 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (∀𝑛 ∈ (ℤ𝑗)(abs‘((𝐵𝑛) · (𝐴 / (1 − 𝐵)))) < 𝑥 → ∀𝑛 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥))
184183reximdva 3203 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (∃𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗)(abs‘((𝐵𝑛) · (𝐴 / (1 − 𝐵)))) < 𝑥 → ∃𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥))
185184ralimdva 3108 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗)(abs‘((𝐵𝑛) · (𝐴 / (1 − 𝐵)))) < 𝑥 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥))
18653, 185mpd 15 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥)
187 metxmet 23487 . . . 4 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
18862, 187syl 17 . . 3 (𝜑𝐷 ∈ (∞Met‘𝑋))
189 eqidd 2739 . . 3 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) = (𝐹𝑛))
190 eqidd 2739 . . 3 ((𝜑𝑗 ∈ ℕ) → (𝐹𝑗) = (𝐹𝑗))
1911, 188, 2, 189, 190, 64iscauf 24444 . 2 (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥))
192186, 191mpbird 256 1 (𝜑𝐹 ∈ (Cau‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  Vcvv 3432  wss 3887   class class class wbr 5074  cmpt 5157  dom cdm 5589  wf 6429  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876   < clt 11009  cle 11010  cmin 11205   / cdiv 11632  cn 11973  0cn0 12233  cz 12319  cuz 12582  +crp 12730  ...cfz 13239  seqcseq 13721  cexp 13782  abscabs 14945  cli 15193  Σcsu 15397  ∞Metcxmet 20582  Metcmet 20583  Cauccau 24417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ico 13085  df-fz 13240  df-fzo 13383  df-fl 13512  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-rlim 15198  df-sum 15398  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-cau 24420
This theorem is referenced by:  bfplem1  35980
  Copyright terms: Public domain W3C validator