Step | Hyp | Ref
| Expression |
1 | | nnuz 12621 |
. . . . . 6
⊢ ℕ =
(ℤ≥‘1) |
2 | | 1zzd 12351 |
. . . . . 6
⊢ (𝜑 → 1 ∈
ℤ) |
3 | | geomcau.5 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈
ℝ+) |
4 | 3 | rpcnd 12774 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ ℂ) |
5 | 3 | rpred 12772 |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 ∈ ℝ) |
6 | 3 | rpge0d 12776 |
. . . . . . . . 9
⊢ (𝜑 → 0 ≤ 𝐵) |
7 | 5, 6 | absidd 15134 |
. . . . . . . 8
⊢ (𝜑 → (abs‘𝐵) = 𝐵) |
8 | | geomcau.6 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 < 1) |
9 | 7, 8 | eqbrtrd 5096 |
. . . . . . 7
⊢ (𝜑 → (abs‘𝐵) < 1) |
10 | 4, 9 | expcnv 15576 |
. . . . . 6
⊢ (𝜑 → (𝑚 ∈ ℕ0 ↦ (𝐵↑𝑚)) ⇝ 0) |
11 | | geomcau.4 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ ℝ) |
12 | | 1re 10975 |
. . . . . . . . . 10
⊢ 1 ∈
ℝ |
13 | | resubcl 11285 |
. . . . . . . . . 10
⊢ ((1
∈ ℝ ∧ 𝐵
∈ ℝ) → (1 − 𝐵) ∈ ℝ) |
14 | 12, 5, 13 | sylancr 587 |
. . . . . . . . 9
⊢ (𝜑 → (1 − 𝐵) ∈
ℝ) |
15 | | posdif 11468 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ ℝ ∧ 1 ∈
ℝ) → (𝐵 < 1
↔ 0 < (1 − 𝐵))) |
16 | 5, 12, 15 | sylancl 586 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐵 < 1 ↔ 0 < (1 − 𝐵))) |
17 | 8, 16 | mpbid 231 |
. . . . . . . . 9
⊢ (𝜑 → 0 < (1 − 𝐵)) |
18 | 14, 17 | elrpd 12769 |
. . . . . . . 8
⊢ (𝜑 → (1 − 𝐵) ∈
ℝ+) |
19 | 11, 18 | rerpdivcld 12803 |
. . . . . . 7
⊢ (𝜑 → (𝐴 / (1 − 𝐵)) ∈ ℝ) |
20 | 19 | recnd 11003 |
. . . . . 6
⊢ (𝜑 → (𝐴 / (1 − 𝐵)) ∈ ℂ) |
21 | | nnex 11979 |
. . . . . . . 8
⊢ ℕ
∈ V |
22 | 21 | mptex 7099 |
. . . . . . 7
⊢ (𝑚 ∈ ℕ ↦ ((𝐵↑𝑚) · (𝐴 / (1 − 𝐵)))) ∈ V |
23 | 22 | a1i 11 |
. . . . . 6
⊢ (𝜑 → (𝑚 ∈ ℕ ↦ ((𝐵↑𝑚) · (𝐴 / (1 − 𝐵)))) ∈ V) |
24 | | nnnn0 12240 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℕ0) |
25 | 24 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0) |
26 | | oveq2 7283 |
. . . . . . . . 9
⊢ (𝑚 = 𝑛 → (𝐵↑𝑚) = (𝐵↑𝑛)) |
27 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝑚 ∈ ℕ0
↦ (𝐵↑𝑚)) = (𝑚 ∈ ℕ0 ↦ (𝐵↑𝑚)) |
28 | | ovex 7308 |
. . . . . . . . 9
⊢ (𝐵↑𝑛) ∈ V |
29 | 26, 27, 28 | fvmpt 6875 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ0
→ ((𝑚 ∈
ℕ0 ↦ (𝐵↑𝑚))‘𝑛) = (𝐵↑𝑛)) |
30 | 25, 29 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ0 ↦ (𝐵↑𝑚))‘𝑛) = (𝐵↑𝑛)) |
31 | | nnz 12342 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℤ) |
32 | | rpexpcl 13801 |
. . . . . . . . 9
⊢ ((𝐵 ∈ ℝ+
∧ 𝑛 ∈ ℤ)
→ (𝐵↑𝑛) ∈
ℝ+) |
33 | 3, 31, 32 | syl2an 596 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐵↑𝑛) ∈
ℝ+) |
34 | 33 | rpcnd 12774 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐵↑𝑛) ∈ ℂ) |
35 | 30, 34 | eqeltrd 2839 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ0 ↦ (𝐵↑𝑚))‘𝑛) ∈ ℂ) |
36 | 20 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐴 / (1 − 𝐵)) ∈ ℂ) |
37 | 34, 36 | mulcomd 10996 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐵↑𝑛) · (𝐴 / (1 − 𝐵))) = ((𝐴 / (1 − 𝐵)) · (𝐵↑𝑛))) |
38 | 26 | oveq1d 7290 |
. . . . . . . . 9
⊢ (𝑚 = 𝑛 → ((𝐵↑𝑚) · (𝐴 / (1 − 𝐵))) = ((𝐵↑𝑛) · (𝐴 / (1 − 𝐵)))) |
39 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝑚 ∈ ℕ ↦ ((𝐵↑𝑚) · (𝐴 / (1 − 𝐵)))) = (𝑚 ∈ ℕ ↦ ((𝐵↑𝑚) · (𝐴 / (1 − 𝐵)))) |
40 | | ovex 7308 |
. . . . . . . . 9
⊢ ((𝐵↑𝑛) · (𝐴 / (1 − 𝐵))) ∈ V |
41 | 38, 39, 40 | fvmpt 6875 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ → ((𝑚 ∈ ℕ ↦ ((𝐵↑𝑚) · (𝐴 / (1 − 𝐵))))‘𝑛) = ((𝐵↑𝑛) · (𝐴 / (1 − 𝐵)))) |
42 | 41 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((𝐵↑𝑚) · (𝐴 / (1 − 𝐵))))‘𝑛) = ((𝐵↑𝑛) · (𝐴 / (1 − 𝐵)))) |
43 | 30 | oveq2d 7291 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐴 / (1 − 𝐵)) · ((𝑚 ∈ ℕ0 ↦ (𝐵↑𝑚))‘𝑛)) = ((𝐴 / (1 − 𝐵)) · (𝐵↑𝑛))) |
44 | 37, 42, 43 | 3eqtr4d 2788 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((𝐵↑𝑚) · (𝐴 / (1 − 𝐵))))‘𝑛) = ((𝐴 / (1 − 𝐵)) · ((𝑚 ∈ ℕ0 ↦ (𝐵↑𝑚))‘𝑛))) |
45 | 1, 2, 10, 20, 23, 35, 44 | climmulc2 15346 |
. . . . 5
⊢ (𝜑 → (𝑚 ∈ ℕ ↦ ((𝐵↑𝑚) · (𝐴 / (1 − 𝐵)))) ⇝ ((𝐴 / (1 − 𝐵)) · 0)) |
46 | 20 | mul01d 11174 |
. . . . 5
⊢ (𝜑 → ((𝐴 / (1 − 𝐵)) · 0) = 0) |
47 | 45, 46 | breqtrd 5100 |
. . . 4
⊢ (𝜑 → (𝑚 ∈ ℕ ↦ ((𝐵↑𝑚) · (𝐴 / (1 − 𝐵)))) ⇝ 0) |
48 | 33 | rpred 12772 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐵↑𝑛) ∈ ℝ) |
49 | 19 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐴 / (1 − 𝐵)) ∈ ℝ) |
50 | 48, 49 | remulcld 11005 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐵↑𝑛) · (𝐴 / (1 − 𝐵))) ∈ ℝ) |
51 | 50 | recnd 11003 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐵↑𝑛) · (𝐴 / (1 − 𝐵))) ∈ ℂ) |
52 | 1, 2, 23, 42, 51 | clim0c 15216 |
. . . 4
⊢ (𝜑 → ((𝑚 ∈ ℕ ↦ ((𝐵↑𝑚) · (𝐴 / (1 − 𝐵)))) ⇝ 0 ↔ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ ℕ
∀𝑛 ∈
(ℤ≥‘𝑗)(abs‘((𝐵↑𝑛) · (𝐴 / (1 − 𝐵)))) < 𝑥)) |
53 | 47, 52 | mpbid 231 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑛 ∈
(ℤ≥‘𝑗)(abs‘((𝐵↑𝑛) · (𝐴 / (1 − 𝐵)))) < 𝑥) |
54 | | nnz 12342 |
. . . . . . . 8
⊢ (𝑗 ∈ ℕ → 𝑗 ∈
ℤ) |
55 | 54 | adantl 482 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈
ℤ) |
56 | | uzid 12597 |
. . . . . . 7
⊢ (𝑗 ∈ ℤ → 𝑗 ∈
(ℤ≥‘𝑗)) |
57 | | oveq2 7283 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑗 → (𝐵↑𝑛) = (𝐵↑𝑗)) |
58 | 57 | fvoveq1d 7297 |
. . . . . . . . 9
⊢ (𝑛 = 𝑗 → (abs‘((𝐵↑𝑛) · (𝐴 / (1 − 𝐵)))) = (abs‘((𝐵↑𝑗) · (𝐴 / (1 − 𝐵))))) |
59 | 58 | breq1d 5084 |
. . . . . . . 8
⊢ (𝑛 = 𝑗 → ((abs‘((𝐵↑𝑛) · (𝐴 / (1 − 𝐵)))) < 𝑥 ↔ (abs‘((𝐵↑𝑗) · (𝐴 / (1 − 𝐵)))) < 𝑥)) |
60 | 59 | rspcv 3557 |
. . . . . . 7
⊢ (𝑗 ∈
(ℤ≥‘𝑗) → (∀𝑛 ∈ (ℤ≥‘𝑗)(abs‘((𝐵↑𝑛) · (𝐴 / (1 − 𝐵)))) < 𝑥 → (abs‘((𝐵↑𝑗) · (𝐴 / (1 − 𝐵)))) < 𝑥)) |
61 | 55, 56, 60 | 3syl 18 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) →
(∀𝑛 ∈
(ℤ≥‘𝑗)(abs‘((𝐵↑𝑛) · (𝐴 / (1 − 𝐵)))) < 𝑥 → (abs‘((𝐵↑𝑗) · (𝐴 / (1 − 𝐵)))) < 𝑥)) |
62 | | lmclim2.2 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) |
63 | 62 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → 𝐷 ∈ (Met‘𝑋)) |
64 | | lmclim2.3 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹:ℕ⟶𝑋) |
65 | | simpl 483 |
. . . . . . . . . . . . 13
⊢ ((𝑗 ∈ ℕ ∧ 𝑛 ∈
(ℤ≥‘𝑗)) → 𝑗 ∈ ℕ) |
66 | | ffvelrn 6959 |
. . . . . . . . . . . . 13
⊢ ((𝐹:ℕ⟶𝑋 ∧ 𝑗 ∈ ℕ) → (𝐹‘𝑗) ∈ 𝑋) |
67 | 64, 65, 66 | syl2an 596 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (𝐹‘𝑗) ∈ 𝑋) |
68 | | eluznn 12658 |
. . . . . . . . . . . . 13
⊢ ((𝑗 ∈ ℕ ∧ 𝑛 ∈
(ℤ≥‘𝑗)) → 𝑛 ∈ ℕ) |
69 | | ffvelrn 6959 |
. . . . . . . . . . . . 13
⊢ ((𝐹:ℕ⟶𝑋 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∈ 𝑋) |
70 | 64, 68, 69 | syl2an 596 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (𝐹‘𝑛) ∈ 𝑋) |
71 | | metcl 23485 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹‘𝑗) ∈ 𝑋 ∧ (𝐹‘𝑛) ∈ 𝑋) → ((𝐹‘𝑗)𝐷(𝐹‘𝑛)) ∈ ℝ) |
72 | 63, 67, 70, 71 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → ((𝐹‘𝑗)𝐷(𝐹‘𝑛)) ∈ ℝ) |
73 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(ℤ≥‘𝑗) = (ℤ≥‘𝑗) |
74 | | nnnn0 12240 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ ℕ → 𝑗 ∈
ℕ0) |
75 | 74 | ad2antrl 725 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → 𝑗 ∈ ℕ0) |
76 | 75 | nn0zd 12424 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → 𝑗 ∈ ℤ) |
77 | | oveq2 7283 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 = 𝑘 → (𝐵↑𝑚) = (𝐵↑𝑘)) |
78 | 77 | oveq2d 7291 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = 𝑘 → (𝐴 · (𝐵↑𝑚)) = (𝐴 · (𝐵↑𝑘))) |
79 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 ∈
(ℤ≥‘𝑗) ↦ (𝐴 · (𝐵↑𝑚))) = (𝑚 ∈ (ℤ≥‘𝑗) ↦ (𝐴 · (𝐵↑𝑚))) |
80 | | ovex 7308 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 · (𝐵↑𝑘)) ∈ V |
81 | 78, 79, 80 | fvmpt 6875 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈
(ℤ≥‘𝑗) → ((𝑚 ∈ (ℤ≥‘𝑗) ↦ (𝐴 · (𝐵↑𝑚)))‘𝑘) = (𝐴 · (𝐵↑𝑘))) |
82 | 81 | adantl 482 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((𝑚 ∈ (ℤ≥‘𝑗) ↦ (𝐴 · (𝐵↑𝑚)))‘𝑘) = (𝐴 · (𝐵↑𝑘))) |
83 | 11 | ad2antrr 723 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝐴 ∈ ℝ) |
84 | 5 | ad2antrr 723 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝐵 ∈ ℝ) |
85 | | eluznn0 12657 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑗 ∈ ℕ0
∧ 𝑘 ∈
(ℤ≥‘𝑗)) → 𝑘 ∈ ℕ0) |
86 | 75, 85 | sylan 580 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ ℕ0) |
87 | 84, 86 | reexpcld 13881 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝐵↑𝑘) ∈ ℝ) |
88 | 83, 87 | remulcld 11005 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝐴 · (𝐵↑𝑘)) ∈ ℝ) |
89 | 88 | recnd 11003 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝐴 · (𝐵↑𝑘)) ∈ ℂ) |
90 | 11 | recnd 11003 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐴 ∈ ℂ) |
91 | 90 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → 𝐴 ∈ ℂ) |
92 | 4 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → 𝐵 ∈ ℂ) |
93 | 9 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (abs‘𝐵) < 1) |
94 | | eqid 2738 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 ∈
(ℤ≥‘𝑗) ↦ (𝐵↑𝑚)) = (𝑚 ∈ (ℤ≥‘𝑗) ↦ (𝐵↑𝑚)) |
95 | | ovex 7308 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐵↑𝑘) ∈ V |
96 | 77, 94, 95 | fvmpt 6875 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈
(ℤ≥‘𝑗) → ((𝑚 ∈ (ℤ≥‘𝑗) ↦ (𝐵↑𝑚))‘𝑘) = (𝐵↑𝑘)) |
97 | 96 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((𝑚 ∈ (ℤ≥‘𝑗) ↦ (𝐵↑𝑚))‘𝑘) = (𝐵↑𝑘)) |
98 | 92, 93, 75, 97 | geolim2 15583 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → seq𝑗( + , (𝑚 ∈ (ℤ≥‘𝑗) ↦ (𝐵↑𝑚))) ⇝ ((𝐵↑𝑗) / (1 − 𝐵))) |
99 | 87 | recnd 11003 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝐵↑𝑘) ∈ ℂ) |
100 | 97, 99 | eqeltrd 2839 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((𝑚 ∈ (ℤ≥‘𝑗) ↦ (𝐵↑𝑚))‘𝑘) ∈ ℂ) |
101 | 97 | oveq2d 7291 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝐴 · ((𝑚 ∈ (ℤ≥‘𝑗) ↦ (𝐵↑𝑚))‘𝑘)) = (𝐴 · (𝐵↑𝑘))) |
102 | 82, 101 | eqtr4d 2781 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((𝑚 ∈ (ℤ≥‘𝑗) ↦ (𝐴 · (𝐵↑𝑚)))‘𝑘) = (𝐴 · ((𝑚 ∈ (ℤ≥‘𝑗) ↦ (𝐵↑𝑚))‘𝑘))) |
103 | 73, 76, 91, 98, 100, 102 | isermulc2 15369 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → seq𝑗( + , (𝑚 ∈ (ℤ≥‘𝑗) ↦ (𝐴 · (𝐵↑𝑚)))) ⇝ (𝐴 · ((𝐵↑𝑗) / (1 − 𝐵)))) |
104 | 3 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → 𝐵 ∈
ℝ+) |
105 | 104, 76 | rpexpcld 13962 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (𝐵↑𝑗) ∈
ℝ+) |
106 | 105 | rpcnd 12774 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (𝐵↑𝑗) ∈ ℂ) |
107 | 14 | recnd 11003 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (1 − 𝐵) ∈
ℂ) |
108 | 107 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (1 − 𝐵) ∈
ℂ) |
109 | 18 | rpne0d 12777 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (1 − 𝐵) ≠ 0) |
110 | 109 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (1 − 𝐵) ≠ 0) |
111 | 91, 106, 108, 110 | div12d 11787 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (𝐴 · ((𝐵↑𝑗) / (1 − 𝐵))) = ((𝐵↑𝑗) · (𝐴 / (1 − 𝐵)))) |
112 | 103, 111 | breqtrd 5100 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → seq𝑗( + , (𝑚 ∈ (ℤ≥‘𝑗) ↦ (𝐴 · (𝐵↑𝑚)))) ⇝ ((𝐵↑𝑗) · (𝐴 / (1 − 𝐵)))) |
113 | 73, 76, 82, 89, 112 | isumclim 15469 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → Σ𝑘 ∈
(ℤ≥‘𝑗)(𝐴 · (𝐵↑𝑘)) = ((𝐵↑𝑗) · (𝐴 / (1 − 𝐵)))) |
114 | | seqex 13723 |
. . . . . . . . . . . . . . 15
⊢ seq𝑗( + , (𝑚 ∈ (ℤ≥‘𝑗) ↦ (𝐴 · (𝐵↑𝑚)))) ∈ V |
115 | | ovex 7308 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 · ((𝐵↑𝑗) / (1 − 𝐵))) ∈ V |
116 | 114, 115 | breldm 5817 |
. . . . . . . . . . . . . 14
⊢ (seq𝑗( + , (𝑚 ∈ (ℤ≥‘𝑗) ↦ (𝐴 · (𝐵↑𝑚)))) ⇝ (𝐴 · ((𝐵↑𝑗) / (1 − 𝐵))) → seq𝑗( + , (𝑚 ∈ (ℤ≥‘𝑗) ↦ (𝐴 · (𝐵↑𝑚)))) ∈ dom ⇝ ) |
117 | 103, 116 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → seq𝑗( + , (𝑚 ∈ (ℤ≥‘𝑗) ↦ (𝐴 · (𝐵↑𝑚)))) ∈ dom ⇝ ) |
118 | 73, 76, 82, 88, 117 | isumrecl 15477 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → Σ𝑘 ∈
(ℤ≥‘𝑗)(𝐴 · (𝐵↑𝑘)) ∈ ℝ) |
119 | 113, 118 | eqeltrrd 2840 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → ((𝐵↑𝑗) · (𝐴 / (1 − 𝐵))) ∈ ℝ) |
120 | 119 | recnd 11003 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → ((𝐵↑𝑗) · (𝐴 / (1 − 𝐵))) ∈ ℂ) |
121 | 120 | abscld 15148 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (abs‘((𝐵↑𝑗) · (𝐴 / (1 − 𝐵)))) ∈ ℝ) |
122 | | fzfid 13693 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (𝑗...(𝑛 − 1)) ∈ Fin) |
123 | | simpll 764 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (𝑗...(𝑛 − 1))) → 𝜑) |
124 | | elfzuz 13252 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ (𝑗...(𝑛 − 1)) → 𝑘 ∈ (ℤ≥‘𝑗)) |
125 | | simprl 768 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → 𝑗 ∈ ℕ) |
126 | | eluznn 12658 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑗 ∈ ℕ ∧ 𝑘 ∈
(ℤ≥‘𝑗)) → 𝑘 ∈ ℕ) |
127 | 125, 126 | sylan 580 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ ℕ) |
128 | 124, 127 | sylan2 593 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (𝑗...(𝑛 − 1))) → 𝑘 ∈ ℕ) |
129 | 62 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐷 ∈ (Met‘𝑋)) |
130 | 64 | ffvelrnda 6961 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ 𝑋) |
131 | | peano2nn 11985 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ ℕ → (𝑘 + 1) ∈
ℕ) |
132 | | ffvelrn 6959 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹:ℕ⟶𝑋 ∧ (𝑘 + 1) ∈ ℕ) → (𝐹‘(𝑘 + 1)) ∈ 𝑋) |
133 | 64, 131, 132 | syl2an 596 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ∈ 𝑋) |
134 | | metcl 23485 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ (𝐹‘(𝑘 + 1)) ∈ 𝑋) → ((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))) ∈ ℝ) |
135 | 129, 130,
133, 134 | syl3anc 1370 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))) ∈ ℝ) |
136 | 123, 128,
135 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (𝑗...(𝑛 − 1))) → ((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))) ∈ ℝ) |
137 | 122, 136 | fsumrecl 15446 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → Σ𝑘 ∈ (𝑗...(𝑛 − 1))((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))) ∈ ℝ) |
138 | | simprr 770 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → 𝑛 ∈ (ℤ≥‘𝑗)) |
139 | | elfzuz 13252 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (𝑗...𝑛) → 𝑘 ∈ (ℤ≥‘𝑗)) |
140 | | simpll 764 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝜑) |
141 | 140, 127,
130 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝐹‘𝑘) ∈ 𝑋) |
142 | 139, 141 | sylan2 593 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (𝑗...𝑛)) → (𝐹‘𝑘) ∈ 𝑋) |
143 | 63, 138, 142 | mettrifi 35915 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → ((𝐹‘𝑗)𝐷(𝐹‘𝑛)) ≤ Σ𝑘 ∈ (𝑗...(𝑛 − 1))((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1)))) |
144 | 124, 88 | sylan2 593 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (𝑗...(𝑛 − 1))) → (𝐴 · (𝐵↑𝑘)) ∈ ℝ) |
145 | 122, 144 | fsumrecl 15446 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → Σ𝑘 ∈ (𝑗...(𝑛 − 1))(𝐴 · (𝐵↑𝑘)) ∈ ℝ) |
146 | | geomcau.7 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (𝐵↑𝑘))) |
147 | 123, 128,
146 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (𝑗...(𝑛 − 1))) → ((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (𝐵↑𝑘))) |
148 | 122, 136,
144, 147 | fsumle 15511 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → Σ𝑘 ∈ (𝑗...(𝑛 − 1))((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))) ≤ Σ𝑘 ∈ (𝑗...(𝑛 − 1))(𝐴 · (𝐵↑𝑘))) |
149 | | fzssuz 13297 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗...(𝑛 − 1)) ⊆
(ℤ≥‘𝑗) |
150 | 149 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (𝑗...(𝑛 − 1)) ⊆
(ℤ≥‘𝑗)) |
151 | | 0red 10978 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 0 ∈
ℝ) |
152 | | nnz 12342 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℤ) |
153 | | rpexpcl 13801 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐵 ∈ ℝ+
∧ 𝑘 ∈ ℤ)
→ (𝐵↑𝑘) ∈
ℝ+) |
154 | 3, 152, 153 | syl2an 596 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐵↑𝑘) ∈
ℝ+) |
155 | 135, 154 | rerpdivcld 12803 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))) / (𝐵↑𝑘)) ∈ ℝ) |
156 | 11 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℝ) |
157 | | metge0 23498 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ (𝐹‘(𝑘 + 1)) ∈ 𝑋) → 0 ≤ ((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1)))) |
158 | 129, 130,
133, 157 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 0 ≤ ((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1)))) |
159 | 135, 154,
158 | divge0d 12812 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 0 ≤ (((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))) / (𝐵↑𝑘))) |
160 | 135, 156,
154 | ledivmul2d 12826 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))) / (𝐵↑𝑘)) ≤ 𝐴 ↔ ((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (𝐵↑𝑘)))) |
161 | 146, 160 | mpbird 256 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))) / (𝐵↑𝑘)) ≤ 𝐴) |
162 | 151, 155,
156, 159, 161 | letrd 11132 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 0 ≤ 𝐴) |
163 | 140, 127,
162 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 0 ≤ 𝐴) |
164 | 140, 127,
154 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝐵↑𝑘) ∈
ℝ+) |
165 | 164 | rpge0d 12776 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 0 ≤ (𝐵↑𝑘)) |
166 | 83, 87, 163, 165 | mulge0d 11552 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 0 ≤ (𝐴 · (𝐵↑𝑘))) |
167 | 73, 76, 122, 150, 82, 88, 166, 117 | isumless 15557 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → Σ𝑘 ∈ (𝑗...(𝑛 − 1))(𝐴 · (𝐵↑𝑘)) ≤ Σ𝑘 ∈ (ℤ≥‘𝑗)(𝐴 · (𝐵↑𝑘))) |
168 | 137, 145,
118, 148, 167 | letrd 11132 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → Σ𝑘 ∈ (𝑗...(𝑛 − 1))((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))) ≤ Σ𝑘 ∈ (ℤ≥‘𝑗)(𝐴 · (𝐵↑𝑘))) |
169 | 72, 137, 118, 143, 168 | letrd 11132 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → ((𝐹‘𝑗)𝐷(𝐹‘𝑛)) ≤ Σ𝑘 ∈ (ℤ≥‘𝑗)(𝐴 · (𝐵↑𝑘))) |
170 | 169, 113 | breqtrd 5100 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → ((𝐹‘𝑗)𝐷(𝐹‘𝑛)) ≤ ((𝐵↑𝑗) · (𝐴 / (1 − 𝐵)))) |
171 | 119 | leabsd 15126 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → ((𝐵↑𝑗) · (𝐴 / (1 − 𝐵))) ≤ (abs‘((𝐵↑𝑗) · (𝐴 / (1 − 𝐵))))) |
172 | 72, 119, 121, 170, 171 | letrd 11132 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → ((𝐹‘𝑗)𝐷(𝐹‘𝑛)) ≤ (abs‘((𝐵↑𝑗) · (𝐴 / (1 − 𝐵))))) |
173 | 172 | adantlr 712 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈
(ℤ≥‘𝑗))) → ((𝐹‘𝑗)𝐷(𝐹‘𝑛)) ≤ (abs‘((𝐵↑𝑗) · (𝐴 / (1 − 𝐵))))) |
174 | 72 | adantlr 712 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈
(ℤ≥‘𝑗))) → ((𝐹‘𝑗)𝐷(𝐹‘𝑛)) ∈ ℝ) |
175 | 121 | adantlr 712 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈
(ℤ≥‘𝑗))) → (abs‘((𝐵↑𝑗) · (𝐴 / (1 − 𝐵)))) ∈ ℝ) |
176 | | rpre 12738 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ∈
ℝ) |
177 | 176 | ad2antlr 724 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈
(ℤ≥‘𝑗))) → 𝑥 ∈ ℝ) |
178 | | lelttr 11065 |
. . . . . . . . . 10
⊢ ((((𝐹‘𝑗)𝐷(𝐹‘𝑛)) ∈ ℝ ∧ (abs‘((𝐵↑𝑗) · (𝐴 / (1 − 𝐵)))) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((((𝐹‘𝑗)𝐷(𝐹‘𝑛)) ≤ (abs‘((𝐵↑𝑗) · (𝐴 / (1 − 𝐵)))) ∧ (abs‘((𝐵↑𝑗) · (𝐴 / (1 − 𝐵)))) < 𝑥) → ((𝐹‘𝑗)𝐷(𝐹‘𝑛)) < 𝑥)) |
179 | 174, 175,
177, 178 | syl3anc 1370 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈
(ℤ≥‘𝑗))) → ((((𝐹‘𝑗)𝐷(𝐹‘𝑛)) ≤ (abs‘((𝐵↑𝑗) · (𝐴 / (1 − 𝐵)))) ∧ (abs‘((𝐵↑𝑗) · (𝐴 / (1 − 𝐵)))) < 𝑥) → ((𝐹‘𝑗)𝐷(𝐹‘𝑛)) < 𝑥)) |
180 | 173, 179 | mpand 692 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈
(ℤ≥‘𝑗))) → ((abs‘((𝐵↑𝑗) · (𝐴 / (1 − 𝐵)))) < 𝑥 → ((𝐹‘𝑗)𝐷(𝐹‘𝑛)) < 𝑥)) |
181 | 180 | anassrs 468 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈
(ℤ≥‘𝑗)) → ((abs‘((𝐵↑𝑗) · (𝐴 / (1 − 𝐵)))) < 𝑥 → ((𝐹‘𝑗)𝐷(𝐹‘𝑛)) < 𝑥)) |
182 | 181 | ralrimdva 3106 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) →
((abs‘((𝐵↑𝑗) · (𝐴 / (1 − 𝐵)))) < 𝑥 → ∀𝑛 ∈ (ℤ≥‘𝑗)((𝐹‘𝑗)𝐷(𝐹‘𝑛)) < 𝑥)) |
183 | 61, 182 | syld 47 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) →
(∀𝑛 ∈
(ℤ≥‘𝑗)(abs‘((𝐵↑𝑛) · (𝐴 / (1 − 𝐵)))) < 𝑥 → ∀𝑛 ∈ (ℤ≥‘𝑗)((𝐹‘𝑗)𝐷(𝐹‘𝑛)) < 𝑥)) |
184 | 183 | reximdva 3203 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(∃𝑗 ∈ ℕ
∀𝑛 ∈
(ℤ≥‘𝑗)(abs‘((𝐵↑𝑛) · (𝐴 / (1 − 𝐵)))) < 𝑥 → ∃𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ≥‘𝑗)((𝐹‘𝑗)𝐷(𝐹‘𝑛)) < 𝑥)) |
185 | 184 | ralimdva 3108 |
. . 3
⊢ (𝜑 → (∀𝑥 ∈ ℝ+
∃𝑗 ∈ ℕ
∀𝑛 ∈
(ℤ≥‘𝑗)(abs‘((𝐵↑𝑛) · (𝐴 / (1 − 𝐵)))) < 𝑥 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑛 ∈
(ℤ≥‘𝑗)((𝐹‘𝑗)𝐷(𝐹‘𝑛)) < 𝑥)) |
186 | 53, 185 | mpd 15 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑛 ∈
(ℤ≥‘𝑗)((𝐹‘𝑗)𝐷(𝐹‘𝑛)) < 𝑥) |
187 | | metxmet 23487 |
. . . 4
⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
188 | 62, 187 | syl 17 |
. . 3
⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
189 | | eqidd 2739 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) = (𝐹‘𝑛)) |
190 | | eqidd 2739 |
. . 3
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐹‘𝑗) = (𝐹‘𝑗)) |
191 | 1, 188, 2, 189, 190, 64 | iscauf 24444 |
. 2
⊢ (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑛 ∈
(ℤ≥‘𝑗)((𝐹‘𝑗)𝐷(𝐹‘𝑛)) < 𝑥)) |
192 | 186, 191 | mpbird 256 |
1
⊢ (𝜑 → 𝐹 ∈ (Cau‘𝐷)) |