Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  geomcau Structured version   Visualization version   GIF version

Theorem geomcau 37721
Description: If the distance between consecutive points in a sequence is bounded by a geometric sequence, then the sequence is Cauchy. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 5-Jun-2014.)
Hypotheses
Ref Expression
lmclim2.2 (𝜑𝐷 ∈ (Met‘𝑋))
lmclim2.3 (𝜑𝐹:ℕ⟶𝑋)
geomcau.4 (𝜑𝐴 ∈ ℝ)
geomcau.5 (𝜑𝐵 ∈ ℝ+)
geomcau.6 (𝜑𝐵 < 1)
geomcau.7 ((𝜑𝑘 ∈ ℕ) → ((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (𝐵𝑘)))
Assertion
Ref Expression
geomcau (𝜑𝐹 ∈ (Cau‘𝐷))
Distinct variable groups:   𝐷,𝑘   𝑘,𝐹   𝑘,𝑋   𝐴,𝑘   𝐵,𝑘   𝜑,𝑘

Proof of Theorem geomcau
Dummy variables 𝑗 𝑛 𝑥 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 12948 . . . . . 6 ℕ = (ℤ‘1)
2 1zzd 12676 . . . . . 6 (𝜑 → 1 ∈ ℤ)
3 geomcau.5 . . . . . . . 8 (𝜑𝐵 ∈ ℝ+)
43rpcnd 13103 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
53rpred 13101 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ)
63rpge0d 13105 . . . . . . . . 9 (𝜑 → 0 ≤ 𝐵)
75, 6absidd 15473 . . . . . . . 8 (𝜑 → (abs‘𝐵) = 𝐵)
8 geomcau.6 . . . . . . . 8 (𝜑𝐵 < 1)
97, 8eqbrtrd 5188 . . . . . . 7 (𝜑 → (abs‘𝐵) < 1)
104, 9expcnv 15914 . . . . . 6 (𝜑 → (𝑚 ∈ ℕ0 ↦ (𝐵𝑚)) ⇝ 0)
11 geomcau.4 . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
12 1re 11292 . . . . . . . . . 10 1 ∈ ℝ
13 resubcl 11602 . . . . . . . . . 10 ((1 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 − 𝐵) ∈ ℝ)
1412, 5, 13sylancr 586 . . . . . . . . 9 (𝜑 → (1 − 𝐵) ∈ ℝ)
15 posdif 11785 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐵 < 1 ↔ 0 < (1 − 𝐵)))
165, 12, 15sylancl 585 . . . . . . . . . 10 (𝜑 → (𝐵 < 1 ↔ 0 < (1 − 𝐵)))
178, 16mpbid 232 . . . . . . . . 9 (𝜑 → 0 < (1 − 𝐵))
1814, 17elrpd 13098 . . . . . . . 8 (𝜑 → (1 − 𝐵) ∈ ℝ+)
1911, 18rerpdivcld 13132 . . . . . . 7 (𝜑 → (𝐴 / (1 − 𝐵)) ∈ ℝ)
2019recnd 11320 . . . . . 6 (𝜑 → (𝐴 / (1 − 𝐵)) ∈ ℂ)
21 nnex 12301 . . . . . . . 8 ℕ ∈ V
2221mptex 7262 . . . . . . 7 (𝑚 ∈ ℕ ↦ ((𝐵𝑚) · (𝐴 / (1 − 𝐵)))) ∈ V
2322a1i 11 . . . . . 6 (𝜑 → (𝑚 ∈ ℕ ↦ ((𝐵𝑚) · (𝐴 / (1 − 𝐵)))) ∈ V)
24 nnnn0 12562 . . . . . . . . 9 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
2524adantl 481 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
26 oveq2 7458 . . . . . . . . 9 (𝑚 = 𝑛 → (𝐵𝑚) = (𝐵𝑛))
27 eqid 2740 . . . . . . . . 9 (𝑚 ∈ ℕ0 ↦ (𝐵𝑚)) = (𝑚 ∈ ℕ0 ↦ (𝐵𝑚))
28 ovex 7483 . . . . . . . . 9 (𝐵𝑛) ∈ V
2926, 27, 28fvmpt 7031 . . . . . . . 8 (𝑛 ∈ ℕ0 → ((𝑚 ∈ ℕ0 ↦ (𝐵𝑚))‘𝑛) = (𝐵𝑛))
3025, 29syl 17 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ0 ↦ (𝐵𝑚))‘𝑛) = (𝐵𝑛))
31 nnz 12662 . . . . . . . . 9 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
32 rpexpcl 14133 . . . . . . . . 9 ((𝐵 ∈ ℝ+𝑛 ∈ ℤ) → (𝐵𝑛) ∈ ℝ+)
333, 31, 32syl2an 595 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝐵𝑛) ∈ ℝ+)
3433rpcnd 13103 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐵𝑛) ∈ ℂ)
3530, 34eqeltrd 2844 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ0 ↦ (𝐵𝑚))‘𝑛) ∈ ℂ)
3620adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝐴 / (1 − 𝐵)) ∈ ℂ)
3734, 36mulcomd 11313 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((𝐵𝑛) · (𝐴 / (1 − 𝐵))) = ((𝐴 / (1 − 𝐵)) · (𝐵𝑛)))
3826oveq1d 7465 . . . . . . . . 9 (𝑚 = 𝑛 → ((𝐵𝑚) · (𝐴 / (1 − 𝐵))) = ((𝐵𝑛) · (𝐴 / (1 − 𝐵))))
39 eqid 2740 . . . . . . . . 9 (𝑚 ∈ ℕ ↦ ((𝐵𝑚) · (𝐴 / (1 − 𝐵)))) = (𝑚 ∈ ℕ ↦ ((𝐵𝑚) · (𝐴 / (1 − 𝐵))))
40 ovex 7483 . . . . . . . . 9 ((𝐵𝑛) · (𝐴 / (1 − 𝐵))) ∈ V
4138, 39, 40fvmpt 7031 . . . . . . . 8 (𝑛 ∈ ℕ → ((𝑚 ∈ ℕ ↦ ((𝐵𝑚) · (𝐴 / (1 − 𝐵))))‘𝑛) = ((𝐵𝑛) · (𝐴 / (1 − 𝐵))))
4241adantl 481 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((𝐵𝑚) · (𝐴 / (1 − 𝐵))))‘𝑛) = ((𝐵𝑛) · (𝐴 / (1 − 𝐵))))
4330oveq2d 7466 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((𝐴 / (1 − 𝐵)) · ((𝑚 ∈ ℕ0 ↦ (𝐵𝑚))‘𝑛)) = ((𝐴 / (1 − 𝐵)) · (𝐵𝑛)))
4437, 42, 433eqtr4d 2790 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((𝐵𝑚) · (𝐴 / (1 − 𝐵))))‘𝑛) = ((𝐴 / (1 − 𝐵)) · ((𝑚 ∈ ℕ0 ↦ (𝐵𝑚))‘𝑛)))
451, 2, 10, 20, 23, 35, 44climmulc2 15685 . . . . 5 (𝜑 → (𝑚 ∈ ℕ ↦ ((𝐵𝑚) · (𝐴 / (1 − 𝐵)))) ⇝ ((𝐴 / (1 − 𝐵)) · 0))
4620mul01d 11491 . . . . 5 (𝜑 → ((𝐴 / (1 − 𝐵)) · 0) = 0)
4745, 46breqtrd 5192 . . . 4 (𝜑 → (𝑚 ∈ ℕ ↦ ((𝐵𝑚) · (𝐴 / (1 − 𝐵)))) ⇝ 0)
4833rpred 13101 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐵𝑛) ∈ ℝ)
4919adantr 480 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐴 / (1 − 𝐵)) ∈ ℝ)
5048, 49remulcld 11322 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝐵𝑛) · (𝐴 / (1 − 𝐵))) ∈ ℝ)
5150recnd 11320 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝐵𝑛) · (𝐴 / (1 − 𝐵))) ∈ ℂ)
521, 2, 23, 42, 51clim0c 15555 . . . 4 (𝜑 → ((𝑚 ∈ ℕ ↦ ((𝐵𝑚) · (𝐴 / (1 − 𝐵)))) ⇝ 0 ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗)(abs‘((𝐵𝑛) · (𝐴 / (1 − 𝐵)))) < 𝑥))
5347, 52mpbid 232 . . 3 (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗)(abs‘((𝐵𝑛) · (𝐴 / (1 − 𝐵)))) < 𝑥)
54 nnz 12662 . . . . . . . 8 (𝑗 ∈ ℕ → 𝑗 ∈ ℤ)
5554adantl 481 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℤ)
56 uzid 12920 . . . . . . 7 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
57 oveq2 7458 . . . . . . . . . 10 (𝑛 = 𝑗 → (𝐵𝑛) = (𝐵𝑗))
5857fvoveq1d 7472 . . . . . . . . 9 (𝑛 = 𝑗 → (abs‘((𝐵𝑛) · (𝐴 / (1 − 𝐵)))) = (abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))))
5958breq1d 5176 . . . . . . . 8 (𝑛 = 𝑗 → ((abs‘((𝐵𝑛) · (𝐴 / (1 − 𝐵)))) < 𝑥 ↔ (abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))) < 𝑥))
6059rspcv 3631 . . . . . . 7 (𝑗 ∈ (ℤ𝑗) → (∀𝑛 ∈ (ℤ𝑗)(abs‘((𝐵𝑛) · (𝐴 / (1 − 𝐵)))) < 𝑥 → (abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))) < 𝑥))
6155, 56, 603syl 18 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (∀𝑛 ∈ (ℤ𝑗)(abs‘((𝐵𝑛) · (𝐴 / (1 − 𝐵)))) < 𝑥 → (abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))) < 𝑥))
62 lmclim2.2 . . . . . . . . . . . . 13 (𝜑𝐷 ∈ (Met‘𝑋))
6362adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → 𝐷 ∈ (Met‘𝑋))
64 lmclim2.3 . . . . . . . . . . . . 13 (𝜑𝐹:ℕ⟶𝑋)
65 simpl 482 . . . . . . . . . . . . 13 ((𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗)) → 𝑗 ∈ ℕ)
66 ffvelcdm 7117 . . . . . . . . . . . . 13 ((𝐹:ℕ⟶𝑋𝑗 ∈ ℕ) → (𝐹𝑗) ∈ 𝑋)
6764, 65, 66syl2an 595 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → (𝐹𝑗) ∈ 𝑋)
68 eluznn 12985 . . . . . . . . . . . . 13 ((𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗)) → 𝑛 ∈ ℕ)
69 ffvelcdm 7117 . . . . . . . . . . . . 13 ((𝐹:ℕ⟶𝑋𝑛 ∈ ℕ) → (𝐹𝑛) ∈ 𝑋)
7064, 68, 69syl2an 595 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → (𝐹𝑛) ∈ 𝑋)
71 metcl 24365 . . . . . . . . . . . 12 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹𝑗) ∈ 𝑋 ∧ (𝐹𝑛) ∈ 𝑋) → ((𝐹𝑗)𝐷(𝐹𝑛)) ∈ ℝ)
7263, 67, 70, 71syl3anc 1371 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → ((𝐹𝑗)𝐷(𝐹𝑛)) ∈ ℝ)
73 eqid 2740 . . . . . . . . . . . . 13 (ℤ𝑗) = (ℤ𝑗)
74 nnnn0 12562 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → 𝑗 ∈ ℕ0)
7574ad2antrl 727 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → 𝑗 ∈ ℕ0)
7675nn0zd 12667 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → 𝑗 ∈ ℤ)
77 oveq2 7458 . . . . . . . . . . . . . . . 16 (𝑚 = 𝑘 → (𝐵𝑚) = (𝐵𝑘))
7877oveq2d 7466 . . . . . . . . . . . . . . 15 (𝑚 = 𝑘 → (𝐴 · (𝐵𝑚)) = (𝐴 · (𝐵𝑘)))
79 eqid 2740 . . . . . . . . . . . . . . 15 (𝑚 ∈ (ℤ𝑗) ↦ (𝐴 · (𝐵𝑚))) = (𝑚 ∈ (ℤ𝑗) ↦ (𝐴 · (𝐵𝑚)))
80 ovex 7483 . . . . . . . . . . . . . . 15 (𝐴 · (𝐵𝑘)) ∈ V
8178, 79, 80fvmpt 7031 . . . . . . . . . . . . . 14 (𝑘 ∈ (ℤ𝑗) → ((𝑚 ∈ (ℤ𝑗) ↦ (𝐴 · (𝐵𝑚)))‘𝑘) = (𝐴 · (𝐵𝑘)))
8281adantl 481 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝑚 ∈ (ℤ𝑗) ↦ (𝐴 · (𝐵𝑚)))‘𝑘) = (𝐴 · (𝐵𝑘)))
8311ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝐴 ∈ ℝ)
845ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝐵 ∈ ℝ)
85 eluznn0 12984 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ ℕ0𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ0)
8675, 85sylan 579 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ0)
8784, 86reexpcld 14215 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐵𝑘) ∈ ℝ)
8883, 87remulcld 11322 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐴 · (𝐵𝑘)) ∈ ℝ)
8988recnd 11320 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐴 · (𝐵𝑘)) ∈ ℂ)
9011recnd 11320 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ ℂ)
9190adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → 𝐴 ∈ ℂ)
924adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → 𝐵 ∈ ℂ)
939adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → (abs‘𝐵) < 1)
94 eqid 2740 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ (ℤ𝑗) ↦ (𝐵𝑚)) = (𝑚 ∈ (ℤ𝑗) ↦ (𝐵𝑚))
95 ovex 7483 . . . . . . . . . . . . . . . . . 18 (𝐵𝑘) ∈ V
9677, 94, 95fvmpt 7031 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (ℤ𝑗) → ((𝑚 ∈ (ℤ𝑗) ↦ (𝐵𝑚))‘𝑘) = (𝐵𝑘))
9796adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝑚 ∈ (ℤ𝑗) ↦ (𝐵𝑚))‘𝑘) = (𝐵𝑘))
9892, 93, 75, 97geolim2 15921 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → seq𝑗( + , (𝑚 ∈ (ℤ𝑗) ↦ (𝐵𝑚))) ⇝ ((𝐵𝑗) / (1 − 𝐵)))
9987recnd 11320 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐵𝑘) ∈ ℂ)
10097, 99eqeltrd 2844 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝑚 ∈ (ℤ𝑗) ↦ (𝐵𝑚))‘𝑘) ∈ ℂ)
10197oveq2d 7466 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐴 · ((𝑚 ∈ (ℤ𝑗) ↦ (𝐵𝑚))‘𝑘)) = (𝐴 · (𝐵𝑘)))
10282, 101eqtr4d 2783 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝑚 ∈ (ℤ𝑗) ↦ (𝐴 · (𝐵𝑚)))‘𝑘) = (𝐴 · ((𝑚 ∈ (ℤ𝑗) ↦ (𝐵𝑚))‘𝑘)))
10373, 76, 91, 98, 100, 102isermulc2 15708 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → seq𝑗( + , (𝑚 ∈ (ℤ𝑗) ↦ (𝐴 · (𝐵𝑚)))) ⇝ (𝐴 · ((𝐵𝑗) / (1 − 𝐵))))
1043adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → 𝐵 ∈ ℝ+)
105104, 76rpexpcld 14298 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → (𝐵𝑗) ∈ ℝ+)
106105rpcnd 13103 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → (𝐵𝑗) ∈ ℂ)
10714recnd 11320 . . . . . . . . . . . . . . . 16 (𝜑 → (1 − 𝐵) ∈ ℂ)
108107adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → (1 − 𝐵) ∈ ℂ)
10918rpne0d 13106 . . . . . . . . . . . . . . . 16 (𝜑 → (1 − 𝐵) ≠ 0)
110109adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → (1 − 𝐵) ≠ 0)
11191, 106, 108, 110div12d 12108 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → (𝐴 · ((𝐵𝑗) / (1 − 𝐵))) = ((𝐵𝑗) · (𝐴 / (1 − 𝐵))))
112103, 111breqtrd 5192 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → seq𝑗( + , (𝑚 ∈ (ℤ𝑗) ↦ (𝐴 · (𝐵𝑚)))) ⇝ ((𝐵𝑗) · (𝐴 / (1 − 𝐵))))
11373, 76, 82, 89, 112isumclim 15807 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (ℤ𝑗)(𝐴 · (𝐵𝑘)) = ((𝐵𝑗) · (𝐴 / (1 − 𝐵))))
114 seqex 14056 . . . . . . . . . . . . . . 15 seq𝑗( + , (𝑚 ∈ (ℤ𝑗) ↦ (𝐴 · (𝐵𝑚)))) ∈ V
115 ovex 7483 . . . . . . . . . . . . . . 15 (𝐴 · ((𝐵𝑗) / (1 − 𝐵))) ∈ V
116114, 115breldm 5933 . . . . . . . . . . . . . 14 (seq𝑗( + , (𝑚 ∈ (ℤ𝑗) ↦ (𝐴 · (𝐵𝑚)))) ⇝ (𝐴 · ((𝐵𝑗) / (1 − 𝐵))) → seq𝑗( + , (𝑚 ∈ (ℤ𝑗) ↦ (𝐴 · (𝐵𝑚)))) ∈ dom ⇝ )
117103, 116syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → seq𝑗( + , (𝑚 ∈ (ℤ𝑗) ↦ (𝐴 · (𝐵𝑚)))) ∈ dom ⇝ )
11873, 76, 82, 88, 117isumrecl 15815 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (ℤ𝑗)(𝐴 · (𝐵𝑘)) ∈ ℝ)
119113, 118eqeltrrd 2845 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → ((𝐵𝑗) · (𝐴 / (1 − 𝐵))) ∈ ℝ)
120119recnd 11320 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → ((𝐵𝑗) · (𝐴 / (1 − 𝐵))) ∈ ℂ)
121120abscld 15487 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → (abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))) ∈ ℝ)
122 fzfid 14026 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → (𝑗...(𝑛 − 1)) ∈ Fin)
123 simpll 766 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑗...(𝑛 − 1))) → 𝜑)
124 elfzuz 13582 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (𝑗...(𝑛 − 1)) → 𝑘 ∈ (ℤ𝑗))
125 simprl 770 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → 𝑗 ∈ ℕ)
126 eluznn 12985 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
127125, 126sylan 579 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
128124, 127sylan2 592 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑗...(𝑛 − 1))) → 𝑘 ∈ ℕ)
12962adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ) → 𝐷 ∈ (Met‘𝑋))
13064ffvelcdmda 7120 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ 𝑋)
131 peano2nn 12307 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
132 ffvelcdm 7117 . . . . . . . . . . . . . . . . 17 ((𝐹:ℕ⟶𝑋 ∧ (𝑘 + 1) ∈ ℕ) → (𝐹‘(𝑘 + 1)) ∈ 𝑋)
13364, 131, 132syl2an 595 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ∈ 𝑋)
134 metcl 24365 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹𝑘) ∈ 𝑋 ∧ (𝐹‘(𝑘 + 1)) ∈ 𝑋) → ((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) ∈ ℝ)
135129, 130, 133, 134syl3anc 1371 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → ((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) ∈ ℝ)
136123, 128, 135syl2anc 583 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑗...(𝑛 − 1))) → ((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) ∈ ℝ)
137122, 136fsumrecl 15784 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (𝑗...(𝑛 − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) ∈ ℝ)
138 simprr 772 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → 𝑛 ∈ (ℤ𝑗))
139 elfzuz 13582 . . . . . . . . . . . . . . 15 (𝑘 ∈ (𝑗...𝑛) → 𝑘 ∈ (ℤ𝑗))
140 simpll 766 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝜑)
141140, 127, 130syl2anc 583 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ 𝑋)
142139, 141sylan2 592 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑗...𝑛)) → (𝐹𝑘) ∈ 𝑋)
14363, 138, 142mettrifi 37719 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → ((𝐹𝑗)𝐷(𝐹𝑛)) ≤ Σ𝑘 ∈ (𝑗...(𝑛 − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))))
144124, 88sylan2 592 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑗...(𝑛 − 1))) → (𝐴 · (𝐵𝑘)) ∈ ℝ)
145122, 144fsumrecl 15784 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (𝑗...(𝑛 − 1))(𝐴 · (𝐵𝑘)) ∈ ℝ)
146 geomcau.7 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ) → ((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (𝐵𝑘)))
147123, 128, 146syl2anc 583 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑗...(𝑛 − 1))) → ((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (𝐵𝑘)))
148122, 136, 144, 147fsumle 15849 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (𝑗...(𝑛 − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) ≤ Σ𝑘 ∈ (𝑗...(𝑛 − 1))(𝐴 · (𝐵𝑘)))
149 fzssuz 13627 . . . . . . . . . . . . . . . 16 (𝑗...(𝑛 − 1)) ⊆ (ℤ𝑗)
150149a1i 11 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → (𝑗...(𝑛 − 1)) ⊆ (ℤ𝑗))
151 0red 11295 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℕ) → 0 ∈ ℝ)
152 nnz 12662 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
153 rpexpcl 14133 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ ℝ+𝑘 ∈ ℤ) → (𝐵𝑘) ∈ ℝ+)
1543, 152, 153syl2an 595 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ ℕ) → (𝐵𝑘) ∈ ℝ+)
155135, 154rerpdivcld 13132 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℕ) → (((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) / (𝐵𝑘)) ∈ ℝ)
15611adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ ℝ)
157 metge0 24378 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹𝑘) ∈ 𝑋 ∧ (𝐹‘(𝑘 + 1)) ∈ 𝑋) → 0 ≤ ((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))))
158129, 130, 133, 157syl3anc 1371 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ ℕ) → 0 ≤ ((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))))
159135, 154, 158divge0d 13141 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℕ) → 0 ≤ (((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) / (𝐵𝑘)))
160135, 156, 154ledivmul2d 13155 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ ℕ) → ((((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) / (𝐵𝑘)) ≤ 𝐴 ↔ ((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (𝐵𝑘))))
161146, 160mpbird 257 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℕ) → (((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) / (𝐵𝑘)) ≤ 𝐴)
162151, 155, 156, 159, 161letrd 11449 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ℕ) → 0 ≤ 𝐴)
163140, 127, 162syl2anc 583 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → 0 ≤ 𝐴)
164140, 127, 154syl2anc 583 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐵𝑘) ∈ ℝ+)
165164rpge0d 13105 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → 0 ≤ (𝐵𝑘))
16683, 87, 163, 165mulge0d 11869 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → 0 ≤ (𝐴 · (𝐵𝑘)))
16773, 76, 122, 150, 82, 88, 166, 117isumless 15895 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (𝑗...(𝑛 − 1))(𝐴 · (𝐵𝑘)) ≤ Σ𝑘 ∈ (ℤ𝑗)(𝐴 · (𝐵𝑘)))
168137, 145, 118, 148, 167letrd 11449 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (𝑗...(𝑛 − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) ≤ Σ𝑘 ∈ (ℤ𝑗)(𝐴 · (𝐵𝑘)))
16972, 137, 118, 143, 168letrd 11449 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → ((𝐹𝑗)𝐷(𝐹𝑛)) ≤ Σ𝑘 ∈ (ℤ𝑗)(𝐴 · (𝐵𝑘)))
170169, 113breqtrd 5192 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → ((𝐹𝑗)𝐷(𝐹𝑛)) ≤ ((𝐵𝑗) · (𝐴 / (1 − 𝐵))))
171119leabsd 15465 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → ((𝐵𝑗) · (𝐴 / (1 − 𝐵))) ≤ (abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))))
17272, 119, 121, 170, 171letrd 11449 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → ((𝐹𝑗)𝐷(𝐹𝑛)) ≤ (abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))))
173172adantlr 714 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → ((𝐹𝑗)𝐷(𝐹𝑛)) ≤ (abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))))
17472adantlr 714 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → ((𝐹𝑗)𝐷(𝐹𝑛)) ∈ ℝ)
175121adantlr 714 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → (abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))) ∈ ℝ)
176 rpre 13067 . . . . . . . . . . 11 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
177176ad2antlr 726 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → 𝑥 ∈ ℝ)
178 lelttr 11382 . . . . . . . . . 10 ((((𝐹𝑗)𝐷(𝐹𝑛)) ∈ ℝ ∧ (abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((((𝐹𝑗)𝐷(𝐹𝑛)) ≤ (abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))) ∧ (abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))) < 𝑥) → ((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥))
179174, 175, 177, 178syl3anc 1371 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → ((((𝐹𝑗)𝐷(𝐹𝑛)) ≤ (abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))) ∧ (abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))) < 𝑥) → ((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥))
180173, 179mpand 694 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → ((abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))) < 𝑥 → ((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥))
181180anassrs 467 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (ℤ𝑗)) → ((abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))) < 𝑥 → ((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥))
182181ralrimdva 3160 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → ((abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))) < 𝑥 → ∀𝑛 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥))
18361, 182syld 47 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (∀𝑛 ∈ (ℤ𝑗)(abs‘((𝐵𝑛) · (𝐴 / (1 − 𝐵)))) < 𝑥 → ∀𝑛 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥))
184183reximdva 3174 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (∃𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗)(abs‘((𝐵𝑛) · (𝐴 / (1 − 𝐵)))) < 𝑥 → ∃𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥))
185184ralimdva 3173 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗)(abs‘((𝐵𝑛) · (𝐴 / (1 − 𝐵)))) < 𝑥 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥))
18653, 185mpd 15 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥)
187 metxmet 24367 . . . 4 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
18862, 187syl 17 . . 3 (𝜑𝐷 ∈ (∞Met‘𝑋))
189 eqidd 2741 . . 3 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) = (𝐹𝑛))
190 eqidd 2741 . . 3 ((𝜑𝑗 ∈ ℕ) → (𝐹𝑗) = (𝐹𝑗))
1911, 188, 2, 189, 190, 64iscauf 25335 . 2 (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥))
192186, 191mpbird 257 1 (𝜑𝐹 ∈ (Cau‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  Vcvv 3488  wss 3976   class class class wbr 5166  cmpt 5249  dom cdm 5700  wf 6571  cfv 6575  (class class class)co 7450  cc 11184  cr 11185  0cc0 11186  1c1 11187   + caddc 11189   · cmul 11191   < clt 11326  cle 11327  cmin 11522   / cdiv 11949  cn 12295  0cn0 12555  cz 12641  cuz 12905  +crp 13059  ...cfz 13569  seqcseq 14054  cexp 14114  abscabs 15285  cli 15532  Σcsu 15736  ∞Metcxmet 21374  Metcmet 21375  Cauccau 25308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772  ax-inf2 9712  ax-cnex 11242  ax-resscn 11243  ax-1cn 11244  ax-icn 11245  ax-addcl 11246  ax-addrcl 11247  ax-mulcl 11248  ax-mulrcl 11249  ax-mulcom 11250  ax-addass 11251  ax-mulass 11252  ax-distr 11253  ax-i2m1 11254  ax-1ne0 11255  ax-1rid 11256  ax-rnegex 11257  ax-rrecex 11258  ax-cnre 11259  ax-pre-lttri 11260  ax-pre-lttrn 11261  ax-pre-ltadd 11262  ax-pre-mulgt0 11263  ax-pre-sup 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6334  df-ord 6400  df-on 6401  df-lim 6402  df-suc 6403  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-isom 6584  df-riota 7406  df-ov 7453  df-oprab 7454  df-mpo 7455  df-om 7906  df-1st 8032  df-2nd 8033  df-frecs 8324  df-wrecs 8355  df-recs 8429  df-rdg 8468  df-1o 8524  df-er 8765  df-map 8888  df-pm 8889  df-en 9006  df-dom 9007  df-sdom 9008  df-fin 9009  df-sup 9513  df-inf 9514  df-oi 9581  df-card 10010  df-pnf 11328  df-mnf 11329  df-xr 11330  df-ltxr 11331  df-le 11332  df-sub 11524  df-neg 11525  df-div 11950  df-nn 12296  df-2 12358  df-3 12359  df-n0 12556  df-z 12642  df-uz 12906  df-rp 13060  df-xneg 13177  df-xadd 13178  df-xmul 13179  df-ico 13415  df-fz 13570  df-fzo 13714  df-fl 13845  df-seq 14055  df-exp 14115  df-hash 14382  df-cj 15150  df-re 15151  df-im 15152  df-sqrt 15286  df-abs 15287  df-clim 15536  df-rlim 15537  df-sum 15737  df-psmet 21381  df-xmet 21382  df-met 21383  df-bl 21384  df-cau 25311
This theorem is referenced by:  bfplem1  37784
  Copyright terms: Public domain W3C validator