| Step | Hyp | Ref
| Expression |
| 1 | | nnuz 12852 |
. . . . . 6
⊢ ℕ =
(ℤ≥‘1) |
| 2 | | 1zzd 12580 |
. . . . . 6
⊢ (𝜑 → 1 ∈
ℤ) |
| 3 | | geomcau.5 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈
ℝ+) |
| 4 | 3 | rpcnd 13010 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 5 | 3 | rpred 13008 |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 6 | 3 | rpge0d 13012 |
. . . . . . . . 9
⊢ (𝜑 → 0 ≤ 𝐵) |
| 7 | 5, 6 | absidd 15398 |
. . . . . . . 8
⊢ (𝜑 → (abs‘𝐵) = 𝐵) |
| 8 | | geomcau.6 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 < 1) |
| 9 | 7, 8 | eqbrtrd 5137 |
. . . . . . 7
⊢ (𝜑 → (abs‘𝐵) < 1) |
| 10 | 4, 9 | expcnv 15837 |
. . . . . 6
⊢ (𝜑 → (𝑚 ∈ ℕ0 ↦ (𝐵↑𝑚)) ⇝ 0) |
| 11 | | geomcau.4 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 12 | | 1re 11192 |
. . . . . . . . . 10
⊢ 1 ∈
ℝ |
| 13 | | resubcl 11504 |
. . . . . . . . . 10
⊢ ((1
∈ ℝ ∧ 𝐵
∈ ℝ) → (1 − 𝐵) ∈ ℝ) |
| 14 | 12, 5, 13 | sylancr 587 |
. . . . . . . . 9
⊢ (𝜑 → (1 − 𝐵) ∈
ℝ) |
| 15 | | posdif 11687 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ ℝ ∧ 1 ∈
ℝ) → (𝐵 < 1
↔ 0 < (1 − 𝐵))) |
| 16 | 5, 12, 15 | sylancl 586 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐵 < 1 ↔ 0 < (1 − 𝐵))) |
| 17 | 8, 16 | mpbid 232 |
. . . . . . . . 9
⊢ (𝜑 → 0 < (1 − 𝐵)) |
| 18 | 14, 17 | elrpd 13005 |
. . . . . . . 8
⊢ (𝜑 → (1 − 𝐵) ∈
ℝ+) |
| 19 | 11, 18 | rerpdivcld 13039 |
. . . . . . 7
⊢ (𝜑 → (𝐴 / (1 − 𝐵)) ∈ ℝ) |
| 20 | 19 | recnd 11220 |
. . . . . 6
⊢ (𝜑 → (𝐴 / (1 − 𝐵)) ∈ ℂ) |
| 21 | | nnex 12203 |
. . . . . . . 8
⊢ ℕ
∈ V |
| 22 | 21 | mptex 7204 |
. . . . . . 7
⊢ (𝑚 ∈ ℕ ↦ ((𝐵↑𝑚) · (𝐴 / (1 − 𝐵)))) ∈ V |
| 23 | 22 | a1i 11 |
. . . . . 6
⊢ (𝜑 → (𝑚 ∈ ℕ ↦ ((𝐵↑𝑚) · (𝐴 / (1 − 𝐵)))) ∈ V) |
| 24 | | nnnn0 12465 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℕ0) |
| 25 | 24 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0) |
| 26 | | oveq2 7402 |
. . . . . . . . 9
⊢ (𝑚 = 𝑛 → (𝐵↑𝑚) = (𝐵↑𝑛)) |
| 27 | | eqid 2730 |
. . . . . . . . 9
⊢ (𝑚 ∈ ℕ0
↦ (𝐵↑𝑚)) = (𝑚 ∈ ℕ0 ↦ (𝐵↑𝑚)) |
| 28 | | ovex 7427 |
. . . . . . . . 9
⊢ (𝐵↑𝑛) ∈ V |
| 29 | 26, 27, 28 | fvmpt 6975 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ0
→ ((𝑚 ∈
ℕ0 ↦ (𝐵↑𝑚))‘𝑛) = (𝐵↑𝑛)) |
| 30 | 25, 29 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ0 ↦ (𝐵↑𝑚))‘𝑛) = (𝐵↑𝑛)) |
| 31 | | nnz 12566 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℤ) |
| 32 | | rpexpcl 14055 |
. . . . . . . . 9
⊢ ((𝐵 ∈ ℝ+
∧ 𝑛 ∈ ℤ)
→ (𝐵↑𝑛) ∈
ℝ+) |
| 33 | 3, 31, 32 | syl2an 596 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐵↑𝑛) ∈
ℝ+) |
| 34 | 33 | rpcnd 13010 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐵↑𝑛) ∈ ℂ) |
| 35 | 30, 34 | eqeltrd 2829 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ0 ↦ (𝐵↑𝑚))‘𝑛) ∈ ℂ) |
| 36 | 20 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐴 / (1 − 𝐵)) ∈ ℂ) |
| 37 | 34, 36 | mulcomd 11213 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐵↑𝑛) · (𝐴 / (1 − 𝐵))) = ((𝐴 / (1 − 𝐵)) · (𝐵↑𝑛))) |
| 38 | 26 | oveq1d 7409 |
. . . . . . . . 9
⊢ (𝑚 = 𝑛 → ((𝐵↑𝑚) · (𝐴 / (1 − 𝐵))) = ((𝐵↑𝑛) · (𝐴 / (1 − 𝐵)))) |
| 39 | | eqid 2730 |
. . . . . . . . 9
⊢ (𝑚 ∈ ℕ ↦ ((𝐵↑𝑚) · (𝐴 / (1 − 𝐵)))) = (𝑚 ∈ ℕ ↦ ((𝐵↑𝑚) · (𝐴 / (1 − 𝐵)))) |
| 40 | | ovex 7427 |
. . . . . . . . 9
⊢ ((𝐵↑𝑛) · (𝐴 / (1 − 𝐵))) ∈ V |
| 41 | 38, 39, 40 | fvmpt 6975 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ → ((𝑚 ∈ ℕ ↦ ((𝐵↑𝑚) · (𝐴 / (1 − 𝐵))))‘𝑛) = ((𝐵↑𝑛) · (𝐴 / (1 − 𝐵)))) |
| 42 | 41 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((𝐵↑𝑚) · (𝐴 / (1 − 𝐵))))‘𝑛) = ((𝐵↑𝑛) · (𝐴 / (1 − 𝐵)))) |
| 43 | 30 | oveq2d 7410 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐴 / (1 − 𝐵)) · ((𝑚 ∈ ℕ0 ↦ (𝐵↑𝑚))‘𝑛)) = ((𝐴 / (1 − 𝐵)) · (𝐵↑𝑛))) |
| 44 | 37, 42, 43 | 3eqtr4d 2775 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((𝐵↑𝑚) · (𝐴 / (1 − 𝐵))))‘𝑛) = ((𝐴 / (1 − 𝐵)) · ((𝑚 ∈ ℕ0 ↦ (𝐵↑𝑚))‘𝑛))) |
| 45 | 1, 2, 10, 20, 23, 35, 44 | climmulc2 15610 |
. . . . 5
⊢ (𝜑 → (𝑚 ∈ ℕ ↦ ((𝐵↑𝑚) · (𝐴 / (1 − 𝐵)))) ⇝ ((𝐴 / (1 − 𝐵)) · 0)) |
| 46 | 20 | mul01d 11391 |
. . . . 5
⊢ (𝜑 → ((𝐴 / (1 − 𝐵)) · 0) = 0) |
| 47 | 45, 46 | breqtrd 5141 |
. . . 4
⊢ (𝜑 → (𝑚 ∈ ℕ ↦ ((𝐵↑𝑚) · (𝐴 / (1 − 𝐵)))) ⇝ 0) |
| 48 | 33 | rpred 13008 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐵↑𝑛) ∈ ℝ) |
| 49 | 19 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐴 / (1 − 𝐵)) ∈ ℝ) |
| 50 | 48, 49 | remulcld 11222 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐵↑𝑛) · (𝐴 / (1 − 𝐵))) ∈ ℝ) |
| 51 | 50 | recnd 11220 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐵↑𝑛) · (𝐴 / (1 − 𝐵))) ∈ ℂ) |
| 52 | 1, 2, 23, 42, 51 | clim0c 15480 |
. . . 4
⊢ (𝜑 → ((𝑚 ∈ ℕ ↦ ((𝐵↑𝑚) · (𝐴 / (1 − 𝐵)))) ⇝ 0 ↔ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ ℕ
∀𝑛 ∈
(ℤ≥‘𝑗)(abs‘((𝐵↑𝑛) · (𝐴 / (1 − 𝐵)))) < 𝑥)) |
| 53 | 47, 52 | mpbid 232 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑛 ∈
(ℤ≥‘𝑗)(abs‘((𝐵↑𝑛) · (𝐴 / (1 − 𝐵)))) < 𝑥) |
| 54 | | nnz 12566 |
. . . . . . . 8
⊢ (𝑗 ∈ ℕ → 𝑗 ∈
ℤ) |
| 55 | 54 | adantl 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈
ℤ) |
| 56 | | uzid 12824 |
. . . . . . 7
⊢ (𝑗 ∈ ℤ → 𝑗 ∈
(ℤ≥‘𝑗)) |
| 57 | | oveq2 7402 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑗 → (𝐵↑𝑛) = (𝐵↑𝑗)) |
| 58 | 57 | fvoveq1d 7416 |
. . . . . . . . 9
⊢ (𝑛 = 𝑗 → (abs‘((𝐵↑𝑛) · (𝐴 / (1 − 𝐵)))) = (abs‘((𝐵↑𝑗) · (𝐴 / (1 − 𝐵))))) |
| 59 | 58 | breq1d 5125 |
. . . . . . . 8
⊢ (𝑛 = 𝑗 → ((abs‘((𝐵↑𝑛) · (𝐴 / (1 − 𝐵)))) < 𝑥 ↔ (abs‘((𝐵↑𝑗) · (𝐴 / (1 − 𝐵)))) < 𝑥)) |
| 60 | 59 | rspcv 3593 |
. . . . . . 7
⊢ (𝑗 ∈
(ℤ≥‘𝑗) → (∀𝑛 ∈ (ℤ≥‘𝑗)(abs‘((𝐵↑𝑛) · (𝐴 / (1 − 𝐵)))) < 𝑥 → (abs‘((𝐵↑𝑗) · (𝐴 / (1 − 𝐵)))) < 𝑥)) |
| 61 | 55, 56, 60 | 3syl 18 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) →
(∀𝑛 ∈
(ℤ≥‘𝑗)(abs‘((𝐵↑𝑛) · (𝐴 / (1 − 𝐵)))) < 𝑥 → (abs‘((𝐵↑𝑗) · (𝐴 / (1 − 𝐵)))) < 𝑥)) |
| 62 | | lmclim2.2 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) |
| 63 | 62 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → 𝐷 ∈ (Met‘𝑋)) |
| 64 | | lmclim2.3 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹:ℕ⟶𝑋) |
| 65 | | simpl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑗 ∈ ℕ ∧ 𝑛 ∈
(ℤ≥‘𝑗)) → 𝑗 ∈ ℕ) |
| 66 | | ffvelcdm 7060 |
. . . . . . . . . . . . 13
⊢ ((𝐹:ℕ⟶𝑋 ∧ 𝑗 ∈ ℕ) → (𝐹‘𝑗) ∈ 𝑋) |
| 67 | 64, 65, 66 | syl2an 596 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (𝐹‘𝑗) ∈ 𝑋) |
| 68 | | eluznn 12891 |
. . . . . . . . . . . . 13
⊢ ((𝑗 ∈ ℕ ∧ 𝑛 ∈
(ℤ≥‘𝑗)) → 𝑛 ∈ ℕ) |
| 69 | | ffvelcdm 7060 |
. . . . . . . . . . . . 13
⊢ ((𝐹:ℕ⟶𝑋 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∈ 𝑋) |
| 70 | 64, 68, 69 | syl2an 596 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (𝐹‘𝑛) ∈ 𝑋) |
| 71 | | metcl 24226 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹‘𝑗) ∈ 𝑋 ∧ (𝐹‘𝑛) ∈ 𝑋) → ((𝐹‘𝑗)𝐷(𝐹‘𝑛)) ∈ ℝ) |
| 72 | 63, 67, 70, 71 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → ((𝐹‘𝑗)𝐷(𝐹‘𝑛)) ∈ ℝ) |
| 73 | | eqid 2730 |
. . . . . . . . . . . . 13
⊢
(ℤ≥‘𝑗) = (ℤ≥‘𝑗) |
| 74 | | nnnn0 12465 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ ℕ → 𝑗 ∈
ℕ0) |
| 75 | 74 | ad2antrl 728 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → 𝑗 ∈ ℕ0) |
| 76 | 75 | nn0zd 12571 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → 𝑗 ∈ ℤ) |
| 77 | | oveq2 7402 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 = 𝑘 → (𝐵↑𝑚) = (𝐵↑𝑘)) |
| 78 | 77 | oveq2d 7410 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = 𝑘 → (𝐴 · (𝐵↑𝑚)) = (𝐴 · (𝐵↑𝑘))) |
| 79 | | eqid 2730 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 ∈
(ℤ≥‘𝑗) ↦ (𝐴 · (𝐵↑𝑚))) = (𝑚 ∈ (ℤ≥‘𝑗) ↦ (𝐴 · (𝐵↑𝑚))) |
| 80 | | ovex 7427 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 · (𝐵↑𝑘)) ∈ V |
| 81 | 78, 79, 80 | fvmpt 6975 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈
(ℤ≥‘𝑗) → ((𝑚 ∈ (ℤ≥‘𝑗) ↦ (𝐴 · (𝐵↑𝑚)))‘𝑘) = (𝐴 · (𝐵↑𝑘))) |
| 82 | 81 | adantl 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((𝑚 ∈ (ℤ≥‘𝑗) ↦ (𝐴 · (𝐵↑𝑚)))‘𝑘) = (𝐴 · (𝐵↑𝑘))) |
| 83 | 11 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝐴 ∈ ℝ) |
| 84 | 5 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝐵 ∈ ℝ) |
| 85 | | eluznn0 12890 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑗 ∈ ℕ0
∧ 𝑘 ∈
(ℤ≥‘𝑗)) → 𝑘 ∈ ℕ0) |
| 86 | 75, 85 | sylan 580 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ ℕ0) |
| 87 | 84, 86 | reexpcld 14138 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝐵↑𝑘) ∈ ℝ) |
| 88 | 83, 87 | remulcld 11222 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝐴 · (𝐵↑𝑘)) ∈ ℝ) |
| 89 | 88 | recnd 11220 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝐴 · (𝐵↑𝑘)) ∈ ℂ) |
| 90 | 11 | recnd 11220 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 91 | 90 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → 𝐴 ∈ ℂ) |
| 92 | 4 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → 𝐵 ∈ ℂ) |
| 93 | 9 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (abs‘𝐵) < 1) |
| 94 | | eqid 2730 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 ∈
(ℤ≥‘𝑗) ↦ (𝐵↑𝑚)) = (𝑚 ∈ (ℤ≥‘𝑗) ↦ (𝐵↑𝑚)) |
| 95 | | ovex 7427 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐵↑𝑘) ∈ V |
| 96 | 77, 94, 95 | fvmpt 6975 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈
(ℤ≥‘𝑗) → ((𝑚 ∈ (ℤ≥‘𝑗) ↦ (𝐵↑𝑚))‘𝑘) = (𝐵↑𝑘)) |
| 97 | 96 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((𝑚 ∈ (ℤ≥‘𝑗) ↦ (𝐵↑𝑚))‘𝑘) = (𝐵↑𝑘)) |
| 98 | 92, 93, 75, 97 | geolim2 15844 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → seq𝑗( + , (𝑚 ∈ (ℤ≥‘𝑗) ↦ (𝐵↑𝑚))) ⇝ ((𝐵↑𝑗) / (1 − 𝐵))) |
| 99 | 87 | recnd 11220 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝐵↑𝑘) ∈ ℂ) |
| 100 | 97, 99 | eqeltrd 2829 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((𝑚 ∈ (ℤ≥‘𝑗) ↦ (𝐵↑𝑚))‘𝑘) ∈ ℂ) |
| 101 | 97 | oveq2d 7410 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝐴 · ((𝑚 ∈ (ℤ≥‘𝑗) ↦ (𝐵↑𝑚))‘𝑘)) = (𝐴 · (𝐵↑𝑘))) |
| 102 | 82, 101 | eqtr4d 2768 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((𝑚 ∈ (ℤ≥‘𝑗) ↦ (𝐴 · (𝐵↑𝑚)))‘𝑘) = (𝐴 · ((𝑚 ∈ (ℤ≥‘𝑗) ↦ (𝐵↑𝑚))‘𝑘))) |
| 103 | 73, 76, 91, 98, 100, 102 | isermulc2 15631 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → seq𝑗( + , (𝑚 ∈ (ℤ≥‘𝑗) ↦ (𝐴 · (𝐵↑𝑚)))) ⇝ (𝐴 · ((𝐵↑𝑗) / (1 − 𝐵)))) |
| 104 | 3 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → 𝐵 ∈
ℝ+) |
| 105 | 104, 76 | rpexpcld 14222 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (𝐵↑𝑗) ∈
ℝ+) |
| 106 | 105 | rpcnd 13010 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (𝐵↑𝑗) ∈ ℂ) |
| 107 | 14 | recnd 11220 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (1 − 𝐵) ∈
ℂ) |
| 108 | 107 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (1 − 𝐵) ∈
ℂ) |
| 109 | 18 | rpne0d 13013 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (1 − 𝐵) ≠ 0) |
| 110 | 109 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (1 − 𝐵) ≠ 0) |
| 111 | 91, 106, 108, 110 | div12d 12010 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (𝐴 · ((𝐵↑𝑗) / (1 − 𝐵))) = ((𝐵↑𝑗) · (𝐴 / (1 − 𝐵)))) |
| 112 | 103, 111 | breqtrd 5141 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → seq𝑗( + , (𝑚 ∈ (ℤ≥‘𝑗) ↦ (𝐴 · (𝐵↑𝑚)))) ⇝ ((𝐵↑𝑗) · (𝐴 / (1 − 𝐵)))) |
| 113 | 73, 76, 82, 89, 112 | isumclim 15730 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → Σ𝑘 ∈
(ℤ≥‘𝑗)(𝐴 · (𝐵↑𝑘)) = ((𝐵↑𝑗) · (𝐴 / (1 − 𝐵)))) |
| 114 | | seqex 13978 |
. . . . . . . . . . . . . . 15
⊢ seq𝑗( + , (𝑚 ∈ (ℤ≥‘𝑗) ↦ (𝐴 · (𝐵↑𝑚)))) ∈ V |
| 115 | | ovex 7427 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 · ((𝐵↑𝑗) / (1 − 𝐵))) ∈ V |
| 116 | 114, 115 | breldm 5880 |
. . . . . . . . . . . . . 14
⊢ (seq𝑗( + , (𝑚 ∈ (ℤ≥‘𝑗) ↦ (𝐴 · (𝐵↑𝑚)))) ⇝ (𝐴 · ((𝐵↑𝑗) / (1 − 𝐵))) → seq𝑗( + , (𝑚 ∈ (ℤ≥‘𝑗) ↦ (𝐴 · (𝐵↑𝑚)))) ∈ dom ⇝ ) |
| 117 | 103, 116 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → seq𝑗( + , (𝑚 ∈ (ℤ≥‘𝑗) ↦ (𝐴 · (𝐵↑𝑚)))) ∈ dom ⇝ ) |
| 118 | 73, 76, 82, 88, 117 | isumrecl 15738 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → Σ𝑘 ∈
(ℤ≥‘𝑗)(𝐴 · (𝐵↑𝑘)) ∈ ℝ) |
| 119 | 113, 118 | eqeltrrd 2830 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → ((𝐵↑𝑗) · (𝐴 / (1 − 𝐵))) ∈ ℝ) |
| 120 | 119 | recnd 11220 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → ((𝐵↑𝑗) · (𝐴 / (1 − 𝐵))) ∈ ℂ) |
| 121 | 120 | abscld 15412 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (abs‘((𝐵↑𝑗) · (𝐴 / (1 − 𝐵)))) ∈ ℝ) |
| 122 | | fzfid 13948 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (𝑗...(𝑛 − 1)) ∈ Fin) |
| 123 | | simpll 766 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (𝑗...(𝑛 − 1))) → 𝜑) |
| 124 | | elfzuz 13494 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ (𝑗...(𝑛 − 1)) → 𝑘 ∈ (ℤ≥‘𝑗)) |
| 125 | | simprl 770 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → 𝑗 ∈ ℕ) |
| 126 | | eluznn 12891 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑗 ∈ ℕ ∧ 𝑘 ∈
(ℤ≥‘𝑗)) → 𝑘 ∈ ℕ) |
| 127 | 125, 126 | sylan 580 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ ℕ) |
| 128 | 124, 127 | sylan2 593 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (𝑗...(𝑛 − 1))) → 𝑘 ∈ ℕ) |
| 129 | 62 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐷 ∈ (Met‘𝑋)) |
| 130 | 64 | ffvelcdmda 7063 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ 𝑋) |
| 131 | | peano2nn 12209 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ ℕ → (𝑘 + 1) ∈
ℕ) |
| 132 | | ffvelcdm 7060 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹:ℕ⟶𝑋 ∧ (𝑘 + 1) ∈ ℕ) → (𝐹‘(𝑘 + 1)) ∈ 𝑋) |
| 133 | 64, 131, 132 | syl2an 596 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ∈ 𝑋) |
| 134 | | metcl 24226 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ (𝐹‘(𝑘 + 1)) ∈ 𝑋) → ((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))) ∈ ℝ) |
| 135 | 129, 130,
133, 134 | syl3anc 1373 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))) ∈ ℝ) |
| 136 | 123, 128,
135 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (𝑗...(𝑛 − 1))) → ((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))) ∈ ℝ) |
| 137 | 122, 136 | fsumrecl 15707 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → Σ𝑘 ∈ (𝑗...(𝑛 − 1))((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))) ∈ ℝ) |
| 138 | | simprr 772 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → 𝑛 ∈ (ℤ≥‘𝑗)) |
| 139 | | elfzuz 13494 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (𝑗...𝑛) → 𝑘 ∈ (ℤ≥‘𝑗)) |
| 140 | | simpll 766 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝜑) |
| 141 | 140, 127,
130 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝐹‘𝑘) ∈ 𝑋) |
| 142 | 139, 141 | sylan2 593 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (𝑗...𝑛)) → (𝐹‘𝑘) ∈ 𝑋) |
| 143 | 63, 138, 142 | mettrifi 37748 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → ((𝐹‘𝑗)𝐷(𝐹‘𝑛)) ≤ Σ𝑘 ∈ (𝑗...(𝑛 − 1))((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1)))) |
| 144 | 124, 88 | sylan2 593 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (𝑗...(𝑛 − 1))) → (𝐴 · (𝐵↑𝑘)) ∈ ℝ) |
| 145 | 122, 144 | fsumrecl 15707 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → Σ𝑘 ∈ (𝑗...(𝑛 − 1))(𝐴 · (𝐵↑𝑘)) ∈ ℝ) |
| 146 | | geomcau.7 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (𝐵↑𝑘))) |
| 147 | 123, 128,
146 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (𝑗...(𝑛 − 1))) → ((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (𝐵↑𝑘))) |
| 148 | 122, 136,
144, 147 | fsumle 15772 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → Σ𝑘 ∈ (𝑗...(𝑛 − 1))((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))) ≤ Σ𝑘 ∈ (𝑗...(𝑛 − 1))(𝐴 · (𝐵↑𝑘))) |
| 149 | | fzssuz 13539 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗...(𝑛 − 1)) ⊆
(ℤ≥‘𝑗) |
| 150 | 149 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (𝑗...(𝑛 − 1)) ⊆
(ℤ≥‘𝑗)) |
| 151 | | 0red 11195 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 0 ∈
ℝ) |
| 152 | | nnz 12566 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℤ) |
| 153 | | rpexpcl 14055 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐵 ∈ ℝ+
∧ 𝑘 ∈ ℤ)
→ (𝐵↑𝑘) ∈
ℝ+) |
| 154 | 3, 152, 153 | syl2an 596 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐵↑𝑘) ∈
ℝ+) |
| 155 | 135, 154 | rerpdivcld 13039 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))) / (𝐵↑𝑘)) ∈ ℝ) |
| 156 | 11 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℝ) |
| 157 | | metge0 24239 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ (𝐹‘(𝑘 + 1)) ∈ 𝑋) → 0 ≤ ((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1)))) |
| 158 | 129, 130,
133, 157 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 0 ≤ ((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1)))) |
| 159 | 135, 154,
158 | divge0d 13048 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 0 ≤ (((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))) / (𝐵↑𝑘))) |
| 160 | 135, 156,
154 | ledivmul2d 13062 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))) / (𝐵↑𝑘)) ≤ 𝐴 ↔ ((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (𝐵↑𝑘)))) |
| 161 | 146, 160 | mpbird 257 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))) / (𝐵↑𝑘)) ≤ 𝐴) |
| 162 | 151, 155,
156, 159, 161 | letrd 11349 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 0 ≤ 𝐴) |
| 163 | 140, 127,
162 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 0 ≤ 𝐴) |
| 164 | 140, 127,
154 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝐵↑𝑘) ∈
ℝ+) |
| 165 | 164 | rpge0d 13012 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 0 ≤ (𝐵↑𝑘)) |
| 166 | 83, 87, 163, 165 | mulge0d 11771 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 0 ≤ (𝐴 · (𝐵↑𝑘))) |
| 167 | 73, 76, 122, 150, 82, 88, 166, 117 | isumless 15818 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → Σ𝑘 ∈ (𝑗...(𝑛 − 1))(𝐴 · (𝐵↑𝑘)) ≤ Σ𝑘 ∈ (ℤ≥‘𝑗)(𝐴 · (𝐵↑𝑘))) |
| 168 | 137, 145,
118, 148, 167 | letrd 11349 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → Σ𝑘 ∈ (𝑗...(𝑛 − 1))((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))) ≤ Σ𝑘 ∈ (ℤ≥‘𝑗)(𝐴 · (𝐵↑𝑘))) |
| 169 | 72, 137, 118, 143, 168 | letrd 11349 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → ((𝐹‘𝑗)𝐷(𝐹‘𝑛)) ≤ Σ𝑘 ∈ (ℤ≥‘𝑗)(𝐴 · (𝐵↑𝑘))) |
| 170 | 169, 113 | breqtrd 5141 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → ((𝐹‘𝑗)𝐷(𝐹‘𝑛)) ≤ ((𝐵↑𝑗) · (𝐴 / (1 − 𝐵)))) |
| 171 | 119 | leabsd 15390 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → ((𝐵↑𝑗) · (𝐴 / (1 − 𝐵))) ≤ (abs‘((𝐵↑𝑗) · (𝐴 / (1 − 𝐵))))) |
| 172 | 72, 119, 121, 170, 171 | letrd 11349 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → ((𝐹‘𝑗)𝐷(𝐹‘𝑛)) ≤ (abs‘((𝐵↑𝑗) · (𝐴 / (1 − 𝐵))))) |
| 173 | 172 | adantlr 715 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈
(ℤ≥‘𝑗))) → ((𝐹‘𝑗)𝐷(𝐹‘𝑛)) ≤ (abs‘((𝐵↑𝑗) · (𝐴 / (1 − 𝐵))))) |
| 174 | 72 | adantlr 715 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈
(ℤ≥‘𝑗))) → ((𝐹‘𝑗)𝐷(𝐹‘𝑛)) ∈ ℝ) |
| 175 | 121 | adantlr 715 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈
(ℤ≥‘𝑗))) → (abs‘((𝐵↑𝑗) · (𝐴 / (1 − 𝐵)))) ∈ ℝ) |
| 176 | | rpre 12974 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ∈
ℝ) |
| 177 | 176 | ad2antlr 727 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈
(ℤ≥‘𝑗))) → 𝑥 ∈ ℝ) |
| 178 | | lelttr 11282 |
. . . . . . . . . 10
⊢ ((((𝐹‘𝑗)𝐷(𝐹‘𝑛)) ∈ ℝ ∧ (abs‘((𝐵↑𝑗) · (𝐴 / (1 − 𝐵)))) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((((𝐹‘𝑗)𝐷(𝐹‘𝑛)) ≤ (abs‘((𝐵↑𝑗) · (𝐴 / (1 − 𝐵)))) ∧ (abs‘((𝐵↑𝑗) · (𝐴 / (1 − 𝐵)))) < 𝑥) → ((𝐹‘𝑗)𝐷(𝐹‘𝑛)) < 𝑥)) |
| 179 | 174, 175,
177, 178 | syl3anc 1373 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈
(ℤ≥‘𝑗))) → ((((𝐹‘𝑗)𝐷(𝐹‘𝑛)) ≤ (abs‘((𝐵↑𝑗) · (𝐴 / (1 − 𝐵)))) ∧ (abs‘((𝐵↑𝑗) · (𝐴 / (1 − 𝐵)))) < 𝑥) → ((𝐹‘𝑗)𝐷(𝐹‘𝑛)) < 𝑥)) |
| 180 | 173, 179 | mpand 695 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈
(ℤ≥‘𝑗))) → ((abs‘((𝐵↑𝑗) · (𝐴 / (1 − 𝐵)))) < 𝑥 → ((𝐹‘𝑗)𝐷(𝐹‘𝑛)) < 𝑥)) |
| 181 | 180 | anassrs 467 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈
(ℤ≥‘𝑗)) → ((abs‘((𝐵↑𝑗) · (𝐴 / (1 − 𝐵)))) < 𝑥 → ((𝐹‘𝑗)𝐷(𝐹‘𝑛)) < 𝑥)) |
| 182 | 181 | ralrimdva 3135 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) →
((abs‘((𝐵↑𝑗) · (𝐴 / (1 − 𝐵)))) < 𝑥 → ∀𝑛 ∈ (ℤ≥‘𝑗)((𝐹‘𝑗)𝐷(𝐹‘𝑛)) < 𝑥)) |
| 183 | 61, 182 | syld 47 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) →
(∀𝑛 ∈
(ℤ≥‘𝑗)(abs‘((𝐵↑𝑛) · (𝐴 / (1 − 𝐵)))) < 𝑥 → ∀𝑛 ∈ (ℤ≥‘𝑗)((𝐹‘𝑗)𝐷(𝐹‘𝑛)) < 𝑥)) |
| 184 | 183 | reximdva 3148 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(∃𝑗 ∈ ℕ
∀𝑛 ∈
(ℤ≥‘𝑗)(abs‘((𝐵↑𝑛) · (𝐴 / (1 − 𝐵)))) < 𝑥 → ∃𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ≥‘𝑗)((𝐹‘𝑗)𝐷(𝐹‘𝑛)) < 𝑥)) |
| 185 | 184 | ralimdva 3147 |
. . 3
⊢ (𝜑 → (∀𝑥 ∈ ℝ+
∃𝑗 ∈ ℕ
∀𝑛 ∈
(ℤ≥‘𝑗)(abs‘((𝐵↑𝑛) · (𝐴 / (1 − 𝐵)))) < 𝑥 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑛 ∈
(ℤ≥‘𝑗)((𝐹‘𝑗)𝐷(𝐹‘𝑛)) < 𝑥)) |
| 186 | 53, 185 | mpd 15 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑛 ∈
(ℤ≥‘𝑗)((𝐹‘𝑗)𝐷(𝐹‘𝑛)) < 𝑥) |
| 187 | | metxmet 24228 |
. . . 4
⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
| 188 | 62, 187 | syl 17 |
. . 3
⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
| 189 | | eqidd 2731 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) = (𝐹‘𝑛)) |
| 190 | | eqidd 2731 |
. . 3
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐹‘𝑗) = (𝐹‘𝑗)) |
| 191 | 1, 188, 2, 189, 190, 64 | iscauf 25187 |
. 2
⊢ (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑛 ∈
(ℤ≥‘𝑗)((𝐹‘𝑗)𝐷(𝐹‘𝑛)) < 𝑥)) |
| 192 | 186, 191 | mpbird 257 |
1
⊢ (𝜑 → 𝐹 ∈ (Cau‘𝐷)) |