Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  geomcau Structured version   Visualization version   GIF version

Theorem geomcau 37748
Description: If the distance between consecutive points in a sequence is bounded by a geometric sequence, then the sequence is Cauchy. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 5-Jun-2014.)
Hypotheses
Ref Expression
lmclim2.2 (𝜑𝐷 ∈ (Met‘𝑋))
lmclim2.3 (𝜑𝐹:ℕ⟶𝑋)
geomcau.4 (𝜑𝐴 ∈ ℝ)
geomcau.5 (𝜑𝐵 ∈ ℝ+)
geomcau.6 (𝜑𝐵 < 1)
geomcau.7 ((𝜑𝑘 ∈ ℕ) → ((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (𝐵𝑘)))
Assertion
Ref Expression
geomcau (𝜑𝐹 ∈ (Cau‘𝐷))
Distinct variable groups:   𝐷,𝑘   𝑘,𝐹   𝑘,𝑋   𝐴,𝑘   𝐵,𝑘   𝜑,𝑘

Proof of Theorem geomcau
Dummy variables 𝑗 𝑛 𝑥 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 12842 . . . . . 6 ℕ = (ℤ‘1)
2 1zzd 12570 . . . . . 6 (𝜑 → 1 ∈ ℤ)
3 geomcau.5 . . . . . . . 8 (𝜑𝐵 ∈ ℝ+)
43rpcnd 13003 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
53rpred 13001 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ)
63rpge0d 13005 . . . . . . . . 9 (𝜑 → 0 ≤ 𝐵)
75, 6absidd 15395 . . . . . . . 8 (𝜑 → (abs‘𝐵) = 𝐵)
8 geomcau.6 . . . . . . . 8 (𝜑𝐵 < 1)
97, 8eqbrtrd 5131 . . . . . . 7 (𝜑 → (abs‘𝐵) < 1)
104, 9expcnv 15836 . . . . . 6 (𝜑 → (𝑚 ∈ ℕ0 ↦ (𝐵𝑚)) ⇝ 0)
11 geomcau.4 . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
12 1re 11180 . . . . . . . . . 10 1 ∈ ℝ
13 resubcl 11492 . . . . . . . . . 10 ((1 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 − 𝐵) ∈ ℝ)
1412, 5, 13sylancr 587 . . . . . . . . 9 (𝜑 → (1 − 𝐵) ∈ ℝ)
15 posdif 11677 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐵 < 1 ↔ 0 < (1 − 𝐵)))
165, 12, 15sylancl 586 . . . . . . . . . 10 (𝜑 → (𝐵 < 1 ↔ 0 < (1 − 𝐵)))
178, 16mpbid 232 . . . . . . . . 9 (𝜑 → 0 < (1 − 𝐵))
1814, 17elrpd 12998 . . . . . . . 8 (𝜑 → (1 − 𝐵) ∈ ℝ+)
1911, 18rerpdivcld 13032 . . . . . . 7 (𝜑 → (𝐴 / (1 − 𝐵)) ∈ ℝ)
2019recnd 11208 . . . . . 6 (𝜑 → (𝐴 / (1 − 𝐵)) ∈ ℂ)
21 nnex 12193 . . . . . . . 8 ℕ ∈ V
2221mptex 7199 . . . . . . 7 (𝑚 ∈ ℕ ↦ ((𝐵𝑚) · (𝐴 / (1 − 𝐵)))) ∈ V
2322a1i 11 . . . . . 6 (𝜑 → (𝑚 ∈ ℕ ↦ ((𝐵𝑚) · (𝐴 / (1 − 𝐵)))) ∈ V)
24 nnnn0 12455 . . . . . . . . 9 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
2524adantl 481 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
26 oveq2 7397 . . . . . . . . 9 (𝑚 = 𝑛 → (𝐵𝑚) = (𝐵𝑛))
27 eqid 2730 . . . . . . . . 9 (𝑚 ∈ ℕ0 ↦ (𝐵𝑚)) = (𝑚 ∈ ℕ0 ↦ (𝐵𝑚))
28 ovex 7422 . . . . . . . . 9 (𝐵𝑛) ∈ V
2926, 27, 28fvmpt 6970 . . . . . . . 8 (𝑛 ∈ ℕ0 → ((𝑚 ∈ ℕ0 ↦ (𝐵𝑚))‘𝑛) = (𝐵𝑛))
3025, 29syl 17 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ0 ↦ (𝐵𝑚))‘𝑛) = (𝐵𝑛))
31 nnz 12556 . . . . . . . . 9 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
32 rpexpcl 14051 . . . . . . . . 9 ((𝐵 ∈ ℝ+𝑛 ∈ ℤ) → (𝐵𝑛) ∈ ℝ+)
333, 31, 32syl2an 596 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝐵𝑛) ∈ ℝ+)
3433rpcnd 13003 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐵𝑛) ∈ ℂ)
3530, 34eqeltrd 2829 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ0 ↦ (𝐵𝑚))‘𝑛) ∈ ℂ)
3620adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝐴 / (1 − 𝐵)) ∈ ℂ)
3734, 36mulcomd 11201 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((𝐵𝑛) · (𝐴 / (1 − 𝐵))) = ((𝐴 / (1 − 𝐵)) · (𝐵𝑛)))
3826oveq1d 7404 . . . . . . . . 9 (𝑚 = 𝑛 → ((𝐵𝑚) · (𝐴 / (1 − 𝐵))) = ((𝐵𝑛) · (𝐴 / (1 − 𝐵))))
39 eqid 2730 . . . . . . . . 9 (𝑚 ∈ ℕ ↦ ((𝐵𝑚) · (𝐴 / (1 − 𝐵)))) = (𝑚 ∈ ℕ ↦ ((𝐵𝑚) · (𝐴 / (1 − 𝐵))))
40 ovex 7422 . . . . . . . . 9 ((𝐵𝑛) · (𝐴 / (1 − 𝐵))) ∈ V
4138, 39, 40fvmpt 6970 . . . . . . . 8 (𝑛 ∈ ℕ → ((𝑚 ∈ ℕ ↦ ((𝐵𝑚) · (𝐴 / (1 − 𝐵))))‘𝑛) = ((𝐵𝑛) · (𝐴 / (1 − 𝐵))))
4241adantl 481 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((𝐵𝑚) · (𝐴 / (1 − 𝐵))))‘𝑛) = ((𝐵𝑛) · (𝐴 / (1 − 𝐵))))
4330oveq2d 7405 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((𝐴 / (1 − 𝐵)) · ((𝑚 ∈ ℕ0 ↦ (𝐵𝑚))‘𝑛)) = ((𝐴 / (1 − 𝐵)) · (𝐵𝑛)))
4437, 42, 433eqtr4d 2775 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((𝐵𝑚) · (𝐴 / (1 − 𝐵))))‘𝑛) = ((𝐴 / (1 − 𝐵)) · ((𝑚 ∈ ℕ0 ↦ (𝐵𝑚))‘𝑛)))
451, 2, 10, 20, 23, 35, 44climmulc2 15609 . . . . 5 (𝜑 → (𝑚 ∈ ℕ ↦ ((𝐵𝑚) · (𝐴 / (1 − 𝐵)))) ⇝ ((𝐴 / (1 − 𝐵)) · 0))
4620mul01d 11379 . . . . 5 (𝜑 → ((𝐴 / (1 − 𝐵)) · 0) = 0)
4745, 46breqtrd 5135 . . . 4 (𝜑 → (𝑚 ∈ ℕ ↦ ((𝐵𝑚) · (𝐴 / (1 − 𝐵)))) ⇝ 0)
4833rpred 13001 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐵𝑛) ∈ ℝ)
4919adantr 480 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐴 / (1 − 𝐵)) ∈ ℝ)
5048, 49remulcld 11210 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝐵𝑛) · (𝐴 / (1 − 𝐵))) ∈ ℝ)
5150recnd 11208 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝐵𝑛) · (𝐴 / (1 − 𝐵))) ∈ ℂ)
521, 2, 23, 42, 51clim0c 15479 . . . 4 (𝜑 → ((𝑚 ∈ ℕ ↦ ((𝐵𝑚) · (𝐴 / (1 − 𝐵)))) ⇝ 0 ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗)(abs‘((𝐵𝑛) · (𝐴 / (1 − 𝐵)))) < 𝑥))
5347, 52mpbid 232 . . 3 (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗)(abs‘((𝐵𝑛) · (𝐴 / (1 − 𝐵)))) < 𝑥)
54 nnz 12556 . . . . . . . 8 (𝑗 ∈ ℕ → 𝑗 ∈ ℤ)
5554adantl 481 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℤ)
56 uzid 12814 . . . . . . 7 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
57 oveq2 7397 . . . . . . . . . 10 (𝑛 = 𝑗 → (𝐵𝑛) = (𝐵𝑗))
5857fvoveq1d 7411 . . . . . . . . 9 (𝑛 = 𝑗 → (abs‘((𝐵𝑛) · (𝐴 / (1 − 𝐵)))) = (abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))))
5958breq1d 5119 . . . . . . . 8 (𝑛 = 𝑗 → ((abs‘((𝐵𝑛) · (𝐴 / (1 − 𝐵)))) < 𝑥 ↔ (abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))) < 𝑥))
6059rspcv 3587 . . . . . . 7 (𝑗 ∈ (ℤ𝑗) → (∀𝑛 ∈ (ℤ𝑗)(abs‘((𝐵𝑛) · (𝐴 / (1 − 𝐵)))) < 𝑥 → (abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))) < 𝑥))
6155, 56, 603syl 18 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (∀𝑛 ∈ (ℤ𝑗)(abs‘((𝐵𝑛) · (𝐴 / (1 − 𝐵)))) < 𝑥 → (abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))) < 𝑥))
62 lmclim2.2 . . . . . . . . . . . . 13 (𝜑𝐷 ∈ (Met‘𝑋))
6362adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → 𝐷 ∈ (Met‘𝑋))
64 lmclim2.3 . . . . . . . . . . . . 13 (𝜑𝐹:ℕ⟶𝑋)
65 simpl 482 . . . . . . . . . . . . 13 ((𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗)) → 𝑗 ∈ ℕ)
66 ffvelcdm 7055 . . . . . . . . . . . . 13 ((𝐹:ℕ⟶𝑋𝑗 ∈ ℕ) → (𝐹𝑗) ∈ 𝑋)
6764, 65, 66syl2an 596 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → (𝐹𝑗) ∈ 𝑋)
68 eluznn 12883 . . . . . . . . . . . . 13 ((𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗)) → 𝑛 ∈ ℕ)
69 ffvelcdm 7055 . . . . . . . . . . . . 13 ((𝐹:ℕ⟶𝑋𝑛 ∈ ℕ) → (𝐹𝑛) ∈ 𝑋)
7064, 68, 69syl2an 596 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → (𝐹𝑛) ∈ 𝑋)
71 metcl 24226 . . . . . . . . . . . 12 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹𝑗) ∈ 𝑋 ∧ (𝐹𝑛) ∈ 𝑋) → ((𝐹𝑗)𝐷(𝐹𝑛)) ∈ ℝ)
7263, 67, 70, 71syl3anc 1373 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → ((𝐹𝑗)𝐷(𝐹𝑛)) ∈ ℝ)
73 eqid 2730 . . . . . . . . . . . . 13 (ℤ𝑗) = (ℤ𝑗)
74 nnnn0 12455 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → 𝑗 ∈ ℕ0)
7574ad2antrl 728 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → 𝑗 ∈ ℕ0)
7675nn0zd 12561 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → 𝑗 ∈ ℤ)
77 oveq2 7397 . . . . . . . . . . . . . . . 16 (𝑚 = 𝑘 → (𝐵𝑚) = (𝐵𝑘))
7877oveq2d 7405 . . . . . . . . . . . . . . 15 (𝑚 = 𝑘 → (𝐴 · (𝐵𝑚)) = (𝐴 · (𝐵𝑘)))
79 eqid 2730 . . . . . . . . . . . . . . 15 (𝑚 ∈ (ℤ𝑗) ↦ (𝐴 · (𝐵𝑚))) = (𝑚 ∈ (ℤ𝑗) ↦ (𝐴 · (𝐵𝑚)))
80 ovex 7422 . . . . . . . . . . . . . . 15 (𝐴 · (𝐵𝑘)) ∈ V
8178, 79, 80fvmpt 6970 . . . . . . . . . . . . . 14 (𝑘 ∈ (ℤ𝑗) → ((𝑚 ∈ (ℤ𝑗) ↦ (𝐴 · (𝐵𝑚)))‘𝑘) = (𝐴 · (𝐵𝑘)))
8281adantl 481 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝑚 ∈ (ℤ𝑗) ↦ (𝐴 · (𝐵𝑚)))‘𝑘) = (𝐴 · (𝐵𝑘)))
8311ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝐴 ∈ ℝ)
845ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝐵 ∈ ℝ)
85 eluznn0 12882 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ ℕ0𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ0)
8675, 85sylan 580 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ0)
8784, 86reexpcld 14134 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐵𝑘) ∈ ℝ)
8883, 87remulcld 11210 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐴 · (𝐵𝑘)) ∈ ℝ)
8988recnd 11208 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐴 · (𝐵𝑘)) ∈ ℂ)
9011recnd 11208 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ ℂ)
9190adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → 𝐴 ∈ ℂ)
924adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → 𝐵 ∈ ℂ)
939adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → (abs‘𝐵) < 1)
94 eqid 2730 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ (ℤ𝑗) ↦ (𝐵𝑚)) = (𝑚 ∈ (ℤ𝑗) ↦ (𝐵𝑚))
95 ovex 7422 . . . . . . . . . . . . . . . . . 18 (𝐵𝑘) ∈ V
9677, 94, 95fvmpt 6970 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (ℤ𝑗) → ((𝑚 ∈ (ℤ𝑗) ↦ (𝐵𝑚))‘𝑘) = (𝐵𝑘))
9796adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝑚 ∈ (ℤ𝑗) ↦ (𝐵𝑚))‘𝑘) = (𝐵𝑘))
9892, 93, 75, 97geolim2 15843 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → seq𝑗( + , (𝑚 ∈ (ℤ𝑗) ↦ (𝐵𝑚))) ⇝ ((𝐵𝑗) / (1 − 𝐵)))
9987recnd 11208 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐵𝑘) ∈ ℂ)
10097, 99eqeltrd 2829 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝑚 ∈ (ℤ𝑗) ↦ (𝐵𝑚))‘𝑘) ∈ ℂ)
10197oveq2d 7405 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐴 · ((𝑚 ∈ (ℤ𝑗) ↦ (𝐵𝑚))‘𝑘)) = (𝐴 · (𝐵𝑘)))
10282, 101eqtr4d 2768 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝑚 ∈ (ℤ𝑗) ↦ (𝐴 · (𝐵𝑚)))‘𝑘) = (𝐴 · ((𝑚 ∈ (ℤ𝑗) ↦ (𝐵𝑚))‘𝑘)))
10373, 76, 91, 98, 100, 102isermulc2 15630 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → seq𝑗( + , (𝑚 ∈ (ℤ𝑗) ↦ (𝐴 · (𝐵𝑚)))) ⇝ (𝐴 · ((𝐵𝑗) / (1 − 𝐵))))
1043adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → 𝐵 ∈ ℝ+)
105104, 76rpexpcld 14218 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → (𝐵𝑗) ∈ ℝ+)
106105rpcnd 13003 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → (𝐵𝑗) ∈ ℂ)
10714recnd 11208 . . . . . . . . . . . . . . . 16 (𝜑 → (1 − 𝐵) ∈ ℂ)
108107adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → (1 − 𝐵) ∈ ℂ)
10918rpne0d 13006 . . . . . . . . . . . . . . . 16 (𝜑 → (1 − 𝐵) ≠ 0)
110109adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → (1 − 𝐵) ≠ 0)
11191, 106, 108, 110div12d 12000 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → (𝐴 · ((𝐵𝑗) / (1 − 𝐵))) = ((𝐵𝑗) · (𝐴 / (1 − 𝐵))))
112103, 111breqtrd 5135 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → seq𝑗( + , (𝑚 ∈ (ℤ𝑗) ↦ (𝐴 · (𝐵𝑚)))) ⇝ ((𝐵𝑗) · (𝐴 / (1 − 𝐵))))
11373, 76, 82, 89, 112isumclim 15729 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (ℤ𝑗)(𝐴 · (𝐵𝑘)) = ((𝐵𝑗) · (𝐴 / (1 − 𝐵))))
114 seqex 13974 . . . . . . . . . . . . . . 15 seq𝑗( + , (𝑚 ∈ (ℤ𝑗) ↦ (𝐴 · (𝐵𝑚)))) ∈ V
115 ovex 7422 . . . . . . . . . . . . . . 15 (𝐴 · ((𝐵𝑗) / (1 − 𝐵))) ∈ V
116114, 115breldm 5874 . . . . . . . . . . . . . 14 (seq𝑗( + , (𝑚 ∈ (ℤ𝑗) ↦ (𝐴 · (𝐵𝑚)))) ⇝ (𝐴 · ((𝐵𝑗) / (1 − 𝐵))) → seq𝑗( + , (𝑚 ∈ (ℤ𝑗) ↦ (𝐴 · (𝐵𝑚)))) ∈ dom ⇝ )
117103, 116syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → seq𝑗( + , (𝑚 ∈ (ℤ𝑗) ↦ (𝐴 · (𝐵𝑚)))) ∈ dom ⇝ )
11873, 76, 82, 88, 117isumrecl 15737 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (ℤ𝑗)(𝐴 · (𝐵𝑘)) ∈ ℝ)
119113, 118eqeltrrd 2830 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → ((𝐵𝑗) · (𝐴 / (1 − 𝐵))) ∈ ℝ)
120119recnd 11208 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → ((𝐵𝑗) · (𝐴 / (1 − 𝐵))) ∈ ℂ)
121120abscld 15411 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → (abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))) ∈ ℝ)
122 fzfid 13944 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → (𝑗...(𝑛 − 1)) ∈ Fin)
123 simpll 766 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑗...(𝑛 − 1))) → 𝜑)
124 elfzuz 13487 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (𝑗...(𝑛 − 1)) → 𝑘 ∈ (ℤ𝑗))
125 simprl 770 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → 𝑗 ∈ ℕ)
126 eluznn 12883 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
127125, 126sylan 580 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
128124, 127sylan2 593 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑗...(𝑛 − 1))) → 𝑘 ∈ ℕ)
12962adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ) → 𝐷 ∈ (Met‘𝑋))
13064ffvelcdmda 7058 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ 𝑋)
131 peano2nn 12199 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
132 ffvelcdm 7055 . . . . . . . . . . . . . . . . 17 ((𝐹:ℕ⟶𝑋 ∧ (𝑘 + 1) ∈ ℕ) → (𝐹‘(𝑘 + 1)) ∈ 𝑋)
13364, 131, 132syl2an 596 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ∈ 𝑋)
134 metcl 24226 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹𝑘) ∈ 𝑋 ∧ (𝐹‘(𝑘 + 1)) ∈ 𝑋) → ((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) ∈ ℝ)
135129, 130, 133, 134syl3anc 1373 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → ((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) ∈ ℝ)
136123, 128, 135syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑗...(𝑛 − 1))) → ((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) ∈ ℝ)
137122, 136fsumrecl 15706 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (𝑗...(𝑛 − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) ∈ ℝ)
138 simprr 772 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → 𝑛 ∈ (ℤ𝑗))
139 elfzuz 13487 . . . . . . . . . . . . . . 15 (𝑘 ∈ (𝑗...𝑛) → 𝑘 ∈ (ℤ𝑗))
140 simpll 766 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝜑)
141140, 127, 130syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ 𝑋)
142139, 141sylan2 593 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑗...𝑛)) → (𝐹𝑘) ∈ 𝑋)
14363, 138, 142mettrifi 37746 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → ((𝐹𝑗)𝐷(𝐹𝑛)) ≤ Σ𝑘 ∈ (𝑗...(𝑛 − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))))
144124, 88sylan2 593 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑗...(𝑛 − 1))) → (𝐴 · (𝐵𝑘)) ∈ ℝ)
145122, 144fsumrecl 15706 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (𝑗...(𝑛 − 1))(𝐴 · (𝐵𝑘)) ∈ ℝ)
146 geomcau.7 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ) → ((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (𝐵𝑘)))
147123, 128, 146syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑗...(𝑛 − 1))) → ((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (𝐵𝑘)))
148122, 136, 144, 147fsumle 15771 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (𝑗...(𝑛 − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) ≤ Σ𝑘 ∈ (𝑗...(𝑛 − 1))(𝐴 · (𝐵𝑘)))
149 fzssuz 13532 . . . . . . . . . . . . . . . 16 (𝑗...(𝑛 − 1)) ⊆ (ℤ𝑗)
150149a1i 11 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → (𝑗...(𝑛 − 1)) ⊆ (ℤ𝑗))
151 0red 11183 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℕ) → 0 ∈ ℝ)
152 nnz 12556 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
153 rpexpcl 14051 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ ℝ+𝑘 ∈ ℤ) → (𝐵𝑘) ∈ ℝ+)
1543, 152, 153syl2an 596 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ ℕ) → (𝐵𝑘) ∈ ℝ+)
155135, 154rerpdivcld 13032 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℕ) → (((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) / (𝐵𝑘)) ∈ ℝ)
15611adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ ℝ)
157 metge0 24239 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹𝑘) ∈ 𝑋 ∧ (𝐹‘(𝑘 + 1)) ∈ 𝑋) → 0 ≤ ((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))))
158129, 130, 133, 157syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ ℕ) → 0 ≤ ((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))))
159135, 154, 158divge0d 13041 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℕ) → 0 ≤ (((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) / (𝐵𝑘)))
160135, 156, 154ledivmul2d 13055 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ ℕ) → ((((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) / (𝐵𝑘)) ≤ 𝐴 ↔ ((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (𝐵𝑘))))
161146, 160mpbird 257 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℕ) → (((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) / (𝐵𝑘)) ≤ 𝐴)
162151, 155, 156, 159, 161letrd 11337 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ℕ) → 0 ≤ 𝐴)
163140, 127, 162syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → 0 ≤ 𝐴)
164140, 127, 154syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐵𝑘) ∈ ℝ+)
165164rpge0d 13005 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → 0 ≤ (𝐵𝑘))
16683, 87, 163, 165mulge0d 11761 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → 0 ≤ (𝐴 · (𝐵𝑘)))
16773, 76, 122, 150, 82, 88, 166, 117isumless 15817 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (𝑗...(𝑛 − 1))(𝐴 · (𝐵𝑘)) ≤ Σ𝑘 ∈ (ℤ𝑗)(𝐴 · (𝐵𝑘)))
168137, 145, 118, 148, 167letrd 11337 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (𝑗...(𝑛 − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) ≤ Σ𝑘 ∈ (ℤ𝑗)(𝐴 · (𝐵𝑘)))
16972, 137, 118, 143, 168letrd 11337 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → ((𝐹𝑗)𝐷(𝐹𝑛)) ≤ Σ𝑘 ∈ (ℤ𝑗)(𝐴 · (𝐵𝑘)))
170169, 113breqtrd 5135 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → ((𝐹𝑗)𝐷(𝐹𝑛)) ≤ ((𝐵𝑗) · (𝐴 / (1 − 𝐵))))
171119leabsd 15387 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → ((𝐵𝑗) · (𝐴 / (1 − 𝐵))) ≤ (abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))))
17272, 119, 121, 170, 171letrd 11337 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → ((𝐹𝑗)𝐷(𝐹𝑛)) ≤ (abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))))
173172adantlr 715 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → ((𝐹𝑗)𝐷(𝐹𝑛)) ≤ (abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))))
17472adantlr 715 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → ((𝐹𝑗)𝐷(𝐹𝑛)) ∈ ℝ)
175121adantlr 715 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → (abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))) ∈ ℝ)
176 rpre 12966 . . . . . . . . . . 11 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
177176ad2antlr 727 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → 𝑥 ∈ ℝ)
178 lelttr 11270 . . . . . . . . . 10 ((((𝐹𝑗)𝐷(𝐹𝑛)) ∈ ℝ ∧ (abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((((𝐹𝑗)𝐷(𝐹𝑛)) ≤ (abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))) ∧ (abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))) < 𝑥) → ((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥))
179174, 175, 177, 178syl3anc 1373 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → ((((𝐹𝑗)𝐷(𝐹𝑛)) ≤ (abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))) ∧ (abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))) < 𝑥) → ((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥))
180173, 179mpand 695 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → ((abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))) < 𝑥 → ((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥))
181180anassrs 467 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (ℤ𝑗)) → ((abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))) < 𝑥 → ((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥))
182181ralrimdva 3134 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → ((abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))) < 𝑥 → ∀𝑛 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥))
18361, 182syld 47 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (∀𝑛 ∈ (ℤ𝑗)(abs‘((𝐵𝑛) · (𝐴 / (1 − 𝐵)))) < 𝑥 → ∀𝑛 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥))
184183reximdva 3147 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (∃𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗)(abs‘((𝐵𝑛) · (𝐴 / (1 − 𝐵)))) < 𝑥 → ∃𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥))
185184ralimdva 3146 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗)(abs‘((𝐵𝑛) · (𝐴 / (1 − 𝐵)))) < 𝑥 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥))
18653, 185mpd 15 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥)
187 metxmet 24228 . . . 4 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
18862, 187syl 17 . . 3 (𝜑𝐷 ∈ (∞Met‘𝑋))
189 eqidd 2731 . . 3 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) = (𝐹𝑛))
190 eqidd 2731 . . 3 ((𝜑𝑗 ∈ ℕ) → (𝐹𝑗) = (𝐹𝑗))
1911, 188, 2, 189, 190, 64iscauf 25186 . 2 (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥))
192186, 191mpbird 257 1 (𝜑𝐹 ∈ (Cau‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  Vcvv 3450  wss 3916   class class class wbr 5109  cmpt 5190  dom cdm 5640  wf 6509  cfv 6513  (class class class)co 7389  cc 11072  cr 11073  0cc0 11074  1c1 11075   + caddc 11077   · cmul 11079   < clt 11214  cle 11215  cmin 11411   / cdiv 11841  cn 12187  0cn0 12448  cz 12535  cuz 12799  +crp 12957  ...cfz 13474  seqcseq 13972  cexp 14032  abscabs 15206  cli 15456  Σcsu 15658  ∞Metcxmet 21255  Metcmet 21256  Cauccau 25159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-inf2 9600  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151  ax-pre-sup 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-se 5594  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-isom 6522  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-er 8673  df-map 8803  df-pm 8804  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-sup 9399  df-inf 9400  df-oi 9469  df-card 9898  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-div 11842  df-nn 12188  df-2 12250  df-3 12251  df-n0 12449  df-z 12536  df-uz 12800  df-rp 12958  df-xneg 13078  df-xadd 13079  df-xmul 13080  df-ico 13318  df-fz 13475  df-fzo 13622  df-fl 13760  df-seq 13973  df-exp 14033  df-hash 14302  df-cj 15071  df-re 15072  df-im 15073  df-sqrt 15207  df-abs 15208  df-clim 15460  df-rlim 15461  df-sum 15659  df-psmet 21262  df-xmet 21263  df-met 21264  df-bl 21265  df-cau 25162
This theorem is referenced by:  bfplem1  37811
  Copyright terms: Public domain W3C validator