| Step | Hyp | Ref
 | Expression | 
| 1 |   | nnuz 12902 | 
. . . . . 6
⊢ ℕ =
(ℤ≥‘1) | 
| 2 |   | 1zzd 12630 | 
. . . . . 6
⊢ (𝜑 → 1 ∈
ℤ) | 
| 3 |   | geomcau.5 | 
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈
ℝ+) | 
| 4 | 3 | rpcnd 13060 | 
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ ℂ) | 
| 5 | 3 | rpred 13058 | 
. . . . . . . . 9
⊢ (𝜑 → 𝐵 ∈ ℝ) | 
| 6 | 3 | rpge0d 13062 | 
. . . . . . . . 9
⊢ (𝜑 → 0 ≤ 𝐵) | 
| 7 | 5, 6 | absidd 15442 | 
. . . . . . . 8
⊢ (𝜑 → (abs‘𝐵) = 𝐵) | 
| 8 |   | geomcau.6 | 
. . . . . . . 8
⊢ (𝜑 → 𝐵 < 1) | 
| 9 | 7, 8 | eqbrtrd 5145 | 
. . . . . . 7
⊢ (𝜑 → (abs‘𝐵) < 1) | 
| 10 | 4, 9 | expcnv 15881 | 
. . . . . 6
⊢ (𝜑 → (𝑚 ∈ ℕ0 ↦ (𝐵↑𝑚)) ⇝ 0) | 
| 11 |   | geomcau.4 | 
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ ℝ) | 
| 12 |   | 1re 11242 | 
. . . . . . . . . 10
⊢ 1 ∈
ℝ | 
| 13 |   | resubcl 11554 | 
. . . . . . . . . 10
⊢ ((1
∈ ℝ ∧ 𝐵
∈ ℝ) → (1 − 𝐵) ∈ ℝ) | 
| 14 | 12, 5, 13 | sylancr 587 | 
. . . . . . . . 9
⊢ (𝜑 → (1 − 𝐵) ∈
ℝ) | 
| 15 |   | posdif 11737 | 
. . . . . . . . . . 11
⊢ ((𝐵 ∈ ℝ ∧ 1 ∈
ℝ) → (𝐵 < 1
↔ 0 < (1 − 𝐵))) | 
| 16 | 5, 12, 15 | sylancl 586 | 
. . . . . . . . . 10
⊢ (𝜑 → (𝐵 < 1 ↔ 0 < (1 − 𝐵))) | 
| 17 | 8, 16 | mpbid 232 | 
. . . . . . . . 9
⊢ (𝜑 → 0 < (1 − 𝐵)) | 
| 18 | 14, 17 | elrpd 13055 | 
. . . . . . . 8
⊢ (𝜑 → (1 − 𝐵) ∈
ℝ+) | 
| 19 | 11, 18 | rerpdivcld 13089 | 
. . . . . . 7
⊢ (𝜑 → (𝐴 / (1 − 𝐵)) ∈ ℝ) | 
| 20 | 19 | recnd 11270 | 
. . . . . 6
⊢ (𝜑 → (𝐴 / (1 − 𝐵)) ∈ ℂ) | 
| 21 |   | nnex 12253 | 
. . . . . . . 8
⊢ ℕ
∈ V | 
| 22 | 21 | mptex 7224 | 
. . . . . . 7
⊢ (𝑚 ∈ ℕ ↦ ((𝐵↑𝑚) · (𝐴 / (1 − 𝐵)))) ∈ V | 
| 23 | 22 | a1i 11 | 
. . . . . 6
⊢ (𝜑 → (𝑚 ∈ ℕ ↦ ((𝐵↑𝑚) · (𝐴 / (1 − 𝐵)))) ∈ V) | 
| 24 |   | nnnn0 12515 | 
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℕ0) | 
| 25 | 24 | adantl 481 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0) | 
| 26 |   | oveq2 7420 | 
. . . . . . . . 9
⊢ (𝑚 = 𝑛 → (𝐵↑𝑚) = (𝐵↑𝑛)) | 
| 27 |   | eqid 2734 | 
. . . . . . . . 9
⊢ (𝑚 ∈ ℕ0
↦ (𝐵↑𝑚)) = (𝑚 ∈ ℕ0 ↦ (𝐵↑𝑚)) | 
| 28 |   | ovex 7445 | 
. . . . . . . . 9
⊢ (𝐵↑𝑛) ∈ V | 
| 29 | 26, 27, 28 | fvmpt 6995 | 
. . . . . . . 8
⊢ (𝑛 ∈ ℕ0
→ ((𝑚 ∈
ℕ0 ↦ (𝐵↑𝑚))‘𝑛) = (𝐵↑𝑛)) | 
| 30 | 25, 29 | syl 17 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ0 ↦ (𝐵↑𝑚))‘𝑛) = (𝐵↑𝑛)) | 
| 31 |   | nnz 12616 | 
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℤ) | 
| 32 |   | rpexpcl 14102 | 
. . . . . . . . 9
⊢ ((𝐵 ∈ ℝ+
∧ 𝑛 ∈ ℤ)
→ (𝐵↑𝑛) ∈
ℝ+) | 
| 33 | 3, 31, 32 | syl2an 596 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐵↑𝑛) ∈
ℝ+) | 
| 34 | 33 | rpcnd 13060 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐵↑𝑛) ∈ ℂ) | 
| 35 | 30, 34 | eqeltrd 2833 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ0 ↦ (𝐵↑𝑚))‘𝑛) ∈ ℂ) | 
| 36 | 20 | adantr 480 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐴 / (1 − 𝐵)) ∈ ℂ) | 
| 37 | 34, 36 | mulcomd 11263 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐵↑𝑛) · (𝐴 / (1 − 𝐵))) = ((𝐴 / (1 − 𝐵)) · (𝐵↑𝑛))) | 
| 38 | 26 | oveq1d 7427 | 
. . . . . . . . 9
⊢ (𝑚 = 𝑛 → ((𝐵↑𝑚) · (𝐴 / (1 − 𝐵))) = ((𝐵↑𝑛) · (𝐴 / (1 − 𝐵)))) | 
| 39 |   | eqid 2734 | 
. . . . . . . . 9
⊢ (𝑚 ∈ ℕ ↦ ((𝐵↑𝑚) · (𝐴 / (1 − 𝐵)))) = (𝑚 ∈ ℕ ↦ ((𝐵↑𝑚) · (𝐴 / (1 − 𝐵)))) | 
| 40 |   | ovex 7445 | 
. . . . . . . . 9
⊢ ((𝐵↑𝑛) · (𝐴 / (1 − 𝐵))) ∈ V | 
| 41 | 38, 39, 40 | fvmpt 6995 | 
. . . . . . . 8
⊢ (𝑛 ∈ ℕ → ((𝑚 ∈ ℕ ↦ ((𝐵↑𝑚) · (𝐴 / (1 − 𝐵))))‘𝑛) = ((𝐵↑𝑛) · (𝐴 / (1 − 𝐵)))) | 
| 42 | 41 | adantl 481 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((𝐵↑𝑚) · (𝐴 / (1 − 𝐵))))‘𝑛) = ((𝐵↑𝑛) · (𝐴 / (1 − 𝐵)))) | 
| 43 | 30 | oveq2d 7428 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐴 / (1 − 𝐵)) · ((𝑚 ∈ ℕ0 ↦ (𝐵↑𝑚))‘𝑛)) = ((𝐴 / (1 − 𝐵)) · (𝐵↑𝑛))) | 
| 44 | 37, 42, 43 | 3eqtr4d 2779 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((𝐵↑𝑚) · (𝐴 / (1 − 𝐵))))‘𝑛) = ((𝐴 / (1 − 𝐵)) · ((𝑚 ∈ ℕ0 ↦ (𝐵↑𝑚))‘𝑛))) | 
| 45 | 1, 2, 10, 20, 23, 35, 44 | climmulc2 15654 | 
. . . . 5
⊢ (𝜑 → (𝑚 ∈ ℕ ↦ ((𝐵↑𝑚) · (𝐴 / (1 − 𝐵)))) ⇝ ((𝐴 / (1 − 𝐵)) · 0)) | 
| 46 | 20 | mul01d 11441 | 
. . . . 5
⊢ (𝜑 → ((𝐴 / (1 − 𝐵)) · 0) = 0) | 
| 47 | 45, 46 | breqtrd 5149 | 
. . . 4
⊢ (𝜑 → (𝑚 ∈ ℕ ↦ ((𝐵↑𝑚) · (𝐴 / (1 − 𝐵)))) ⇝ 0) | 
| 48 | 33 | rpred 13058 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐵↑𝑛) ∈ ℝ) | 
| 49 | 19 | adantr 480 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐴 / (1 − 𝐵)) ∈ ℝ) | 
| 50 | 48, 49 | remulcld 11272 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐵↑𝑛) · (𝐴 / (1 − 𝐵))) ∈ ℝ) | 
| 51 | 50 | recnd 11270 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐵↑𝑛) · (𝐴 / (1 − 𝐵))) ∈ ℂ) | 
| 52 | 1, 2, 23, 42, 51 | clim0c 15524 | 
. . . 4
⊢ (𝜑 → ((𝑚 ∈ ℕ ↦ ((𝐵↑𝑚) · (𝐴 / (1 − 𝐵)))) ⇝ 0 ↔ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ ℕ
∀𝑛 ∈
(ℤ≥‘𝑗)(abs‘((𝐵↑𝑛) · (𝐴 / (1 − 𝐵)))) < 𝑥)) | 
| 53 | 47, 52 | mpbid 232 | 
. . 3
⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑛 ∈
(ℤ≥‘𝑗)(abs‘((𝐵↑𝑛) · (𝐴 / (1 − 𝐵)))) < 𝑥) | 
| 54 |   | nnz 12616 | 
. . . . . . . 8
⊢ (𝑗 ∈ ℕ → 𝑗 ∈
ℤ) | 
| 55 | 54 | adantl 481 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈
ℤ) | 
| 56 |   | uzid 12874 | 
. . . . . . 7
⊢ (𝑗 ∈ ℤ → 𝑗 ∈
(ℤ≥‘𝑗)) | 
| 57 |   | oveq2 7420 | 
. . . . . . . . . 10
⊢ (𝑛 = 𝑗 → (𝐵↑𝑛) = (𝐵↑𝑗)) | 
| 58 | 57 | fvoveq1d 7434 | 
. . . . . . . . 9
⊢ (𝑛 = 𝑗 → (abs‘((𝐵↑𝑛) · (𝐴 / (1 − 𝐵)))) = (abs‘((𝐵↑𝑗) · (𝐴 / (1 − 𝐵))))) | 
| 59 | 58 | breq1d 5133 | 
. . . . . . . 8
⊢ (𝑛 = 𝑗 → ((abs‘((𝐵↑𝑛) · (𝐴 / (1 − 𝐵)))) < 𝑥 ↔ (abs‘((𝐵↑𝑗) · (𝐴 / (1 − 𝐵)))) < 𝑥)) | 
| 60 | 59 | rspcv 3601 | 
. . . . . . 7
⊢ (𝑗 ∈
(ℤ≥‘𝑗) → (∀𝑛 ∈ (ℤ≥‘𝑗)(abs‘((𝐵↑𝑛) · (𝐴 / (1 − 𝐵)))) < 𝑥 → (abs‘((𝐵↑𝑗) · (𝐴 / (1 − 𝐵)))) < 𝑥)) | 
| 61 | 55, 56, 60 | 3syl 18 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) →
(∀𝑛 ∈
(ℤ≥‘𝑗)(abs‘((𝐵↑𝑛) · (𝐴 / (1 − 𝐵)))) < 𝑥 → (abs‘((𝐵↑𝑗) · (𝐴 / (1 − 𝐵)))) < 𝑥)) | 
| 62 |   | lmclim2.2 | 
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) | 
| 63 | 62 | adantr 480 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → 𝐷 ∈ (Met‘𝑋)) | 
| 64 |   | lmclim2.3 | 
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹:ℕ⟶𝑋) | 
| 65 |   | simpl 482 | 
. . . . . . . . . . . . 13
⊢ ((𝑗 ∈ ℕ ∧ 𝑛 ∈
(ℤ≥‘𝑗)) → 𝑗 ∈ ℕ) | 
| 66 |   | ffvelcdm 7080 | 
. . . . . . . . . . . . 13
⊢ ((𝐹:ℕ⟶𝑋 ∧ 𝑗 ∈ ℕ) → (𝐹‘𝑗) ∈ 𝑋) | 
| 67 | 64, 65, 66 | syl2an 596 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (𝐹‘𝑗) ∈ 𝑋) | 
| 68 |   | eluznn 12941 | 
. . . . . . . . . . . . 13
⊢ ((𝑗 ∈ ℕ ∧ 𝑛 ∈
(ℤ≥‘𝑗)) → 𝑛 ∈ ℕ) | 
| 69 |   | ffvelcdm 7080 | 
. . . . . . . . . . . . 13
⊢ ((𝐹:ℕ⟶𝑋 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∈ 𝑋) | 
| 70 | 64, 68, 69 | syl2an 596 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (𝐹‘𝑛) ∈ 𝑋) | 
| 71 |   | metcl 24286 | 
. . . . . . . . . . . 12
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹‘𝑗) ∈ 𝑋 ∧ (𝐹‘𝑛) ∈ 𝑋) → ((𝐹‘𝑗)𝐷(𝐹‘𝑛)) ∈ ℝ) | 
| 72 | 63, 67, 70, 71 | syl3anc 1372 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → ((𝐹‘𝑗)𝐷(𝐹‘𝑛)) ∈ ℝ) | 
| 73 |   | eqid 2734 | 
. . . . . . . . . . . . 13
⊢
(ℤ≥‘𝑗) = (ℤ≥‘𝑗) | 
| 74 |   | nnnn0 12515 | 
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ ℕ → 𝑗 ∈
ℕ0) | 
| 75 | 74 | ad2antrl 728 | 
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → 𝑗 ∈ ℕ0) | 
| 76 | 75 | nn0zd 12621 | 
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → 𝑗 ∈ ℤ) | 
| 77 |   | oveq2 7420 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑚 = 𝑘 → (𝐵↑𝑚) = (𝐵↑𝑘)) | 
| 78 | 77 | oveq2d 7428 | 
. . . . . . . . . . . . . . 15
⊢ (𝑚 = 𝑘 → (𝐴 · (𝐵↑𝑚)) = (𝐴 · (𝐵↑𝑘))) | 
| 79 |   | eqid 2734 | 
. . . . . . . . . . . . . . 15
⊢ (𝑚 ∈
(ℤ≥‘𝑗) ↦ (𝐴 · (𝐵↑𝑚))) = (𝑚 ∈ (ℤ≥‘𝑗) ↦ (𝐴 · (𝐵↑𝑚))) | 
| 80 |   | ovex 7445 | 
. . . . . . . . . . . . . . 15
⊢ (𝐴 · (𝐵↑𝑘)) ∈ V | 
| 81 | 78, 79, 80 | fvmpt 6995 | 
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈
(ℤ≥‘𝑗) → ((𝑚 ∈ (ℤ≥‘𝑗) ↦ (𝐴 · (𝐵↑𝑚)))‘𝑘) = (𝐴 · (𝐵↑𝑘))) | 
| 82 | 81 | adantl 481 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((𝑚 ∈ (ℤ≥‘𝑗) ↦ (𝐴 · (𝐵↑𝑚)))‘𝑘) = (𝐴 · (𝐵↑𝑘))) | 
| 83 | 11 | ad2antrr 726 | 
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝐴 ∈ ℝ) | 
| 84 | 5 | ad2antrr 726 | 
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝐵 ∈ ℝ) | 
| 85 |   | eluznn0 12940 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝑗 ∈ ℕ0
∧ 𝑘 ∈
(ℤ≥‘𝑗)) → 𝑘 ∈ ℕ0) | 
| 86 | 75, 85 | sylan 580 | 
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ ℕ0) | 
| 87 | 84, 86 | reexpcld 14184 | 
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝐵↑𝑘) ∈ ℝ) | 
| 88 | 83, 87 | remulcld 11272 | 
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝐴 · (𝐵↑𝑘)) ∈ ℝ) | 
| 89 | 88 | recnd 11270 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝐴 · (𝐵↑𝑘)) ∈ ℂ) | 
| 90 | 11 | recnd 11270 | 
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐴 ∈ ℂ) | 
| 91 | 90 | adantr 480 | 
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → 𝐴 ∈ ℂ) | 
| 92 | 4 | adantr 480 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → 𝐵 ∈ ℂ) | 
| 93 | 9 | adantr 480 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (abs‘𝐵) < 1) | 
| 94 |   | eqid 2734 | 
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 ∈
(ℤ≥‘𝑗) ↦ (𝐵↑𝑚)) = (𝑚 ∈ (ℤ≥‘𝑗) ↦ (𝐵↑𝑚)) | 
| 95 |   | ovex 7445 | 
. . . . . . . . . . . . . . . . . 18
⊢ (𝐵↑𝑘) ∈ V | 
| 96 | 77, 94, 95 | fvmpt 6995 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈
(ℤ≥‘𝑗) → ((𝑚 ∈ (ℤ≥‘𝑗) ↦ (𝐵↑𝑚))‘𝑘) = (𝐵↑𝑘)) | 
| 97 | 96 | adantl 481 | 
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((𝑚 ∈ (ℤ≥‘𝑗) ↦ (𝐵↑𝑚))‘𝑘) = (𝐵↑𝑘)) | 
| 98 | 92, 93, 75, 97 | geolim2 15888 | 
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → seq𝑗( + , (𝑚 ∈ (ℤ≥‘𝑗) ↦ (𝐵↑𝑚))) ⇝ ((𝐵↑𝑗) / (1 − 𝐵))) | 
| 99 | 87 | recnd 11270 | 
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝐵↑𝑘) ∈ ℂ) | 
| 100 | 97, 99 | eqeltrd 2833 | 
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((𝑚 ∈ (ℤ≥‘𝑗) ↦ (𝐵↑𝑚))‘𝑘) ∈ ℂ) | 
| 101 | 97 | oveq2d 7428 | 
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝐴 · ((𝑚 ∈ (ℤ≥‘𝑗) ↦ (𝐵↑𝑚))‘𝑘)) = (𝐴 · (𝐵↑𝑘))) | 
| 102 | 82, 101 | eqtr4d 2772 | 
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((𝑚 ∈ (ℤ≥‘𝑗) ↦ (𝐴 · (𝐵↑𝑚)))‘𝑘) = (𝐴 · ((𝑚 ∈ (ℤ≥‘𝑗) ↦ (𝐵↑𝑚))‘𝑘))) | 
| 103 | 73, 76, 91, 98, 100, 102 | isermulc2 15675 | 
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → seq𝑗( + , (𝑚 ∈ (ℤ≥‘𝑗) ↦ (𝐴 · (𝐵↑𝑚)))) ⇝ (𝐴 · ((𝐵↑𝑗) / (1 − 𝐵)))) | 
| 104 | 3 | adantr 480 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → 𝐵 ∈
ℝ+) | 
| 105 | 104, 76 | rpexpcld 14267 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (𝐵↑𝑗) ∈
ℝ+) | 
| 106 | 105 | rpcnd 13060 | 
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (𝐵↑𝑗) ∈ ℂ) | 
| 107 | 14 | recnd 11270 | 
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (1 − 𝐵) ∈
ℂ) | 
| 108 | 107 | adantr 480 | 
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (1 − 𝐵) ∈
ℂ) | 
| 109 | 18 | rpne0d 13063 | 
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (1 − 𝐵) ≠ 0) | 
| 110 | 109 | adantr 480 | 
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (1 − 𝐵) ≠ 0) | 
| 111 | 91, 106, 108, 110 | div12d 12060 | 
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (𝐴 · ((𝐵↑𝑗) / (1 − 𝐵))) = ((𝐵↑𝑗) · (𝐴 / (1 − 𝐵)))) | 
| 112 | 103, 111 | breqtrd 5149 | 
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → seq𝑗( + , (𝑚 ∈ (ℤ≥‘𝑗) ↦ (𝐴 · (𝐵↑𝑚)))) ⇝ ((𝐵↑𝑗) · (𝐴 / (1 − 𝐵)))) | 
| 113 | 73, 76, 82, 89, 112 | isumclim 15774 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → Σ𝑘 ∈
(ℤ≥‘𝑗)(𝐴 · (𝐵↑𝑘)) = ((𝐵↑𝑗) · (𝐴 / (1 − 𝐵)))) | 
| 114 |   | seqex 14025 | 
. . . . . . . . . . . . . . 15
⊢ seq𝑗( + , (𝑚 ∈ (ℤ≥‘𝑗) ↦ (𝐴 · (𝐵↑𝑚)))) ∈ V | 
| 115 |   | ovex 7445 | 
. . . . . . . . . . . . . . 15
⊢ (𝐴 · ((𝐵↑𝑗) / (1 − 𝐵))) ∈ V | 
| 116 | 114, 115 | breldm 5899 | 
. . . . . . . . . . . . . 14
⊢ (seq𝑗( + , (𝑚 ∈ (ℤ≥‘𝑗) ↦ (𝐴 · (𝐵↑𝑚)))) ⇝ (𝐴 · ((𝐵↑𝑗) / (1 − 𝐵))) → seq𝑗( + , (𝑚 ∈ (ℤ≥‘𝑗) ↦ (𝐴 · (𝐵↑𝑚)))) ∈ dom ⇝ ) | 
| 117 | 103, 116 | syl 17 | 
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → seq𝑗( + , (𝑚 ∈ (ℤ≥‘𝑗) ↦ (𝐴 · (𝐵↑𝑚)))) ∈ dom ⇝ ) | 
| 118 | 73, 76, 82, 88, 117 | isumrecl 15782 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → Σ𝑘 ∈
(ℤ≥‘𝑗)(𝐴 · (𝐵↑𝑘)) ∈ ℝ) | 
| 119 | 113, 118 | eqeltrrd 2834 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → ((𝐵↑𝑗) · (𝐴 / (1 − 𝐵))) ∈ ℝ) | 
| 120 | 119 | recnd 11270 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → ((𝐵↑𝑗) · (𝐴 / (1 − 𝐵))) ∈ ℂ) | 
| 121 | 120 | abscld 15456 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (abs‘((𝐵↑𝑗) · (𝐴 / (1 − 𝐵)))) ∈ ℝ) | 
| 122 |   | fzfid 13995 | 
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (𝑗...(𝑛 − 1)) ∈ Fin) | 
| 123 |   | simpll 766 | 
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (𝑗...(𝑛 − 1))) → 𝜑) | 
| 124 |   | elfzuz 13541 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ (𝑗...(𝑛 − 1)) → 𝑘 ∈ (ℤ≥‘𝑗)) | 
| 125 |   | simprl 770 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → 𝑗 ∈ ℕ) | 
| 126 |   | eluznn 12941 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝑗 ∈ ℕ ∧ 𝑘 ∈
(ℤ≥‘𝑗)) → 𝑘 ∈ ℕ) | 
| 127 | 125, 126 | sylan 580 | 
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ ℕ) | 
| 128 | 124, 127 | sylan2 593 | 
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (𝑗...(𝑛 − 1))) → 𝑘 ∈ ℕ) | 
| 129 | 62 | adantr 480 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐷 ∈ (Met‘𝑋)) | 
| 130 | 64 | ffvelcdmda 7083 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ 𝑋) | 
| 131 |   | peano2nn 12259 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ ℕ → (𝑘 + 1) ∈
ℕ) | 
| 132 |   | ffvelcdm 7080 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹:ℕ⟶𝑋 ∧ (𝑘 + 1) ∈ ℕ) → (𝐹‘(𝑘 + 1)) ∈ 𝑋) | 
| 133 | 64, 131, 132 | syl2an 596 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ∈ 𝑋) | 
| 134 |   | metcl 24286 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ (𝐹‘(𝑘 + 1)) ∈ 𝑋) → ((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))) ∈ ℝ) | 
| 135 | 129, 130,
133, 134 | syl3anc 1372 | 
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))) ∈ ℝ) | 
| 136 | 123, 128,
135 | syl2anc 584 | 
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (𝑗...(𝑛 − 1))) → ((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))) ∈ ℝ) | 
| 137 | 122, 136 | fsumrecl 15751 | 
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → Σ𝑘 ∈ (𝑗...(𝑛 − 1))((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))) ∈ ℝ) | 
| 138 |   | simprr 772 | 
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → 𝑛 ∈ (ℤ≥‘𝑗)) | 
| 139 |   | elfzuz 13541 | 
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (𝑗...𝑛) → 𝑘 ∈ (ℤ≥‘𝑗)) | 
| 140 |   | simpll 766 | 
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝜑) | 
| 141 | 140, 127,
130 | syl2anc 584 | 
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝐹‘𝑘) ∈ 𝑋) | 
| 142 | 139, 141 | sylan2 593 | 
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (𝑗...𝑛)) → (𝐹‘𝑘) ∈ 𝑋) | 
| 143 | 63, 138, 142 | mettrifi 37698 | 
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → ((𝐹‘𝑗)𝐷(𝐹‘𝑛)) ≤ Σ𝑘 ∈ (𝑗...(𝑛 − 1))((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1)))) | 
| 144 | 124, 88 | sylan2 593 | 
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (𝑗...(𝑛 − 1))) → (𝐴 · (𝐵↑𝑘)) ∈ ℝ) | 
| 145 | 122, 144 | fsumrecl 15751 | 
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → Σ𝑘 ∈ (𝑗...(𝑛 − 1))(𝐴 · (𝐵↑𝑘)) ∈ ℝ) | 
| 146 |   | geomcau.7 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (𝐵↑𝑘))) | 
| 147 | 123, 128,
146 | syl2anc 584 | 
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (𝑗...(𝑛 − 1))) → ((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (𝐵↑𝑘))) | 
| 148 | 122, 136,
144, 147 | fsumle 15816 | 
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → Σ𝑘 ∈ (𝑗...(𝑛 − 1))((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))) ≤ Σ𝑘 ∈ (𝑗...(𝑛 − 1))(𝐴 · (𝐵↑𝑘))) | 
| 149 |   | fzssuz 13586 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑗...(𝑛 − 1)) ⊆
(ℤ≥‘𝑗) | 
| 150 | 149 | a1i 11 | 
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → (𝑗...(𝑛 − 1)) ⊆
(ℤ≥‘𝑗)) | 
| 151 |   | 0red 11245 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 0 ∈
ℝ) | 
| 152 |   | nnz 12616 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℤ) | 
| 153 |   | rpexpcl 14102 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐵 ∈ ℝ+
∧ 𝑘 ∈ ℤ)
→ (𝐵↑𝑘) ∈
ℝ+) | 
| 154 | 3, 152, 153 | syl2an 596 | 
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐵↑𝑘) ∈
ℝ+) | 
| 155 | 135, 154 | rerpdivcld 13089 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))) / (𝐵↑𝑘)) ∈ ℝ) | 
| 156 | 11 | adantr 480 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℝ) | 
| 157 |   | metge0 24299 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ (𝐹‘(𝑘 + 1)) ∈ 𝑋) → 0 ≤ ((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1)))) | 
| 158 | 129, 130,
133, 157 | syl3anc 1372 | 
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 0 ≤ ((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1)))) | 
| 159 | 135, 154,
158 | divge0d 13098 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 0 ≤ (((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))) / (𝐵↑𝑘))) | 
| 160 | 135, 156,
154 | ledivmul2d 13112 | 
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))) / (𝐵↑𝑘)) ≤ 𝐴 ↔ ((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (𝐵↑𝑘)))) | 
| 161 | 146, 160 | mpbird 257 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))) / (𝐵↑𝑘)) ≤ 𝐴) | 
| 162 | 151, 155,
156, 159, 161 | letrd 11399 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 0 ≤ 𝐴) | 
| 163 | 140, 127,
162 | syl2anc 584 | 
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 0 ≤ 𝐴) | 
| 164 | 140, 127,
154 | syl2anc 584 | 
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝐵↑𝑘) ∈
ℝ+) | 
| 165 | 164 | rpge0d 13062 | 
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 0 ≤ (𝐵↑𝑘)) | 
| 166 | 83, 87, 163, 165 | mulge0d 11821 | 
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 0 ≤ (𝐴 · (𝐵↑𝑘))) | 
| 167 | 73, 76, 122, 150, 82, 88, 166, 117 | isumless 15862 | 
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → Σ𝑘 ∈ (𝑗...(𝑛 − 1))(𝐴 · (𝐵↑𝑘)) ≤ Σ𝑘 ∈ (ℤ≥‘𝑗)(𝐴 · (𝐵↑𝑘))) | 
| 168 | 137, 145,
118, 148, 167 | letrd 11399 | 
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → Σ𝑘 ∈ (𝑗...(𝑛 − 1))((𝐹‘𝑘)𝐷(𝐹‘(𝑘 + 1))) ≤ Σ𝑘 ∈ (ℤ≥‘𝑗)(𝐴 · (𝐵↑𝑘))) | 
| 169 | 72, 137, 118, 143, 168 | letrd 11399 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → ((𝐹‘𝑗)𝐷(𝐹‘𝑛)) ≤ Σ𝑘 ∈ (ℤ≥‘𝑗)(𝐴 · (𝐵↑𝑘))) | 
| 170 | 169, 113 | breqtrd 5149 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → ((𝐹‘𝑗)𝐷(𝐹‘𝑛)) ≤ ((𝐵↑𝑗) · (𝐴 / (1 − 𝐵)))) | 
| 171 | 119 | leabsd 15434 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → ((𝐵↑𝑗) · (𝐴 / (1 − 𝐵))) ≤ (abs‘((𝐵↑𝑗) · (𝐴 / (1 − 𝐵))))) | 
| 172 | 72, 119, 121, 170, 171 | letrd 11399 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑗))) → ((𝐹‘𝑗)𝐷(𝐹‘𝑛)) ≤ (abs‘((𝐵↑𝑗) · (𝐴 / (1 − 𝐵))))) | 
| 173 | 172 | adantlr 715 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈
(ℤ≥‘𝑗))) → ((𝐹‘𝑗)𝐷(𝐹‘𝑛)) ≤ (abs‘((𝐵↑𝑗) · (𝐴 / (1 − 𝐵))))) | 
| 174 | 72 | adantlr 715 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈
(ℤ≥‘𝑗))) → ((𝐹‘𝑗)𝐷(𝐹‘𝑛)) ∈ ℝ) | 
| 175 | 121 | adantlr 715 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈
(ℤ≥‘𝑗))) → (abs‘((𝐵↑𝑗) · (𝐴 / (1 − 𝐵)))) ∈ ℝ) | 
| 176 |   | rpre 13024 | 
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ∈
ℝ) | 
| 177 | 176 | ad2antlr 727 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈
(ℤ≥‘𝑗))) → 𝑥 ∈ ℝ) | 
| 178 |   | lelttr 11332 | 
. . . . . . . . . 10
⊢ ((((𝐹‘𝑗)𝐷(𝐹‘𝑛)) ∈ ℝ ∧ (abs‘((𝐵↑𝑗) · (𝐴 / (1 − 𝐵)))) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((((𝐹‘𝑗)𝐷(𝐹‘𝑛)) ≤ (abs‘((𝐵↑𝑗) · (𝐴 / (1 − 𝐵)))) ∧ (abs‘((𝐵↑𝑗) · (𝐴 / (1 − 𝐵)))) < 𝑥) → ((𝐹‘𝑗)𝐷(𝐹‘𝑛)) < 𝑥)) | 
| 179 | 174, 175,
177, 178 | syl3anc 1372 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈
(ℤ≥‘𝑗))) → ((((𝐹‘𝑗)𝐷(𝐹‘𝑛)) ≤ (abs‘((𝐵↑𝑗) · (𝐴 / (1 − 𝐵)))) ∧ (abs‘((𝐵↑𝑗) · (𝐴 / (1 − 𝐵)))) < 𝑥) → ((𝐹‘𝑗)𝐷(𝐹‘𝑛)) < 𝑥)) | 
| 180 | 173, 179 | mpand 695 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈
(ℤ≥‘𝑗))) → ((abs‘((𝐵↑𝑗) · (𝐴 / (1 − 𝐵)))) < 𝑥 → ((𝐹‘𝑗)𝐷(𝐹‘𝑛)) < 𝑥)) | 
| 181 | 180 | anassrs 467 | 
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈
(ℤ≥‘𝑗)) → ((abs‘((𝐵↑𝑗) · (𝐴 / (1 − 𝐵)))) < 𝑥 → ((𝐹‘𝑗)𝐷(𝐹‘𝑛)) < 𝑥)) | 
| 182 | 181 | ralrimdva 3141 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) →
((abs‘((𝐵↑𝑗) · (𝐴 / (1 − 𝐵)))) < 𝑥 → ∀𝑛 ∈ (ℤ≥‘𝑗)((𝐹‘𝑗)𝐷(𝐹‘𝑛)) < 𝑥)) | 
| 183 | 61, 182 | syld 47 | 
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) →
(∀𝑛 ∈
(ℤ≥‘𝑗)(abs‘((𝐵↑𝑛) · (𝐴 / (1 − 𝐵)))) < 𝑥 → ∀𝑛 ∈ (ℤ≥‘𝑗)((𝐹‘𝑗)𝐷(𝐹‘𝑛)) < 𝑥)) | 
| 184 | 183 | reximdva 3155 | 
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(∃𝑗 ∈ ℕ
∀𝑛 ∈
(ℤ≥‘𝑗)(abs‘((𝐵↑𝑛) · (𝐴 / (1 − 𝐵)))) < 𝑥 → ∃𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ≥‘𝑗)((𝐹‘𝑗)𝐷(𝐹‘𝑛)) < 𝑥)) | 
| 185 | 184 | ralimdva 3154 | 
. . 3
⊢ (𝜑 → (∀𝑥 ∈ ℝ+
∃𝑗 ∈ ℕ
∀𝑛 ∈
(ℤ≥‘𝑗)(abs‘((𝐵↑𝑛) · (𝐴 / (1 − 𝐵)))) < 𝑥 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑛 ∈
(ℤ≥‘𝑗)((𝐹‘𝑗)𝐷(𝐹‘𝑛)) < 𝑥)) | 
| 186 | 53, 185 | mpd 15 | 
. 2
⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑛 ∈
(ℤ≥‘𝑗)((𝐹‘𝑗)𝐷(𝐹‘𝑛)) < 𝑥) | 
| 187 |   | metxmet 24288 | 
. . . 4
⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) | 
| 188 | 62, 187 | syl 17 | 
. . 3
⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) | 
| 189 |   | eqidd 2735 | 
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) = (𝐹‘𝑛)) | 
| 190 |   | eqidd 2735 | 
. . 3
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐹‘𝑗) = (𝐹‘𝑗)) | 
| 191 | 1, 188, 2, 189, 190, 64 | iscauf 25249 | 
. 2
⊢ (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑛 ∈
(ℤ≥‘𝑗)((𝐹‘𝑗)𝐷(𝐹‘𝑛)) < 𝑥)) | 
| 192 | 186, 191 | mpbird 257 | 
1
⊢ (𝜑 → 𝐹 ∈ (Cau‘𝐷)) |