Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  geomcau Structured version   Visualization version   GIF version

Theorem geomcau 37746
Description: If the distance between consecutive points in a sequence is bounded by a geometric sequence, then the sequence is Cauchy. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 5-Jun-2014.)
Hypotheses
Ref Expression
lmclim2.2 (𝜑𝐷 ∈ (Met‘𝑋))
lmclim2.3 (𝜑𝐹:ℕ⟶𝑋)
geomcau.4 (𝜑𝐴 ∈ ℝ)
geomcau.5 (𝜑𝐵 ∈ ℝ+)
geomcau.6 (𝜑𝐵 < 1)
geomcau.7 ((𝜑𝑘 ∈ ℕ) → ((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (𝐵𝑘)))
Assertion
Ref Expression
geomcau (𝜑𝐹 ∈ (Cau‘𝐷))
Distinct variable groups:   𝐷,𝑘   𝑘,𝐹   𝑘,𝑋   𝐴,𝑘   𝐵,𝑘   𝜑,𝑘

Proof of Theorem geomcau
Dummy variables 𝑗 𝑛 𝑥 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 12812 . . . . . 6 ℕ = (ℤ‘1)
2 1zzd 12540 . . . . . 6 (𝜑 → 1 ∈ ℤ)
3 geomcau.5 . . . . . . . 8 (𝜑𝐵 ∈ ℝ+)
43rpcnd 12973 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
53rpred 12971 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ)
63rpge0d 12975 . . . . . . . . 9 (𝜑 → 0 ≤ 𝐵)
75, 6absidd 15365 . . . . . . . 8 (𝜑 → (abs‘𝐵) = 𝐵)
8 geomcau.6 . . . . . . . 8 (𝜑𝐵 < 1)
97, 8eqbrtrd 5124 . . . . . . 7 (𝜑 → (abs‘𝐵) < 1)
104, 9expcnv 15806 . . . . . 6 (𝜑 → (𝑚 ∈ ℕ0 ↦ (𝐵𝑚)) ⇝ 0)
11 geomcau.4 . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
12 1re 11150 . . . . . . . . . 10 1 ∈ ℝ
13 resubcl 11462 . . . . . . . . . 10 ((1 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 − 𝐵) ∈ ℝ)
1412, 5, 13sylancr 587 . . . . . . . . 9 (𝜑 → (1 − 𝐵) ∈ ℝ)
15 posdif 11647 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐵 < 1 ↔ 0 < (1 − 𝐵)))
165, 12, 15sylancl 586 . . . . . . . . . 10 (𝜑 → (𝐵 < 1 ↔ 0 < (1 − 𝐵)))
178, 16mpbid 232 . . . . . . . . 9 (𝜑 → 0 < (1 − 𝐵))
1814, 17elrpd 12968 . . . . . . . 8 (𝜑 → (1 − 𝐵) ∈ ℝ+)
1911, 18rerpdivcld 13002 . . . . . . 7 (𝜑 → (𝐴 / (1 − 𝐵)) ∈ ℝ)
2019recnd 11178 . . . . . 6 (𝜑 → (𝐴 / (1 − 𝐵)) ∈ ℂ)
21 nnex 12168 . . . . . . . 8 ℕ ∈ V
2221mptex 7179 . . . . . . 7 (𝑚 ∈ ℕ ↦ ((𝐵𝑚) · (𝐴 / (1 − 𝐵)))) ∈ V
2322a1i 11 . . . . . 6 (𝜑 → (𝑚 ∈ ℕ ↦ ((𝐵𝑚) · (𝐴 / (1 − 𝐵)))) ∈ V)
24 nnnn0 12425 . . . . . . . . 9 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
2524adantl 481 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
26 oveq2 7377 . . . . . . . . 9 (𝑚 = 𝑛 → (𝐵𝑚) = (𝐵𝑛))
27 eqid 2729 . . . . . . . . 9 (𝑚 ∈ ℕ0 ↦ (𝐵𝑚)) = (𝑚 ∈ ℕ0 ↦ (𝐵𝑚))
28 ovex 7402 . . . . . . . . 9 (𝐵𝑛) ∈ V
2926, 27, 28fvmpt 6950 . . . . . . . 8 (𝑛 ∈ ℕ0 → ((𝑚 ∈ ℕ0 ↦ (𝐵𝑚))‘𝑛) = (𝐵𝑛))
3025, 29syl 17 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ0 ↦ (𝐵𝑚))‘𝑛) = (𝐵𝑛))
31 nnz 12526 . . . . . . . . 9 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
32 rpexpcl 14021 . . . . . . . . 9 ((𝐵 ∈ ℝ+𝑛 ∈ ℤ) → (𝐵𝑛) ∈ ℝ+)
333, 31, 32syl2an 596 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝐵𝑛) ∈ ℝ+)
3433rpcnd 12973 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐵𝑛) ∈ ℂ)
3530, 34eqeltrd 2828 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ0 ↦ (𝐵𝑚))‘𝑛) ∈ ℂ)
3620adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝐴 / (1 − 𝐵)) ∈ ℂ)
3734, 36mulcomd 11171 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((𝐵𝑛) · (𝐴 / (1 − 𝐵))) = ((𝐴 / (1 − 𝐵)) · (𝐵𝑛)))
3826oveq1d 7384 . . . . . . . . 9 (𝑚 = 𝑛 → ((𝐵𝑚) · (𝐴 / (1 − 𝐵))) = ((𝐵𝑛) · (𝐴 / (1 − 𝐵))))
39 eqid 2729 . . . . . . . . 9 (𝑚 ∈ ℕ ↦ ((𝐵𝑚) · (𝐴 / (1 − 𝐵)))) = (𝑚 ∈ ℕ ↦ ((𝐵𝑚) · (𝐴 / (1 − 𝐵))))
40 ovex 7402 . . . . . . . . 9 ((𝐵𝑛) · (𝐴 / (1 − 𝐵))) ∈ V
4138, 39, 40fvmpt 6950 . . . . . . . 8 (𝑛 ∈ ℕ → ((𝑚 ∈ ℕ ↦ ((𝐵𝑚) · (𝐴 / (1 − 𝐵))))‘𝑛) = ((𝐵𝑛) · (𝐴 / (1 − 𝐵))))
4241adantl 481 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((𝐵𝑚) · (𝐴 / (1 − 𝐵))))‘𝑛) = ((𝐵𝑛) · (𝐴 / (1 − 𝐵))))
4330oveq2d 7385 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((𝐴 / (1 − 𝐵)) · ((𝑚 ∈ ℕ0 ↦ (𝐵𝑚))‘𝑛)) = ((𝐴 / (1 − 𝐵)) · (𝐵𝑛)))
4437, 42, 433eqtr4d 2774 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((𝐵𝑚) · (𝐴 / (1 − 𝐵))))‘𝑛) = ((𝐴 / (1 − 𝐵)) · ((𝑚 ∈ ℕ0 ↦ (𝐵𝑚))‘𝑛)))
451, 2, 10, 20, 23, 35, 44climmulc2 15579 . . . . 5 (𝜑 → (𝑚 ∈ ℕ ↦ ((𝐵𝑚) · (𝐴 / (1 − 𝐵)))) ⇝ ((𝐴 / (1 − 𝐵)) · 0))
4620mul01d 11349 . . . . 5 (𝜑 → ((𝐴 / (1 − 𝐵)) · 0) = 0)
4745, 46breqtrd 5128 . . . 4 (𝜑 → (𝑚 ∈ ℕ ↦ ((𝐵𝑚) · (𝐴 / (1 − 𝐵)))) ⇝ 0)
4833rpred 12971 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐵𝑛) ∈ ℝ)
4919adantr 480 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐴 / (1 − 𝐵)) ∈ ℝ)
5048, 49remulcld 11180 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝐵𝑛) · (𝐴 / (1 − 𝐵))) ∈ ℝ)
5150recnd 11178 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝐵𝑛) · (𝐴 / (1 − 𝐵))) ∈ ℂ)
521, 2, 23, 42, 51clim0c 15449 . . . 4 (𝜑 → ((𝑚 ∈ ℕ ↦ ((𝐵𝑚) · (𝐴 / (1 − 𝐵)))) ⇝ 0 ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗)(abs‘((𝐵𝑛) · (𝐴 / (1 − 𝐵)))) < 𝑥))
5347, 52mpbid 232 . . 3 (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗)(abs‘((𝐵𝑛) · (𝐴 / (1 − 𝐵)))) < 𝑥)
54 nnz 12526 . . . . . . . 8 (𝑗 ∈ ℕ → 𝑗 ∈ ℤ)
5554adantl 481 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℤ)
56 uzid 12784 . . . . . . 7 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
57 oveq2 7377 . . . . . . . . . 10 (𝑛 = 𝑗 → (𝐵𝑛) = (𝐵𝑗))
5857fvoveq1d 7391 . . . . . . . . 9 (𝑛 = 𝑗 → (abs‘((𝐵𝑛) · (𝐴 / (1 − 𝐵)))) = (abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))))
5958breq1d 5112 . . . . . . . 8 (𝑛 = 𝑗 → ((abs‘((𝐵𝑛) · (𝐴 / (1 − 𝐵)))) < 𝑥 ↔ (abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))) < 𝑥))
6059rspcv 3581 . . . . . . 7 (𝑗 ∈ (ℤ𝑗) → (∀𝑛 ∈ (ℤ𝑗)(abs‘((𝐵𝑛) · (𝐴 / (1 − 𝐵)))) < 𝑥 → (abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))) < 𝑥))
6155, 56, 603syl 18 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (∀𝑛 ∈ (ℤ𝑗)(abs‘((𝐵𝑛) · (𝐴 / (1 − 𝐵)))) < 𝑥 → (abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))) < 𝑥))
62 lmclim2.2 . . . . . . . . . . . . 13 (𝜑𝐷 ∈ (Met‘𝑋))
6362adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → 𝐷 ∈ (Met‘𝑋))
64 lmclim2.3 . . . . . . . . . . . . 13 (𝜑𝐹:ℕ⟶𝑋)
65 simpl 482 . . . . . . . . . . . . 13 ((𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗)) → 𝑗 ∈ ℕ)
66 ffvelcdm 7035 . . . . . . . . . . . . 13 ((𝐹:ℕ⟶𝑋𝑗 ∈ ℕ) → (𝐹𝑗) ∈ 𝑋)
6764, 65, 66syl2an 596 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → (𝐹𝑗) ∈ 𝑋)
68 eluznn 12853 . . . . . . . . . . . . 13 ((𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗)) → 𝑛 ∈ ℕ)
69 ffvelcdm 7035 . . . . . . . . . . . . 13 ((𝐹:ℕ⟶𝑋𝑛 ∈ ℕ) → (𝐹𝑛) ∈ 𝑋)
7064, 68, 69syl2an 596 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → (𝐹𝑛) ∈ 𝑋)
71 metcl 24253 . . . . . . . . . . . 12 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹𝑗) ∈ 𝑋 ∧ (𝐹𝑛) ∈ 𝑋) → ((𝐹𝑗)𝐷(𝐹𝑛)) ∈ ℝ)
7263, 67, 70, 71syl3anc 1373 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → ((𝐹𝑗)𝐷(𝐹𝑛)) ∈ ℝ)
73 eqid 2729 . . . . . . . . . . . . 13 (ℤ𝑗) = (ℤ𝑗)
74 nnnn0 12425 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → 𝑗 ∈ ℕ0)
7574ad2antrl 728 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → 𝑗 ∈ ℕ0)
7675nn0zd 12531 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → 𝑗 ∈ ℤ)
77 oveq2 7377 . . . . . . . . . . . . . . . 16 (𝑚 = 𝑘 → (𝐵𝑚) = (𝐵𝑘))
7877oveq2d 7385 . . . . . . . . . . . . . . 15 (𝑚 = 𝑘 → (𝐴 · (𝐵𝑚)) = (𝐴 · (𝐵𝑘)))
79 eqid 2729 . . . . . . . . . . . . . . 15 (𝑚 ∈ (ℤ𝑗) ↦ (𝐴 · (𝐵𝑚))) = (𝑚 ∈ (ℤ𝑗) ↦ (𝐴 · (𝐵𝑚)))
80 ovex 7402 . . . . . . . . . . . . . . 15 (𝐴 · (𝐵𝑘)) ∈ V
8178, 79, 80fvmpt 6950 . . . . . . . . . . . . . 14 (𝑘 ∈ (ℤ𝑗) → ((𝑚 ∈ (ℤ𝑗) ↦ (𝐴 · (𝐵𝑚)))‘𝑘) = (𝐴 · (𝐵𝑘)))
8281adantl 481 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝑚 ∈ (ℤ𝑗) ↦ (𝐴 · (𝐵𝑚)))‘𝑘) = (𝐴 · (𝐵𝑘)))
8311ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝐴 ∈ ℝ)
845ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝐵 ∈ ℝ)
85 eluznn0 12852 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ ℕ0𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ0)
8675, 85sylan 580 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ0)
8784, 86reexpcld 14104 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐵𝑘) ∈ ℝ)
8883, 87remulcld 11180 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐴 · (𝐵𝑘)) ∈ ℝ)
8988recnd 11178 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐴 · (𝐵𝑘)) ∈ ℂ)
9011recnd 11178 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ ℂ)
9190adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → 𝐴 ∈ ℂ)
924adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → 𝐵 ∈ ℂ)
939adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → (abs‘𝐵) < 1)
94 eqid 2729 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ (ℤ𝑗) ↦ (𝐵𝑚)) = (𝑚 ∈ (ℤ𝑗) ↦ (𝐵𝑚))
95 ovex 7402 . . . . . . . . . . . . . . . . . 18 (𝐵𝑘) ∈ V
9677, 94, 95fvmpt 6950 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (ℤ𝑗) → ((𝑚 ∈ (ℤ𝑗) ↦ (𝐵𝑚))‘𝑘) = (𝐵𝑘))
9796adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝑚 ∈ (ℤ𝑗) ↦ (𝐵𝑚))‘𝑘) = (𝐵𝑘))
9892, 93, 75, 97geolim2 15813 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → seq𝑗( + , (𝑚 ∈ (ℤ𝑗) ↦ (𝐵𝑚))) ⇝ ((𝐵𝑗) / (1 − 𝐵)))
9987recnd 11178 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐵𝑘) ∈ ℂ)
10097, 99eqeltrd 2828 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝑚 ∈ (ℤ𝑗) ↦ (𝐵𝑚))‘𝑘) ∈ ℂ)
10197oveq2d 7385 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐴 · ((𝑚 ∈ (ℤ𝑗) ↦ (𝐵𝑚))‘𝑘)) = (𝐴 · (𝐵𝑘)))
10282, 101eqtr4d 2767 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝑚 ∈ (ℤ𝑗) ↦ (𝐴 · (𝐵𝑚)))‘𝑘) = (𝐴 · ((𝑚 ∈ (ℤ𝑗) ↦ (𝐵𝑚))‘𝑘)))
10373, 76, 91, 98, 100, 102isermulc2 15600 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → seq𝑗( + , (𝑚 ∈ (ℤ𝑗) ↦ (𝐴 · (𝐵𝑚)))) ⇝ (𝐴 · ((𝐵𝑗) / (1 − 𝐵))))
1043adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → 𝐵 ∈ ℝ+)
105104, 76rpexpcld 14188 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → (𝐵𝑗) ∈ ℝ+)
106105rpcnd 12973 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → (𝐵𝑗) ∈ ℂ)
10714recnd 11178 . . . . . . . . . . . . . . . 16 (𝜑 → (1 − 𝐵) ∈ ℂ)
108107adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → (1 − 𝐵) ∈ ℂ)
10918rpne0d 12976 . . . . . . . . . . . . . . . 16 (𝜑 → (1 − 𝐵) ≠ 0)
110109adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → (1 − 𝐵) ≠ 0)
11191, 106, 108, 110div12d 11970 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → (𝐴 · ((𝐵𝑗) / (1 − 𝐵))) = ((𝐵𝑗) · (𝐴 / (1 − 𝐵))))
112103, 111breqtrd 5128 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → seq𝑗( + , (𝑚 ∈ (ℤ𝑗) ↦ (𝐴 · (𝐵𝑚)))) ⇝ ((𝐵𝑗) · (𝐴 / (1 − 𝐵))))
11373, 76, 82, 89, 112isumclim 15699 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (ℤ𝑗)(𝐴 · (𝐵𝑘)) = ((𝐵𝑗) · (𝐴 / (1 − 𝐵))))
114 seqex 13944 . . . . . . . . . . . . . . 15 seq𝑗( + , (𝑚 ∈ (ℤ𝑗) ↦ (𝐴 · (𝐵𝑚)))) ∈ V
115 ovex 7402 . . . . . . . . . . . . . . 15 (𝐴 · ((𝐵𝑗) / (1 − 𝐵))) ∈ V
116114, 115breldm 5862 . . . . . . . . . . . . . 14 (seq𝑗( + , (𝑚 ∈ (ℤ𝑗) ↦ (𝐴 · (𝐵𝑚)))) ⇝ (𝐴 · ((𝐵𝑗) / (1 − 𝐵))) → seq𝑗( + , (𝑚 ∈ (ℤ𝑗) ↦ (𝐴 · (𝐵𝑚)))) ∈ dom ⇝ )
117103, 116syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → seq𝑗( + , (𝑚 ∈ (ℤ𝑗) ↦ (𝐴 · (𝐵𝑚)))) ∈ dom ⇝ )
11873, 76, 82, 88, 117isumrecl 15707 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (ℤ𝑗)(𝐴 · (𝐵𝑘)) ∈ ℝ)
119113, 118eqeltrrd 2829 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → ((𝐵𝑗) · (𝐴 / (1 − 𝐵))) ∈ ℝ)
120119recnd 11178 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → ((𝐵𝑗) · (𝐴 / (1 − 𝐵))) ∈ ℂ)
121120abscld 15381 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → (abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))) ∈ ℝ)
122 fzfid 13914 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → (𝑗...(𝑛 − 1)) ∈ Fin)
123 simpll 766 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑗...(𝑛 − 1))) → 𝜑)
124 elfzuz 13457 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (𝑗...(𝑛 − 1)) → 𝑘 ∈ (ℤ𝑗))
125 simprl 770 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → 𝑗 ∈ ℕ)
126 eluznn 12853 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
127125, 126sylan 580 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
128124, 127sylan2 593 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑗...(𝑛 − 1))) → 𝑘 ∈ ℕ)
12962adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ) → 𝐷 ∈ (Met‘𝑋))
13064ffvelcdmda 7038 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ 𝑋)
131 peano2nn 12174 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
132 ffvelcdm 7035 . . . . . . . . . . . . . . . . 17 ((𝐹:ℕ⟶𝑋 ∧ (𝑘 + 1) ∈ ℕ) → (𝐹‘(𝑘 + 1)) ∈ 𝑋)
13364, 131, 132syl2an 596 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ∈ 𝑋)
134 metcl 24253 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹𝑘) ∈ 𝑋 ∧ (𝐹‘(𝑘 + 1)) ∈ 𝑋) → ((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) ∈ ℝ)
135129, 130, 133, 134syl3anc 1373 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → ((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) ∈ ℝ)
136123, 128, 135syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑗...(𝑛 − 1))) → ((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) ∈ ℝ)
137122, 136fsumrecl 15676 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (𝑗...(𝑛 − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) ∈ ℝ)
138 simprr 772 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → 𝑛 ∈ (ℤ𝑗))
139 elfzuz 13457 . . . . . . . . . . . . . . 15 (𝑘 ∈ (𝑗...𝑛) → 𝑘 ∈ (ℤ𝑗))
140 simpll 766 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝜑)
141140, 127, 130syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ 𝑋)
142139, 141sylan2 593 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑗...𝑛)) → (𝐹𝑘) ∈ 𝑋)
14363, 138, 142mettrifi 37744 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → ((𝐹𝑗)𝐷(𝐹𝑛)) ≤ Σ𝑘 ∈ (𝑗...(𝑛 − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))))
144124, 88sylan2 593 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑗...(𝑛 − 1))) → (𝐴 · (𝐵𝑘)) ∈ ℝ)
145122, 144fsumrecl 15676 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (𝑗...(𝑛 − 1))(𝐴 · (𝐵𝑘)) ∈ ℝ)
146 geomcau.7 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ) → ((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (𝐵𝑘)))
147123, 128, 146syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑗...(𝑛 − 1))) → ((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (𝐵𝑘)))
148122, 136, 144, 147fsumle 15741 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (𝑗...(𝑛 − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) ≤ Σ𝑘 ∈ (𝑗...(𝑛 − 1))(𝐴 · (𝐵𝑘)))
149 fzssuz 13502 . . . . . . . . . . . . . . . 16 (𝑗...(𝑛 − 1)) ⊆ (ℤ𝑗)
150149a1i 11 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → (𝑗...(𝑛 − 1)) ⊆ (ℤ𝑗))
151 0red 11153 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℕ) → 0 ∈ ℝ)
152 nnz 12526 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
153 rpexpcl 14021 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ ℝ+𝑘 ∈ ℤ) → (𝐵𝑘) ∈ ℝ+)
1543, 152, 153syl2an 596 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ ℕ) → (𝐵𝑘) ∈ ℝ+)
155135, 154rerpdivcld 13002 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℕ) → (((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) / (𝐵𝑘)) ∈ ℝ)
15611adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ ℝ)
157 metge0 24266 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹𝑘) ∈ 𝑋 ∧ (𝐹‘(𝑘 + 1)) ∈ 𝑋) → 0 ≤ ((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))))
158129, 130, 133, 157syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ ℕ) → 0 ≤ ((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))))
159135, 154, 158divge0d 13011 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℕ) → 0 ≤ (((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) / (𝐵𝑘)))
160135, 156, 154ledivmul2d 13025 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ ℕ) → ((((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) / (𝐵𝑘)) ≤ 𝐴 ↔ ((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (𝐵𝑘))))
161146, 160mpbird 257 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℕ) → (((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) / (𝐵𝑘)) ≤ 𝐴)
162151, 155, 156, 159, 161letrd 11307 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ℕ) → 0 ≤ 𝐴)
163140, 127, 162syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → 0 ≤ 𝐴)
164140, 127, 154syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐵𝑘) ∈ ℝ+)
165164rpge0d 12975 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → 0 ≤ (𝐵𝑘))
16683, 87, 163, 165mulge0d 11731 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → 0 ≤ (𝐴 · (𝐵𝑘)))
16773, 76, 122, 150, 82, 88, 166, 117isumless 15787 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (𝑗...(𝑛 − 1))(𝐴 · (𝐵𝑘)) ≤ Σ𝑘 ∈ (ℤ𝑗)(𝐴 · (𝐵𝑘)))
168137, 145, 118, 148, 167letrd 11307 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (𝑗...(𝑛 − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) ≤ Σ𝑘 ∈ (ℤ𝑗)(𝐴 · (𝐵𝑘)))
16972, 137, 118, 143, 168letrd 11307 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → ((𝐹𝑗)𝐷(𝐹𝑛)) ≤ Σ𝑘 ∈ (ℤ𝑗)(𝐴 · (𝐵𝑘)))
170169, 113breqtrd 5128 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → ((𝐹𝑗)𝐷(𝐹𝑛)) ≤ ((𝐵𝑗) · (𝐴 / (1 − 𝐵))))
171119leabsd 15357 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → ((𝐵𝑗) · (𝐴 / (1 − 𝐵))) ≤ (abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))))
17272, 119, 121, 170, 171letrd 11307 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → ((𝐹𝑗)𝐷(𝐹𝑛)) ≤ (abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))))
173172adantlr 715 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → ((𝐹𝑗)𝐷(𝐹𝑛)) ≤ (abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))))
17472adantlr 715 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → ((𝐹𝑗)𝐷(𝐹𝑛)) ∈ ℝ)
175121adantlr 715 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → (abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))) ∈ ℝ)
176 rpre 12936 . . . . . . . . . . 11 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
177176ad2antlr 727 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → 𝑥 ∈ ℝ)
178 lelttr 11240 . . . . . . . . . 10 ((((𝐹𝑗)𝐷(𝐹𝑛)) ∈ ℝ ∧ (abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((((𝐹𝑗)𝐷(𝐹𝑛)) ≤ (abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))) ∧ (abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))) < 𝑥) → ((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥))
179174, 175, 177, 178syl3anc 1373 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → ((((𝐹𝑗)𝐷(𝐹𝑛)) ≤ (abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))) ∧ (abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))) < 𝑥) → ((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥))
180173, 179mpand 695 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → ((abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))) < 𝑥 → ((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥))
181180anassrs 467 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (ℤ𝑗)) → ((abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))) < 𝑥 → ((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥))
182181ralrimdva 3133 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → ((abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))) < 𝑥 → ∀𝑛 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥))
18361, 182syld 47 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (∀𝑛 ∈ (ℤ𝑗)(abs‘((𝐵𝑛) · (𝐴 / (1 − 𝐵)))) < 𝑥 → ∀𝑛 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥))
184183reximdva 3146 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (∃𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗)(abs‘((𝐵𝑛) · (𝐴 / (1 − 𝐵)))) < 𝑥 → ∃𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥))
185184ralimdva 3145 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗)(abs‘((𝐵𝑛) · (𝐴 / (1 − 𝐵)))) < 𝑥 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥))
18653, 185mpd 15 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥)
187 metxmet 24255 . . . 4 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
18862, 187syl 17 . . 3 (𝜑𝐷 ∈ (∞Met‘𝑋))
189 eqidd 2730 . . 3 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) = (𝐹𝑛))
190 eqidd 2730 . . 3 ((𝜑𝑗 ∈ ℕ) → (𝐹𝑗) = (𝐹𝑗))
1911, 188, 2, 189, 190, 64iscauf 25213 . 2 (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥))
192186, 191mpbird 257 1 (𝜑𝐹 ∈ (Cau‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3444  wss 3911   class class class wbr 5102  cmpt 5183  dom cdm 5631  wf 6495  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049   < clt 11184  cle 11185  cmin 11381   / cdiv 11811  cn 12162  0cn0 12418  cz 12505  cuz 12769  +crp 12927  ...cfz 13444  seqcseq 13942  cexp 14002  abscabs 15176  cli 15426  Σcsu 15628  ∞Metcxmet 21281  Metcmet 21282  Cauccau 25186
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ico 13288  df-fz 13445  df-fzo 13592  df-fl 13730  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-rlim 15431  df-sum 15629  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-cau 25189
This theorem is referenced by:  bfplem1  37809
  Copyright terms: Public domain W3C validator