MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logtayllem Structured version   Visualization version   GIF version

Theorem logtayllem 25158
Description: Lemma for logtayl 25159. (Contributed by Mario Carneiro, 1-Apr-2015.)
Assertion
Ref Expression
logtayllem ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq0( + , (𝑛 ∈ ℕ0 ↦ (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)))) ∈ dom ⇝ )
Distinct variable group:   𝐴,𝑛

Proof of Theorem logtayllem
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nn0uz 12269 . 2 0 = (ℤ‘0)
2 1nn0 11902 . . 3 1 ∈ ℕ0
32a1i 11 . 2 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 1 ∈ ℕ0)
4 oveq2 7156 . . . . 5 (𝑛 = 𝑘 → ((abs‘𝐴)↑𝑛) = ((abs‘𝐴)↑𝑘))
5 eqid 2826 . . . . 5 (𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛)) = (𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛))
6 ovex 7181 . . . . 5 ((abs‘𝐴)↑𝑘) ∈ V
74, 5, 6fvmpt 6765 . . . 4 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛))‘𝑘) = ((abs‘𝐴)↑𝑘))
87adantl 482 . . 3 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛))‘𝑘) = ((abs‘𝐴)↑𝑘))
9 abscl 14628 . . . . 5 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
109adantr 481 . . . 4 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘𝐴) ∈ ℝ)
11 reexpcl 13436 . . . 4 (((abs‘𝐴) ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((abs‘𝐴)↑𝑘) ∈ ℝ)
1210, 11sylan 580 . . 3 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ0) → ((abs‘𝐴)↑𝑘) ∈ ℝ)
138, 12eqeltrd 2918 . 2 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛))‘𝑘) ∈ ℝ)
14 eqeq1 2830 . . . . . . 7 (𝑛 = 𝑘 → (𝑛 = 0 ↔ 𝑘 = 0))
15 oveq2 7156 . . . . . . 7 (𝑛 = 𝑘 → (1 / 𝑛) = (1 / 𝑘))
1614, 15ifbieq2d 4495 . . . . . 6 (𝑛 = 𝑘 → if(𝑛 = 0, 0, (1 / 𝑛)) = if(𝑘 = 0, 0, (1 / 𝑘)))
17 oveq2 7156 . . . . . 6 (𝑛 = 𝑘 → (𝐴𝑛) = (𝐴𝑘))
1816, 17oveq12d 7166 . . . . 5 (𝑛 = 𝑘 → (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)) = (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)))
19 eqid 2826 . . . . 5 (𝑛 ∈ ℕ0 ↦ (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛))) = (𝑛 ∈ ℕ0 ↦ (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)))
20 ovex 7181 . . . . 5 (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)) ∈ V
2118, 19, 20fvmpt 6765 . . . 4 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)))‘𝑘) = (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)))
2221adantl 482 . . 3 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)))‘𝑘) = (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)))
23 0cnd 10623 . . . . 5 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ0) ∧ 𝑘 = 0) → 0 ∈ ℂ)
24 nn0cn 11896 . . . . . . 7 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
2524adantl 482 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℂ)
26 neqne 3029 . . . . . 6 𝑘 = 0 → 𝑘 ≠ 0)
27 reccl 11294 . . . . . 6 ((𝑘 ∈ ℂ ∧ 𝑘 ≠ 0) → (1 / 𝑘) ∈ ℂ)
2825, 26, 27syl2an 595 . . . . 5 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ0) ∧ ¬ 𝑘 = 0) → (1 / 𝑘) ∈ ℂ)
2923, 28ifclda 4504 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ0) → if(𝑘 = 0, 0, (1 / 𝑘)) ∈ ℂ)
30 expcl 13437 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
3130adantlr 711 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
3229, 31mulcld 10650 . . 3 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ0) → (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)) ∈ ℂ)
3322, 32eqeltrd 2918 . 2 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)))‘𝑘) ∈ ℂ)
3410recnd 10658 . . . 4 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘𝐴) ∈ ℂ)
35 absidm 14673 . . . . . 6 (𝐴 ∈ ℂ → (abs‘(abs‘𝐴)) = (abs‘𝐴))
3635adantr 481 . . . . 5 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘(abs‘𝐴)) = (abs‘𝐴))
37 simpr 485 . . . . 5 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘𝐴) < 1)
3836, 37eqbrtrd 5085 . . . 4 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘(abs‘𝐴)) < 1)
3934, 38, 8geolim 15216 . . 3 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq0( + , (𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛))) ⇝ (1 / (1 − (abs‘𝐴))))
40 seqex 13361 . . . 4 seq0( + , (𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛))) ∈ V
41 ovex 7181 . . . 4 (1 / (1 − (abs‘𝐴))) ∈ V
4240, 41breldm 5776 . . 3 (seq0( + , (𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛))) ⇝ (1 / (1 − (abs‘𝐴))) → seq0( + , (𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛))) ∈ dom ⇝ )
4339, 42syl 17 . 2 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq0( + , (𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛))) ∈ dom ⇝ )
44 1red 10631 . 2 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 1 ∈ ℝ)
45 elnnuz 12271 . . 3 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
46 nnrecre 11668 . . . . . . . . 9 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ)
4746adantl 482 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (1 / 𝑘) ∈ ℝ)
4847recnd 10658 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (1 / 𝑘) ∈ ℂ)
49 nnnn0 11893 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
5049, 31sylan2 592 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (𝐴𝑘) ∈ ℂ)
5148, 50absmuld 14804 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (abs‘((1 / 𝑘) · (𝐴𝑘))) = ((abs‘(1 / 𝑘)) · (abs‘(𝐴𝑘))))
52 nnrp 12390 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ+)
5352adantl 482 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℝ+)
5453rpreccld 12431 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (1 / 𝑘) ∈ ℝ+)
5554rpge0d 12425 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → 0 ≤ (1 / 𝑘))
5647, 55absidd 14772 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (abs‘(1 / 𝑘)) = (1 / 𝑘))
57 simpl 483 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 𝐴 ∈ ℂ)
58 absexp 14654 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘))
5957, 49, 58syl2an 595 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘))
6056, 59oveq12d 7166 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → ((abs‘(1 / 𝑘)) · (abs‘(𝐴𝑘))) = ((1 / 𝑘) · ((abs‘𝐴)↑𝑘)))
6151, 60eqtrd 2861 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (abs‘((1 / 𝑘) · (𝐴𝑘))) = ((1 / 𝑘) · ((abs‘𝐴)↑𝑘)))
62 1red 10631 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → 1 ∈ ℝ)
6349, 12sylan2 592 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → ((abs‘𝐴)↑𝑘) ∈ ℝ)
6450absge0d 14794 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → 0 ≤ (abs‘(𝐴𝑘)))
6564, 59breqtrd 5089 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → 0 ≤ ((abs‘𝐴)↑𝑘))
66 nnge1 11654 . . . . . . . . 9 (𝑘 ∈ ℕ → 1 ≤ 𝑘)
6766adantl 482 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → 1 ≤ 𝑘)
68 0lt1 11151 . . . . . . . . . 10 0 < 1
6968a1i 11 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → 0 < 1)
70 nnre 11634 . . . . . . . . . 10 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
7170adantl 482 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℝ)
72 nngt0 11657 . . . . . . . . . 10 (𝑘 ∈ ℕ → 0 < 𝑘)
7372adantl 482 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → 0 < 𝑘)
74 lerec 11512 . . . . . . . . 9 (((1 ∈ ℝ ∧ 0 < 1) ∧ (𝑘 ∈ ℝ ∧ 0 < 𝑘)) → (1 ≤ 𝑘 ↔ (1 / 𝑘) ≤ (1 / 1)))
7562, 69, 71, 73, 74syl22anc 836 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (1 ≤ 𝑘 ↔ (1 / 𝑘) ≤ (1 / 1)))
7667, 75mpbid 233 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (1 / 𝑘) ≤ (1 / 1))
77 1div1e1 11319 . . . . . . 7 (1 / 1) = 1
7876, 77breqtrdi 5104 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (1 / 𝑘) ≤ 1)
7947, 62, 63, 65, 78lemul1ad 11568 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → ((1 / 𝑘) · ((abs‘𝐴)↑𝑘)) ≤ (1 · ((abs‘𝐴)↑𝑘)))
8061, 79eqbrtrd 5085 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (abs‘((1 / 𝑘) · (𝐴𝑘))) ≤ (1 · ((abs‘𝐴)↑𝑘)))
8149, 22sylan2 592 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)))‘𝑘) = (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)))
82 nnne0 11660 . . . . . . . . . 10 (𝑘 ∈ ℕ → 𝑘 ≠ 0)
8382adantl 482 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → 𝑘 ≠ 0)
8483neneqd 3026 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → ¬ 𝑘 = 0)
8584iffalsed 4481 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → if(𝑘 = 0, 0, (1 / 𝑘)) = (1 / 𝑘))
8685oveq1d 7163 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)) = ((1 / 𝑘) · (𝐴𝑘)))
8781, 86eqtrd 2861 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)))‘𝑘) = ((1 / 𝑘) · (𝐴𝑘)))
8887fveq2d 6671 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (abs‘((𝑛 ∈ ℕ0 ↦ (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)))‘𝑘)) = (abs‘((1 / 𝑘) · (𝐴𝑘))))
8949, 8sylan2 592 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛))‘𝑘) = ((abs‘𝐴)↑𝑘))
9089oveq2d 7164 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (1 · ((𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛))‘𝑘)) = (1 · ((abs‘𝐴)↑𝑘)))
9180, 88, 903brtr4d 5095 . . 3 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (abs‘((𝑛 ∈ ℕ0 ↦ (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)))‘𝑘)) ≤ (1 · ((𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛))‘𝑘)))
9245, 91sylan2br 594 . 2 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ (ℤ‘1)) → (abs‘((𝑛 ∈ ℕ0 ↦ (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)))‘𝑘)) ≤ (1 · ((𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛))‘𝑘)))
931, 3, 13, 33, 43, 44, 92cvgcmpce 15163 1 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq0( + , (𝑛 ∈ ℕ0 ↦ (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)))) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396   = wceq 1530  wcel 2107  wne 3021  ifcif 4470   class class class wbr 5063  cmpt 5143  dom cdm 5554  cfv 6352  (class class class)co 7148  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  cle 10665  cmin 10859   / cdiv 11286  cn 11627  0cn0 11886  cuz 12232  +crp 12379  seqcseq 13359  cexp 13419  abscabs 14583  cli 14831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-inf2 9093  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-isom 6361  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7569  df-1st 7680  df-2nd 7681  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-oadd 8097  df-er 8279  df-pm 8399  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-sup 8895  df-inf 8896  df-oi 8963  df-card 9357  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11628  df-2 11689  df-3 11690  df-n0 11887  df-z 11971  df-uz 12233  df-rp 12380  df-ico 12734  df-fz 12883  df-fzo 13024  df-fl 13152  df-seq 13360  df-exp 13420  df-hash 13681  df-cj 14448  df-re 14449  df-im 14450  df-sqrt 14584  df-abs 14585  df-limsup 14818  df-clim 14835  df-rlim 14836  df-sum 15033
This theorem is referenced by:  logtayl  25159
  Copyright terms: Public domain W3C validator