MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logtayllem Structured version   Visualization version   GIF version

Theorem logtayllem 26584
Description: Lemma for logtayl 26585. (Contributed by Mario Carneiro, 1-Apr-2015.)
Assertion
Ref Expression
logtayllem ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq0( + , (𝑛 ∈ ℕ0 ↦ (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)))) ∈ dom ⇝ )
Distinct variable group:   𝐴,𝑛

Proof of Theorem logtayllem
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nn0uz 12795 . 2 0 = (ℤ‘0)
2 1nn0 12418 . . 3 1 ∈ ℕ0
32a1i 11 . 2 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 1 ∈ ℕ0)
4 oveq2 7361 . . . . 5 (𝑛 = 𝑘 → ((abs‘𝐴)↑𝑛) = ((abs‘𝐴)↑𝑘))
5 eqid 2729 . . . . 5 (𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛)) = (𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛))
6 ovex 7386 . . . . 5 ((abs‘𝐴)↑𝑘) ∈ V
74, 5, 6fvmpt 6934 . . . 4 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛))‘𝑘) = ((abs‘𝐴)↑𝑘))
87adantl 481 . . 3 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛))‘𝑘) = ((abs‘𝐴)↑𝑘))
9 abscl 15203 . . . . 5 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
109adantr 480 . . . 4 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘𝐴) ∈ ℝ)
11 reexpcl 14003 . . . 4 (((abs‘𝐴) ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((abs‘𝐴)↑𝑘) ∈ ℝ)
1210, 11sylan 580 . . 3 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ0) → ((abs‘𝐴)↑𝑘) ∈ ℝ)
138, 12eqeltrd 2828 . 2 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛))‘𝑘) ∈ ℝ)
14 eqeq1 2733 . . . . . . 7 (𝑛 = 𝑘 → (𝑛 = 0 ↔ 𝑘 = 0))
15 oveq2 7361 . . . . . . 7 (𝑛 = 𝑘 → (1 / 𝑛) = (1 / 𝑘))
1614, 15ifbieq2d 4505 . . . . . 6 (𝑛 = 𝑘 → if(𝑛 = 0, 0, (1 / 𝑛)) = if(𝑘 = 0, 0, (1 / 𝑘)))
17 oveq2 7361 . . . . . 6 (𝑛 = 𝑘 → (𝐴𝑛) = (𝐴𝑘))
1816, 17oveq12d 7371 . . . . 5 (𝑛 = 𝑘 → (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)) = (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)))
19 eqid 2729 . . . . 5 (𝑛 ∈ ℕ0 ↦ (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛))) = (𝑛 ∈ ℕ0 ↦ (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)))
20 ovex 7386 . . . . 5 (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)) ∈ V
2118, 19, 20fvmpt 6934 . . . 4 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)))‘𝑘) = (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)))
2221adantl 481 . . 3 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)))‘𝑘) = (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)))
23 0cnd 11127 . . . . 5 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ0) ∧ 𝑘 = 0) → 0 ∈ ℂ)
24 nn0cn 12412 . . . . . . 7 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
2524adantl 481 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℂ)
26 neqne 2933 . . . . . 6 𝑘 = 0 → 𝑘 ≠ 0)
27 reccl 11804 . . . . . 6 ((𝑘 ∈ ℂ ∧ 𝑘 ≠ 0) → (1 / 𝑘) ∈ ℂ)
2825, 26, 27syl2an 596 . . . . 5 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ0) ∧ ¬ 𝑘 = 0) → (1 / 𝑘) ∈ ℂ)
2923, 28ifclda 4514 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ0) → if(𝑘 = 0, 0, (1 / 𝑘)) ∈ ℂ)
30 expcl 14004 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
3130adantlr 715 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
3229, 31mulcld 11154 . . 3 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ0) → (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)) ∈ ℂ)
3322, 32eqeltrd 2828 . 2 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)))‘𝑘) ∈ ℂ)
3410recnd 11162 . . . 4 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘𝐴) ∈ ℂ)
35 absidm 15249 . . . . . 6 (𝐴 ∈ ℂ → (abs‘(abs‘𝐴)) = (abs‘𝐴))
3635adantr 480 . . . . 5 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘(abs‘𝐴)) = (abs‘𝐴))
37 simpr 484 . . . . 5 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘𝐴) < 1)
3836, 37eqbrtrd 5117 . . . 4 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘(abs‘𝐴)) < 1)
3934, 38, 8geolim 15795 . . 3 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq0( + , (𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛))) ⇝ (1 / (1 − (abs‘𝐴))))
40 seqex 13928 . . . 4 seq0( + , (𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛))) ∈ V
41 ovex 7386 . . . 4 (1 / (1 − (abs‘𝐴))) ∈ V
4240, 41breldm 5855 . . 3 (seq0( + , (𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛))) ⇝ (1 / (1 − (abs‘𝐴))) → seq0( + , (𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛))) ∈ dom ⇝ )
4339, 42syl 17 . 2 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq0( + , (𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛))) ∈ dom ⇝ )
44 1red 11135 . 2 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 1 ∈ ℝ)
45 elnnuz 12797 . . 3 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
46 nnrecre 12188 . . . . . . . . 9 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ)
4746adantl 481 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (1 / 𝑘) ∈ ℝ)
4847recnd 11162 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (1 / 𝑘) ∈ ℂ)
49 nnnn0 12409 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
5049, 31sylan2 593 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (𝐴𝑘) ∈ ℂ)
5148, 50absmuld 15382 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (abs‘((1 / 𝑘) · (𝐴𝑘))) = ((abs‘(1 / 𝑘)) · (abs‘(𝐴𝑘))))
52 nnrp 12923 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ+)
5352adantl 481 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℝ+)
5453rpreccld 12965 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (1 / 𝑘) ∈ ℝ+)
5554rpge0d 12959 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → 0 ≤ (1 / 𝑘))
5647, 55absidd 15348 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (abs‘(1 / 𝑘)) = (1 / 𝑘))
57 simpl 482 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 𝐴 ∈ ℂ)
58 absexp 15229 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘))
5957, 49, 58syl2an 596 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘))
6056, 59oveq12d 7371 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → ((abs‘(1 / 𝑘)) · (abs‘(𝐴𝑘))) = ((1 / 𝑘) · ((abs‘𝐴)↑𝑘)))
6151, 60eqtrd 2764 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (abs‘((1 / 𝑘) · (𝐴𝑘))) = ((1 / 𝑘) · ((abs‘𝐴)↑𝑘)))
62 1red 11135 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → 1 ∈ ℝ)
6349, 12sylan2 593 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → ((abs‘𝐴)↑𝑘) ∈ ℝ)
6450absge0d 15372 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → 0 ≤ (abs‘(𝐴𝑘)))
6564, 59breqtrd 5121 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → 0 ≤ ((abs‘𝐴)↑𝑘))
66 nnge1 12174 . . . . . . . . 9 (𝑘 ∈ ℕ → 1 ≤ 𝑘)
6766adantl 481 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → 1 ≤ 𝑘)
68 0lt1 11660 . . . . . . . . . 10 0 < 1
6968a1i 11 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → 0 < 1)
70 nnre 12153 . . . . . . . . . 10 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
7170adantl 481 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℝ)
72 nngt0 12177 . . . . . . . . . 10 (𝑘 ∈ ℕ → 0 < 𝑘)
7372adantl 481 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → 0 < 𝑘)
74 lerec 12026 . . . . . . . . 9 (((1 ∈ ℝ ∧ 0 < 1) ∧ (𝑘 ∈ ℝ ∧ 0 < 𝑘)) → (1 ≤ 𝑘 ↔ (1 / 𝑘) ≤ (1 / 1)))
7562, 69, 71, 73, 74syl22anc 838 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (1 ≤ 𝑘 ↔ (1 / 𝑘) ≤ (1 / 1)))
7667, 75mpbid 232 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (1 / 𝑘) ≤ (1 / 1))
77 1div1e1 11833 . . . . . . 7 (1 / 1) = 1
7876, 77breqtrdi 5136 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (1 / 𝑘) ≤ 1)
7947, 62, 63, 65, 78lemul1ad 12082 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → ((1 / 𝑘) · ((abs‘𝐴)↑𝑘)) ≤ (1 · ((abs‘𝐴)↑𝑘)))
8061, 79eqbrtrd 5117 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (abs‘((1 / 𝑘) · (𝐴𝑘))) ≤ (1 · ((abs‘𝐴)↑𝑘)))
8149, 22sylan2 593 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)))‘𝑘) = (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)))
82 nnne0 12180 . . . . . . . . . 10 (𝑘 ∈ ℕ → 𝑘 ≠ 0)
8382adantl 481 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → 𝑘 ≠ 0)
8483neneqd 2930 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → ¬ 𝑘 = 0)
8584iffalsed 4489 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → if(𝑘 = 0, 0, (1 / 𝑘)) = (1 / 𝑘))
8685oveq1d 7368 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)) = ((1 / 𝑘) · (𝐴𝑘)))
8781, 86eqtrd 2764 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)))‘𝑘) = ((1 / 𝑘) · (𝐴𝑘)))
8887fveq2d 6830 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (abs‘((𝑛 ∈ ℕ0 ↦ (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)))‘𝑘)) = (abs‘((1 / 𝑘) · (𝐴𝑘))))
8949, 8sylan2 593 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛))‘𝑘) = ((abs‘𝐴)↑𝑘))
9089oveq2d 7369 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (1 · ((𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛))‘𝑘)) = (1 · ((abs‘𝐴)↑𝑘)))
9180, 88, 903brtr4d 5127 . . 3 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (abs‘((𝑛 ∈ ℕ0 ↦ (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)))‘𝑘)) ≤ (1 · ((𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛))‘𝑘)))
9245, 91sylan2br 595 . 2 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ (ℤ‘1)) → (abs‘((𝑛 ∈ ℕ0 ↦ (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)))‘𝑘)) ≤ (1 · ((𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛))‘𝑘)))
931, 3, 13, 33, 43, 44, 92cvgcmpce 15743 1 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq0( + , (𝑛 ∈ ℕ0 ↦ (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)))) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  ifcif 4478   class class class wbr 5095  cmpt 5176  dom cdm 5623  cfv 6486  (class class class)co 7353  cc 11026  cr 11027  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033   < clt 11168  cle 11169  cmin 11365   / cdiv 11795  cn 12146  0cn0 12402  cuz 12753  +crp 12911  seqcseq 13926  cexp 13986  abscabs 15159  cli 15409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-ico 13272  df-fz 13429  df-fzo 13576  df-fl 13714  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-limsup 15396  df-clim 15413  df-rlim 15414  df-sum 15612
This theorem is referenced by:  logtayl  26585
  Copyright terms: Public domain W3C validator