MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logtayllem Structured version   Visualization version   GIF version

Theorem logtayllem 26719
Description: Lemma for logtayl 26720. (Contributed by Mario Carneiro, 1-Apr-2015.)
Assertion
Ref Expression
logtayllem ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq0( + , (𝑛 ∈ ℕ0 ↦ (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)))) ∈ dom ⇝ )
Distinct variable group:   𝐴,𝑛

Proof of Theorem logtayllem
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nn0uz 12945 . 2 0 = (ℤ‘0)
2 1nn0 12569 . . 3 1 ∈ ℕ0
32a1i 11 . 2 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 1 ∈ ℕ0)
4 oveq2 7456 . . . . 5 (𝑛 = 𝑘 → ((abs‘𝐴)↑𝑛) = ((abs‘𝐴)↑𝑘))
5 eqid 2740 . . . . 5 (𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛)) = (𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛))
6 ovex 7481 . . . . 5 ((abs‘𝐴)↑𝑘) ∈ V
74, 5, 6fvmpt 7029 . . . 4 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛))‘𝑘) = ((abs‘𝐴)↑𝑘))
87adantl 481 . . 3 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛))‘𝑘) = ((abs‘𝐴)↑𝑘))
9 abscl 15327 . . . . 5 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
109adantr 480 . . . 4 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘𝐴) ∈ ℝ)
11 reexpcl 14129 . . . 4 (((abs‘𝐴) ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((abs‘𝐴)↑𝑘) ∈ ℝ)
1210, 11sylan 579 . . 3 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ0) → ((abs‘𝐴)↑𝑘) ∈ ℝ)
138, 12eqeltrd 2844 . 2 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛))‘𝑘) ∈ ℝ)
14 eqeq1 2744 . . . . . . 7 (𝑛 = 𝑘 → (𝑛 = 0 ↔ 𝑘 = 0))
15 oveq2 7456 . . . . . . 7 (𝑛 = 𝑘 → (1 / 𝑛) = (1 / 𝑘))
1614, 15ifbieq2d 4574 . . . . . 6 (𝑛 = 𝑘 → if(𝑛 = 0, 0, (1 / 𝑛)) = if(𝑘 = 0, 0, (1 / 𝑘)))
17 oveq2 7456 . . . . . 6 (𝑛 = 𝑘 → (𝐴𝑛) = (𝐴𝑘))
1816, 17oveq12d 7466 . . . . 5 (𝑛 = 𝑘 → (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)) = (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)))
19 eqid 2740 . . . . 5 (𝑛 ∈ ℕ0 ↦ (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛))) = (𝑛 ∈ ℕ0 ↦ (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)))
20 ovex 7481 . . . . 5 (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)) ∈ V
2118, 19, 20fvmpt 7029 . . . 4 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)))‘𝑘) = (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)))
2221adantl 481 . . 3 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)))‘𝑘) = (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)))
23 0cnd 11283 . . . . 5 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ0) ∧ 𝑘 = 0) → 0 ∈ ℂ)
24 nn0cn 12563 . . . . . . 7 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
2524adantl 481 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℂ)
26 neqne 2954 . . . . . 6 𝑘 = 0 → 𝑘 ≠ 0)
27 reccl 11956 . . . . . 6 ((𝑘 ∈ ℂ ∧ 𝑘 ≠ 0) → (1 / 𝑘) ∈ ℂ)
2825, 26, 27syl2an 595 . . . . 5 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ0) ∧ ¬ 𝑘 = 0) → (1 / 𝑘) ∈ ℂ)
2923, 28ifclda 4583 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ0) → if(𝑘 = 0, 0, (1 / 𝑘)) ∈ ℂ)
30 expcl 14130 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
3130adantlr 714 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
3229, 31mulcld 11310 . . 3 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ0) → (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)) ∈ ℂ)
3322, 32eqeltrd 2844 . 2 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)))‘𝑘) ∈ ℂ)
3410recnd 11318 . . . 4 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘𝐴) ∈ ℂ)
35 absidm 15372 . . . . . 6 (𝐴 ∈ ℂ → (abs‘(abs‘𝐴)) = (abs‘𝐴))
3635adantr 480 . . . . 5 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘(abs‘𝐴)) = (abs‘𝐴))
37 simpr 484 . . . . 5 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘𝐴) < 1)
3836, 37eqbrtrd 5188 . . . 4 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘(abs‘𝐴)) < 1)
3934, 38, 8geolim 15918 . . 3 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq0( + , (𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛))) ⇝ (1 / (1 − (abs‘𝐴))))
40 seqex 14054 . . . 4 seq0( + , (𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛))) ∈ V
41 ovex 7481 . . . 4 (1 / (1 − (abs‘𝐴))) ∈ V
4240, 41breldm 5933 . . 3 (seq0( + , (𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛))) ⇝ (1 / (1 − (abs‘𝐴))) → seq0( + , (𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛))) ∈ dom ⇝ )
4339, 42syl 17 . 2 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq0( + , (𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛))) ∈ dom ⇝ )
44 1red 11291 . 2 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 1 ∈ ℝ)
45 elnnuz 12947 . . 3 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
46 nnrecre 12335 . . . . . . . . 9 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ)
4746adantl 481 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (1 / 𝑘) ∈ ℝ)
4847recnd 11318 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (1 / 𝑘) ∈ ℂ)
49 nnnn0 12560 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
5049, 31sylan2 592 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (𝐴𝑘) ∈ ℂ)
5148, 50absmuld 15503 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (abs‘((1 / 𝑘) · (𝐴𝑘))) = ((abs‘(1 / 𝑘)) · (abs‘(𝐴𝑘))))
52 nnrp 13068 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ+)
5352adantl 481 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℝ+)
5453rpreccld 13109 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (1 / 𝑘) ∈ ℝ+)
5554rpge0d 13103 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → 0 ≤ (1 / 𝑘))
5647, 55absidd 15471 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (abs‘(1 / 𝑘)) = (1 / 𝑘))
57 simpl 482 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 𝐴 ∈ ℂ)
58 absexp 15353 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘))
5957, 49, 58syl2an 595 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘))
6056, 59oveq12d 7466 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → ((abs‘(1 / 𝑘)) · (abs‘(𝐴𝑘))) = ((1 / 𝑘) · ((abs‘𝐴)↑𝑘)))
6151, 60eqtrd 2780 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (abs‘((1 / 𝑘) · (𝐴𝑘))) = ((1 / 𝑘) · ((abs‘𝐴)↑𝑘)))
62 1red 11291 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → 1 ∈ ℝ)
6349, 12sylan2 592 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → ((abs‘𝐴)↑𝑘) ∈ ℝ)
6450absge0d 15493 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → 0 ≤ (abs‘(𝐴𝑘)))
6564, 59breqtrd 5192 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → 0 ≤ ((abs‘𝐴)↑𝑘))
66 nnge1 12321 . . . . . . . . 9 (𝑘 ∈ ℕ → 1 ≤ 𝑘)
6766adantl 481 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → 1 ≤ 𝑘)
68 0lt1 11812 . . . . . . . . . 10 0 < 1
6968a1i 11 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → 0 < 1)
70 nnre 12300 . . . . . . . . . 10 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
7170adantl 481 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℝ)
72 nngt0 12324 . . . . . . . . . 10 (𝑘 ∈ ℕ → 0 < 𝑘)
7372adantl 481 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → 0 < 𝑘)
74 lerec 12178 . . . . . . . . 9 (((1 ∈ ℝ ∧ 0 < 1) ∧ (𝑘 ∈ ℝ ∧ 0 < 𝑘)) → (1 ≤ 𝑘 ↔ (1 / 𝑘) ≤ (1 / 1)))
7562, 69, 71, 73, 74syl22anc 838 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (1 ≤ 𝑘 ↔ (1 / 𝑘) ≤ (1 / 1)))
7667, 75mpbid 232 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (1 / 𝑘) ≤ (1 / 1))
77 1div1e1 11985 . . . . . . 7 (1 / 1) = 1
7876, 77breqtrdi 5207 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (1 / 𝑘) ≤ 1)
7947, 62, 63, 65, 78lemul1ad 12234 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → ((1 / 𝑘) · ((abs‘𝐴)↑𝑘)) ≤ (1 · ((abs‘𝐴)↑𝑘)))
8061, 79eqbrtrd 5188 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (abs‘((1 / 𝑘) · (𝐴𝑘))) ≤ (1 · ((abs‘𝐴)↑𝑘)))
8149, 22sylan2 592 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)))‘𝑘) = (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)))
82 nnne0 12327 . . . . . . . . . 10 (𝑘 ∈ ℕ → 𝑘 ≠ 0)
8382adantl 481 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → 𝑘 ≠ 0)
8483neneqd 2951 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → ¬ 𝑘 = 0)
8584iffalsed 4559 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → if(𝑘 = 0, 0, (1 / 𝑘)) = (1 / 𝑘))
8685oveq1d 7463 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)) = ((1 / 𝑘) · (𝐴𝑘)))
8781, 86eqtrd 2780 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)))‘𝑘) = ((1 / 𝑘) · (𝐴𝑘)))
8887fveq2d 6924 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (abs‘((𝑛 ∈ ℕ0 ↦ (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)))‘𝑘)) = (abs‘((1 / 𝑘) · (𝐴𝑘))))
8949, 8sylan2 592 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛))‘𝑘) = ((abs‘𝐴)↑𝑘))
9089oveq2d 7464 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (1 · ((𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛))‘𝑘)) = (1 · ((abs‘𝐴)↑𝑘)))
9180, 88, 903brtr4d 5198 . . 3 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (abs‘((𝑛 ∈ ℕ0 ↦ (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)))‘𝑘)) ≤ (1 · ((𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛))‘𝑘)))
9245, 91sylan2br 594 . 2 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ (ℤ‘1)) → (abs‘((𝑛 ∈ ℕ0 ↦ (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)))‘𝑘)) ≤ (1 · ((𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛))‘𝑘)))
931, 3, 13, 33, 43, 44, 92cvgcmpce 15866 1 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq0( + , (𝑛 ∈ ℕ0 ↦ (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)))) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  ifcif 4548   class class class wbr 5166  cmpt 5249  dom cdm 5700  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189   < clt 11324  cle 11325  cmin 11520   / cdiv 11947  cn 12293  0cn0 12553  cuz 12903  +crp 13057  seqcseq 14052  cexp 14112  abscabs 15283  cli 15530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-ico 13413  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735
This theorem is referenced by:  logtayl  26720
  Copyright terms: Public domain W3C validator