MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logtayllem Structured version   Visualization version   GIF version

Theorem logtayllem 26014
Description: Lemma for logtayl 26015. (Contributed by Mario Carneiro, 1-Apr-2015.)
Assertion
Ref Expression
logtayllem ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq0( + , (𝑛 ∈ ℕ0 ↦ (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)))) ∈ dom ⇝ )
Distinct variable group:   𝐴,𝑛

Proof of Theorem logtayllem
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nn0uz 12805 . 2 0 = (ℤ‘0)
2 1nn0 12429 . . 3 1 ∈ ℕ0
32a1i 11 . 2 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 1 ∈ ℕ0)
4 oveq2 7365 . . . . 5 (𝑛 = 𝑘 → ((abs‘𝐴)↑𝑛) = ((abs‘𝐴)↑𝑘))
5 eqid 2736 . . . . 5 (𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛)) = (𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛))
6 ovex 7390 . . . . 5 ((abs‘𝐴)↑𝑘) ∈ V
74, 5, 6fvmpt 6948 . . . 4 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛))‘𝑘) = ((abs‘𝐴)↑𝑘))
87adantl 482 . . 3 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛))‘𝑘) = ((abs‘𝐴)↑𝑘))
9 abscl 15163 . . . . 5 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
109adantr 481 . . . 4 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘𝐴) ∈ ℝ)
11 reexpcl 13984 . . . 4 (((abs‘𝐴) ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((abs‘𝐴)↑𝑘) ∈ ℝ)
1210, 11sylan 580 . . 3 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ0) → ((abs‘𝐴)↑𝑘) ∈ ℝ)
138, 12eqeltrd 2838 . 2 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛))‘𝑘) ∈ ℝ)
14 eqeq1 2740 . . . . . . 7 (𝑛 = 𝑘 → (𝑛 = 0 ↔ 𝑘 = 0))
15 oveq2 7365 . . . . . . 7 (𝑛 = 𝑘 → (1 / 𝑛) = (1 / 𝑘))
1614, 15ifbieq2d 4512 . . . . . 6 (𝑛 = 𝑘 → if(𝑛 = 0, 0, (1 / 𝑛)) = if(𝑘 = 0, 0, (1 / 𝑘)))
17 oveq2 7365 . . . . . 6 (𝑛 = 𝑘 → (𝐴𝑛) = (𝐴𝑘))
1816, 17oveq12d 7375 . . . . 5 (𝑛 = 𝑘 → (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)) = (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)))
19 eqid 2736 . . . . 5 (𝑛 ∈ ℕ0 ↦ (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛))) = (𝑛 ∈ ℕ0 ↦ (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)))
20 ovex 7390 . . . . 5 (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)) ∈ V
2118, 19, 20fvmpt 6948 . . . 4 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)))‘𝑘) = (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)))
2221adantl 482 . . 3 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)))‘𝑘) = (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)))
23 0cnd 11148 . . . . 5 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ0) ∧ 𝑘 = 0) → 0 ∈ ℂ)
24 nn0cn 12423 . . . . . . 7 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
2524adantl 482 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℂ)
26 neqne 2951 . . . . . 6 𝑘 = 0 → 𝑘 ≠ 0)
27 reccl 11820 . . . . . 6 ((𝑘 ∈ ℂ ∧ 𝑘 ≠ 0) → (1 / 𝑘) ∈ ℂ)
2825, 26, 27syl2an 596 . . . . 5 ((((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ0) ∧ ¬ 𝑘 = 0) → (1 / 𝑘) ∈ ℂ)
2923, 28ifclda 4521 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ0) → if(𝑘 = 0, 0, (1 / 𝑘)) ∈ ℂ)
30 expcl 13985 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
3130adantlr 713 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
3229, 31mulcld 11175 . . 3 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ0) → (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)) ∈ ℂ)
3322, 32eqeltrd 2838 . 2 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)))‘𝑘) ∈ ℂ)
3410recnd 11183 . . . 4 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘𝐴) ∈ ℂ)
35 absidm 15208 . . . . . 6 (𝐴 ∈ ℂ → (abs‘(abs‘𝐴)) = (abs‘𝐴))
3635adantr 481 . . . . 5 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘(abs‘𝐴)) = (abs‘𝐴))
37 simpr 485 . . . . 5 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘𝐴) < 1)
3836, 37eqbrtrd 5127 . . . 4 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → (abs‘(abs‘𝐴)) < 1)
3934, 38, 8geolim 15755 . . 3 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq0( + , (𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛))) ⇝ (1 / (1 − (abs‘𝐴))))
40 seqex 13908 . . . 4 seq0( + , (𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛))) ∈ V
41 ovex 7390 . . . 4 (1 / (1 − (abs‘𝐴))) ∈ V
4240, 41breldm 5864 . . 3 (seq0( + , (𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛))) ⇝ (1 / (1 − (abs‘𝐴))) → seq0( + , (𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛))) ∈ dom ⇝ )
4339, 42syl 17 . 2 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq0( + , (𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛))) ∈ dom ⇝ )
44 1red 11156 . 2 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 1 ∈ ℝ)
45 elnnuz 12807 . . 3 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
46 nnrecre 12195 . . . . . . . . 9 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ)
4746adantl 482 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (1 / 𝑘) ∈ ℝ)
4847recnd 11183 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (1 / 𝑘) ∈ ℂ)
49 nnnn0 12420 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
5049, 31sylan2 593 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (𝐴𝑘) ∈ ℂ)
5148, 50absmuld 15339 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (abs‘((1 / 𝑘) · (𝐴𝑘))) = ((abs‘(1 / 𝑘)) · (abs‘(𝐴𝑘))))
52 nnrp 12926 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ+)
5352adantl 482 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℝ+)
5453rpreccld 12967 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (1 / 𝑘) ∈ ℝ+)
5554rpge0d 12961 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → 0 ≤ (1 / 𝑘))
5647, 55absidd 15307 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (abs‘(1 / 𝑘)) = (1 / 𝑘))
57 simpl 483 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 𝐴 ∈ ℂ)
58 absexp 15189 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘))
5957, 49, 58syl2an 596 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘))
6056, 59oveq12d 7375 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → ((abs‘(1 / 𝑘)) · (abs‘(𝐴𝑘))) = ((1 / 𝑘) · ((abs‘𝐴)↑𝑘)))
6151, 60eqtrd 2776 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (abs‘((1 / 𝑘) · (𝐴𝑘))) = ((1 / 𝑘) · ((abs‘𝐴)↑𝑘)))
62 1red 11156 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → 1 ∈ ℝ)
6349, 12sylan2 593 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → ((abs‘𝐴)↑𝑘) ∈ ℝ)
6450absge0d 15329 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → 0 ≤ (abs‘(𝐴𝑘)))
6564, 59breqtrd 5131 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → 0 ≤ ((abs‘𝐴)↑𝑘))
66 nnge1 12181 . . . . . . . . 9 (𝑘 ∈ ℕ → 1 ≤ 𝑘)
6766adantl 482 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → 1 ≤ 𝑘)
68 0lt1 11677 . . . . . . . . . 10 0 < 1
6968a1i 11 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → 0 < 1)
70 nnre 12160 . . . . . . . . . 10 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
7170adantl 482 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℝ)
72 nngt0 12184 . . . . . . . . . 10 (𝑘 ∈ ℕ → 0 < 𝑘)
7372adantl 482 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → 0 < 𝑘)
74 lerec 12038 . . . . . . . . 9 (((1 ∈ ℝ ∧ 0 < 1) ∧ (𝑘 ∈ ℝ ∧ 0 < 𝑘)) → (1 ≤ 𝑘 ↔ (1 / 𝑘) ≤ (1 / 1)))
7562, 69, 71, 73, 74syl22anc 837 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (1 ≤ 𝑘 ↔ (1 / 𝑘) ≤ (1 / 1)))
7667, 75mpbid 231 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (1 / 𝑘) ≤ (1 / 1))
77 1div1e1 11845 . . . . . . 7 (1 / 1) = 1
7876, 77breqtrdi 5146 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (1 / 𝑘) ≤ 1)
7947, 62, 63, 65, 78lemul1ad 12094 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → ((1 / 𝑘) · ((abs‘𝐴)↑𝑘)) ≤ (1 · ((abs‘𝐴)↑𝑘)))
8061, 79eqbrtrd 5127 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (abs‘((1 / 𝑘) · (𝐴𝑘))) ≤ (1 · ((abs‘𝐴)↑𝑘)))
8149, 22sylan2 593 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)))‘𝑘) = (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)))
82 nnne0 12187 . . . . . . . . . 10 (𝑘 ∈ ℕ → 𝑘 ≠ 0)
8382adantl 482 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → 𝑘 ≠ 0)
8483neneqd 2948 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → ¬ 𝑘 = 0)
8584iffalsed 4497 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → if(𝑘 = 0, 0, (1 / 𝑘)) = (1 / 𝑘))
8685oveq1d 7372 . . . . . 6 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (if(𝑘 = 0, 0, (1 / 𝑘)) · (𝐴𝑘)) = ((1 / 𝑘) · (𝐴𝑘)))
8781, 86eqtrd 2776 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)))‘𝑘) = ((1 / 𝑘) · (𝐴𝑘)))
8887fveq2d 6846 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (abs‘((𝑛 ∈ ℕ0 ↦ (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)))‘𝑘)) = (abs‘((1 / 𝑘) · (𝐴𝑘))))
8949, 8sylan2 593 . . . . 5 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛))‘𝑘) = ((abs‘𝐴)↑𝑘))
9089oveq2d 7373 . . . 4 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (1 · ((𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛))‘𝑘)) = (1 · ((abs‘𝐴)↑𝑘)))
9180, 88, 903brtr4d 5137 . . 3 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ ℕ) → (abs‘((𝑛 ∈ ℕ0 ↦ (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)))‘𝑘)) ≤ (1 · ((𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛))‘𝑘)))
9245, 91sylan2br 595 . 2 (((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) ∧ 𝑘 ∈ (ℤ‘1)) → (abs‘((𝑛 ∈ ℕ0 ↦ (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)))‘𝑘)) ≤ (1 · ((𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛))‘𝑘)))
931, 3, 13, 33, 43, 44, 92cvgcmpce 15703 1 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq0( + , (𝑛 ∈ ℕ0 ↦ (if(𝑛 = 0, 0, (1 / 𝑛)) · (𝐴𝑛)))) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2943  ifcif 4486   class class class wbr 5105  cmpt 5188  dom cdm 5633  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056   < clt 11189  cle 11190  cmin 11385   / cdiv 11812  cn 12153  0cn0 12413  cuz 12763  +crp 12915  seqcseq 13906  cexp 13967  abscabs 15119  cli 15366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-ico 13270  df-fz 13425  df-fzo 13568  df-fl 13697  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571
This theorem is referenced by:  logtayl  26015
  Copyright terms: Public domain W3C validator