MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen2lem5 Structured version   Visualization version   GIF version

Theorem rpnnen2lem5 16251
Description: Lemma for rpnnen2 16259. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 30-Apr-2014.)
Hypothesis
Ref Expression
rpnnen2.1 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
Assertion
Ref Expression
rpnnen2lem5 ((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → seq𝑀( + , (𝐹𝐴)) ∈ dom ⇝ )
Distinct variable groups:   𝑥,𝑛,𝐴   𝑛,𝑀,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑛)

Proof of Theorem rpnnen2lem5
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nnuz 12919 . . . 4 ℕ = (ℤ‘1)
2 1nn 12275 . . . . 5 1 ∈ ℕ
32a1i 11 . . . 4 (𝐴 ⊆ ℕ → 1 ∈ ℕ)
4 ssid 4018 . . . . . 6 ℕ ⊆ ℕ
5 rpnnen2.1 . . . . . . 7 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
65rpnnen2lem2 16248 . . . . . 6 (ℕ ⊆ ℕ → (𝐹‘ℕ):ℕ⟶ℝ)
74, 6mp1i 13 . . . . 5 (𝐴 ⊆ ℕ → (𝐹‘ℕ):ℕ⟶ℝ)
87ffvelcdmda 7104 . . . 4 ((𝐴 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹‘ℕ)‘𝑘) ∈ ℝ)
95rpnnen2lem2 16248 . . . . 5 (𝐴 ⊆ ℕ → (𝐹𝐴):ℕ⟶ℝ)
109ffvelcdmda 7104 . . . 4 ((𝐴 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹𝐴)‘𝑘) ∈ ℝ)
115rpnnen2lem3 16249 . . . . 5 seq1( + , (𝐹‘ℕ)) ⇝ (1 / 2)
12 seqex 14041 . . . . . 6 seq1( + , (𝐹‘ℕ)) ∈ V
13 ovex 7464 . . . . . 6 (1 / 2) ∈ V
1412, 13breldm 5922 . . . . 5 (seq1( + , (𝐹‘ℕ)) ⇝ (1 / 2) → seq1( + , (𝐹‘ℕ)) ∈ dom ⇝ )
1511, 14mp1i 13 . . . 4 (𝐴 ⊆ ℕ → seq1( + , (𝐹‘ℕ)) ∈ dom ⇝ )
16 elnnuz 12920 . . . . . 6 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
175rpnnen2lem4 16250 . . . . . . 7 ((𝐴 ⊆ ℕ ∧ ℕ ⊆ ℕ ∧ 𝑘 ∈ ℕ) → (0 ≤ ((𝐹𝐴)‘𝑘) ∧ ((𝐹𝐴)‘𝑘) ≤ ((𝐹‘ℕ)‘𝑘)))
184, 17mp3an2 1448 . . . . . 6 ((𝐴 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → (0 ≤ ((𝐹𝐴)‘𝑘) ∧ ((𝐹𝐴)‘𝑘) ≤ ((𝐹‘ℕ)‘𝑘)))
1916, 18sylan2br 595 . . . . 5 ((𝐴 ⊆ ℕ ∧ 𝑘 ∈ (ℤ‘1)) → (0 ≤ ((𝐹𝐴)‘𝑘) ∧ ((𝐹𝐴)‘𝑘) ≤ ((𝐹‘ℕ)‘𝑘)))
2019simpld 494 . . . 4 ((𝐴 ⊆ ℕ ∧ 𝑘 ∈ (ℤ‘1)) → 0 ≤ ((𝐹𝐴)‘𝑘))
2119simprd 495 . . . 4 ((𝐴 ⊆ ℕ ∧ 𝑘 ∈ (ℤ‘1)) → ((𝐹𝐴)‘𝑘) ≤ ((𝐹‘ℕ)‘𝑘))
221, 3, 8, 10, 15, 20, 21cvgcmp 15849 . . 3 (𝐴 ⊆ ℕ → seq1( + , (𝐹𝐴)) ∈ dom ⇝ )
2322adantr 480 . 2 ((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → seq1( + , (𝐹𝐴)) ∈ dom ⇝ )
24 simpr 484 . . 3 ((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℕ)
2510adantlr 715 . . . 4 (((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝐴)‘𝑘) ∈ ℝ)
2625recnd 11287 . . 3 (((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝐴)‘𝑘) ∈ ℂ)
271, 24, 26iserex 15690 . 2 ((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → (seq1( + , (𝐹𝐴)) ∈ dom ⇝ ↔ seq𝑀( + , (𝐹𝐴)) ∈ dom ⇝ ))
2823, 27mpbid 232 1 ((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → seq𝑀( + , (𝐹𝐴)) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wss 3963  ifcif 4531  𝒫 cpw 4605   class class class wbr 5148  cmpt 5231  dom cdm 5689  wf 6559  cfv 6563  (class class class)co 7431  cr 11152  0cc0 11153  1c1 11154   + caddc 11156  cle 11294   / cdiv 11918  cn 12264  2c2 12319  3c3 12320  cuz 12876  seqcseq 14039  cexp 14099  cli 15517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-ico 13390  df-fz 13545  df-fzo 13692  df-fl 13829  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-limsup 15504  df-clim 15521  df-rlim 15522  df-sum 15720
This theorem is referenced by:  rpnnen2lem6  16252  rpnnen2lem7  16253  rpnnen2lem8  16254  rpnnen2lem9  16255  rpnnen2lem12  16258
  Copyright terms: Public domain W3C validator