![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rpnnen2lem5 | Structured version Visualization version GIF version |
Description: Lemma for rpnnen2 16115. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 30-Apr-2014.) |
Ref | Expression |
---|---|
rpnnen2.1 | β’ πΉ = (π₯ β π« β β¦ (π β β β¦ if(π β π₯, ((1 / 3)βπ), 0))) |
Ref | Expression |
---|---|
rpnnen2lem5 | β’ ((π΄ β β β§ π β β) β seqπ( + , (πΉβπ΄)) β dom β ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnuz 12813 | . . . 4 β’ β = (β€β₯β1) | |
2 | 1nn 12171 | . . . . 5 β’ 1 β β | |
3 | 2 | a1i 11 | . . . 4 β’ (π΄ β β β 1 β β) |
4 | ssid 3971 | . . . . . 6 β’ β β β | |
5 | rpnnen2.1 | . . . . . . 7 β’ πΉ = (π₯ β π« β β¦ (π β β β¦ if(π β π₯, ((1 / 3)βπ), 0))) | |
6 | 5 | rpnnen2lem2 16104 | . . . . . 6 β’ (β β β β (πΉββ):ββΆβ) |
7 | 4, 6 | mp1i 13 | . . . . 5 β’ (π΄ β β β (πΉββ):ββΆβ) |
8 | 7 | ffvelcdmda 7040 | . . . 4 β’ ((π΄ β β β§ π β β) β ((πΉββ)βπ) β β) |
9 | 5 | rpnnen2lem2 16104 | . . . . 5 β’ (π΄ β β β (πΉβπ΄):ββΆβ) |
10 | 9 | ffvelcdmda 7040 | . . . 4 β’ ((π΄ β β β§ π β β) β ((πΉβπ΄)βπ) β β) |
11 | 5 | rpnnen2lem3 16105 | . . . . 5 β’ seq1( + , (πΉββ)) β (1 / 2) |
12 | seqex 13915 | . . . . . 6 β’ seq1( + , (πΉββ)) β V | |
13 | ovex 7395 | . . . . . 6 β’ (1 / 2) β V | |
14 | 12, 13 | breldm 5869 | . . . . 5 β’ (seq1( + , (πΉββ)) β (1 / 2) β seq1( + , (πΉββ)) β dom β ) |
15 | 11, 14 | mp1i 13 | . . . 4 β’ (π΄ β β β seq1( + , (πΉββ)) β dom β ) |
16 | elnnuz 12814 | . . . . . 6 β’ (π β β β π β (β€β₯β1)) | |
17 | 5 | rpnnen2lem4 16106 | . . . . . . 7 β’ ((π΄ β β β§ β β β β§ π β β) β (0 β€ ((πΉβπ΄)βπ) β§ ((πΉβπ΄)βπ) β€ ((πΉββ)βπ))) |
18 | 4, 17 | mp3an2 1450 | . . . . . 6 β’ ((π΄ β β β§ π β β) β (0 β€ ((πΉβπ΄)βπ) β§ ((πΉβπ΄)βπ) β€ ((πΉββ)βπ))) |
19 | 16, 18 | sylan2br 596 | . . . . 5 β’ ((π΄ β β β§ π β (β€β₯β1)) β (0 β€ ((πΉβπ΄)βπ) β§ ((πΉβπ΄)βπ) β€ ((πΉββ)βπ))) |
20 | 19 | simpld 496 | . . . 4 β’ ((π΄ β β β§ π β (β€β₯β1)) β 0 β€ ((πΉβπ΄)βπ)) |
21 | 19 | simprd 497 | . . . 4 β’ ((π΄ β β β§ π β (β€β₯β1)) β ((πΉβπ΄)βπ) β€ ((πΉββ)βπ)) |
22 | 1, 3, 8, 10, 15, 20, 21 | cvgcmp 15708 | . . 3 β’ (π΄ β β β seq1( + , (πΉβπ΄)) β dom β ) |
23 | 22 | adantr 482 | . 2 β’ ((π΄ β β β§ π β β) β seq1( + , (πΉβπ΄)) β dom β ) |
24 | simpr 486 | . . 3 β’ ((π΄ β β β§ π β β) β π β β) | |
25 | 10 | adantlr 714 | . . . 4 β’ (((π΄ β β β§ π β β) β§ π β β) β ((πΉβπ΄)βπ) β β) |
26 | 25 | recnd 11190 | . . 3 β’ (((π΄ β β β§ π β β) β§ π β β) β ((πΉβπ΄)βπ) β β) |
27 | 1, 24, 26 | iserex 15548 | . 2 β’ ((π΄ β β β§ π β β) β (seq1( + , (πΉβπ΄)) β dom β β seqπ( + , (πΉβπ΄)) β dom β )) |
28 | 23, 27 | mpbid 231 | 1 β’ ((π΄ β β β§ π β β) β seqπ( + , (πΉβπ΄)) β dom β ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 = wceq 1542 β wcel 2107 β wss 3915 ifcif 4491 π« cpw 4565 class class class wbr 5110 β¦ cmpt 5193 dom cdm 5638 βΆwf 6497 βcfv 6501 (class class class)co 7362 βcr 11057 0cc0 11058 1c1 11059 + caddc 11061 β€ cle 11197 / cdiv 11819 βcn 12160 2c2 12215 3c3 12216 β€β₯cuz 12770 seqcseq 13913 βcexp 13974 β cli 15373 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-rep 5247 ax-sep 5261 ax-nul 5268 ax-pow 5325 ax-pr 5389 ax-un 7677 ax-inf2 9584 ax-cnex 11114 ax-resscn 11115 ax-1cn 11116 ax-icn 11117 ax-addcl 11118 ax-addrcl 11119 ax-mulcl 11120 ax-mulrcl 11121 ax-mulcom 11122 ax-addass 11123 ax-mulass 11124 ax-distr 11125 ax-i2m1 11126 ax-1ne0 11127 ax-1rid 11128 ax-rnegex 11129 ax-rrecex 11130 ax-cnre 11131 ax-pre-lttri 11132 ax-pre-lttrn 11133 ax-pre-ltadd 11134 ax-pre-mulgt0 11135 ax-pre-sup 11136 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-rmo 3356 df-reu 3357 df-rab 3411 df-v 3450 df-sbc 3745 df-csb 3861 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-pss 3934 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-int 4913 df-iun 4961 df-br 5111 df-opab 5173 df-mpt 5194 df-tr 5228 df-id 5536 df-eprel 5542 df-po 5550 df-so 5551 df-fr 5593 df-se 5594 df-we 5595 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6258 df-ord 6325 df-on 6326 df-lim 6327 df-suc 6328 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-isom 6510 df-riota 7318 df-ov 7365 df-oprab 7366 df-mpo 7367 df-om 7808 df-1st 7926 df-2nd 7927 df-frecs 8217 df-wrecs 8248 df-recs 8322 df-rdg 8361 df-1o 8417 df-er 8655 df-pm 8775 df-en 8891 df-dom 8892 df-sdom 8893 df-fin 8894 df-sup 9385 df-inf 9386 df-oi 9453 df-card 9882 df-pnf 11198 df-mnf 11199 df-xr 11200 df-ltxr 11201 df-le 11202 df-sub 11394 df-neg 11395 df-div 11820 df-nn 12161 df-2 12223 df-3 12224 df-n0 12421 df-z 12507 df-uz 12771 df-rp 12923 df-ico 13277 df-fz 13432 df-fzo 13575 df-fl 13704 df-seq 13914 df-exp 13975 df-hash 14238 df-cj 14991 df-re 14992 df-im 14993 df-sqrt 15127 df-abs 15128 df-limsup 15360 df-clim 15377 df-rlim 15378 df-sum 15578 |
This theorem is referenced by: rpnnen2lem6 16108 rpnnen2lem7 16109 rpnnen2lem8 16110 rpnnen2lem9 16111 rpnnen2lem12 16114 |
Copyright terms: Public domain | W3C validator |