Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rpnnen2lem5 | Structured version Visualization version GIF version |
Description: Lemma for rpnnen2 15863. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 30-Apr-2014.) |
Ref | Expression |
---|---|
rpnnen2.1 | ⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) |
Ref | Expression |
---|---|
rpnnen2lem5 | ⊢ ((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → seq𝑀( + , (𝐹‘𝐴)) ∈ dom ⇝ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnuz 12550 | . . . 4 ⊢ ℕ = (ℤ≥‘1) | |
2 | 1nn 11914 | . . . . 5 ⊢ 1 ∈ ℕ | |
3 | 2 | a1i 11 | . . . 4 ⊢ (𝐴 ⊆ ℕ → 1 ∈ ℕ) |
4 | ssid 3939 | . . . . . 6 ⊢ ℕ ⊆ ℕ | |
5 | rpnnen2.1 | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) | |
6 | 5 | rpnnen2lem2 15852 | . . . . . 6 ⊢ (ℕ ⊆ ℕ → (𝐹‘ℕ):ℕ⟶ℝ) |
7 | 4, 6 | mp1i 13 | . . . . 5 ⊢ (𝐴 ⊆ ℕ → (𝐹‘ℕ):ℕ⟶ℝ) |
8 | 7 | ffvelrnda 6943 | . . . 4 ⊢ ((𝐴 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹‘ℕ)‘𝑘) ∈ ℝ) |
9 | 5 | rpnnen2lem2 15852 | . . . . 5 ⊢ (𝐴 ⊆ ℕ → (𝐹‘𝐴):ℕ⟶ℝ) |
10 | 9 | ffvelrnda 6943 | . . . 4 ⊢ ((𝐴 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝐴)‘𝑘) ∈ ℝ) |
11 | 5 | rpnnen2lem3 15853 | . . . . 5 ⊢ seq1( + , (𝐹‘ℕ)) ⇝ (1 / 2) |
12 | seqex 13651 | . . . . . 6 ⊢ seq1( + , (𝐹‘ℕ)) ∈ V | |
13 | ovex 7288 | . . . . . 6 ⊢ (1 / 2) ∈ V | |
14 | 12, 13 | breldm 5806 | . . . . 5 ⊢ (seq1( + , (𝐹‘ℕ)) ⇝ (1 / 2) → seq1( + , (𝐹‘ℕ)) ∈ dom ⇝ ) |
15 | 11, 14 | mp1i 13 | . . . 4 ⊢ (𝐴 ⊆ ℕ → seq1( + , (𝐹‘ℕ)) ∈ dom ⇝ ) |
16 | elnnuz 12551 | . . . . . 6 ⊢ (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ≥‘1)) | |
17 | 5 | rpnnen2lem4 15854 | . . . . . . 7 ⊢ ((𝐴 ⊆ ℕ ∧ ℕ ⊆ ℕ ∧ 𝑘 ∈ ℕ) → (0 ≤ ((𝐹‘𝐴)‘𝑘) ∧ ((𝐹‘𝐴)‘𝑘) ≤ ((𝐹‘ℕ)‘𝑘))) |
18 | 4, 17 | mp3an2 1447 | . . . . . 6 ⊢ ((𝐴 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → (0 ≤ ((𝐹‘𝐴)‘𝑘) ∧ ((𝐹‘𝐴)‘𝑘) ≤ ((𝐹‘ℕ)‘𝑘))) |
19 | 16, 18 | sylan2br 594 | . . . . 5 ⊢ ((𝐴 ⊆ ℕ ∧ 𝑘 ∈ (ℤ≥‘1)) → (0 ≤ ((𝐹‘𝐴)‘𝑘) ∧ ((𝐹‘𝐴)‘𝑘) ≤ ((𝐹‘ℕ)‘𝑘))) |
20 | 19 | simpld 494 | . . . 4 ⊢ ((𝐴 ⊆ ℕ ∧ 𝑘 ∈ (ℤ≥‘1)) → 0 ≤ ((𝐹‘𝐴)‘𝑘)) |
21 | 19 | simprd 495 | . . . 4 ⊢ ((𝐴 ⊆ ℕ ∧ 𝑘 ∈ (ℤ≥‘1)) → ((𝐹‘𝐴)‘𝑘) ≤ ((𝐹‘ℕ)‘𝑘)) |
22 | 1, 3, 8, 10, 15, 20, 21 | cvgcmp 15456 | . . 3 ⊢ (𝐴 ⊆ ℕ → seq1( + , (𝐹‘𝐴)) ∈ dom ⇝ ) |
23 | 22 | adantr 480 | . 2 ⊢ ((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → seq1( + , (𝐹‘𝐴)) ∈ dom ⇝ ) |
24 | simpr 484 | . . 3 ⊢ ((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℕ) | |
25 | 10 | adantlr 711 | . . . 4 ⊢ (((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝐴)‘𝑘) ∈ ℝ) |
26 | 25 | recnd 10934 | . . 3 ⊢ (((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝐴)‘𝑘) ∈ ℂ) |
27 | 1, 24, 26 | iserex 15296 | . 2 ⊢ ((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → (seq1( + , (𝐹‘𝐴)) ∈ dom ⇝ ↔ seq𝑀( + , (𝐹‘𝐴)) ∈ dom ⇝ )) |
28 | 23, 27 | mpbid 231 | 1 ⊢ ((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → seq𝑀( + , (𝐹‘𝐴)) ∈ dom ⇝ ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 ifcif 4456 𝒫 cpw 4530 class class class wbr 5070 ↦ cmpt 5153 dom cdm 5580 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ℝcr 10801 0cc0 10802 1c1 10803 + caddc 10805 ≤ cle 10941 / cdiv 11562 ℕcn 11903 2c2 11958 3c3 11959 ℤ≥cuz 12511 seqcseq 13649 ↑cexp 13710 ⇝ cli 15121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-ico 13014 df-fz 13169 df-fzo 13312 df-fl 13440 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-limsup 15108 df-clim 15125 df-rlim 15126 df-sum 15326 |
This theorem is referenced by: rpnnen2lem6 15856 rpnnen2lem7 15857 rpnnen2lem8 15858 rpnnen2lem9 15859 rpnnen2lem12 15862 |
Copyright terms: Public domain | W3C validator |