MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen2lem5 Structured version   Visualization version   GIF version

Theorem rpnnen2lem5 16193
Description: Lemma for rpnnen2 16201. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 30-Apr-2014.)
Hypothesis
Ref Expression
rpnnen2.1 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
Assertion
Ref Expression
rpnnen2lem5 ((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → seq𝑀( + , (𝐹𝐴)) ∈ dom ⇝ )
Distinct variable groups:   𝑥,𝑛,𝐴   𝑛,𝑀,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑛)

Proof of Theorem rpnnen2lem5
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nnuz 12843 . . . 4 ℕ = (ℤ‘1)
2 1nn 12204 . . . . 5 1 ∈ ℕ
32a1i 11 . . . 4 (𝐴 ⊆ ℕ → 1 ∈ ℕ)
4 ssid 3972 . . . . . 6 ℕ ⊆ ℕ
5 rpnnen2.1 . . . . . . 7 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
65rpnnen2lem2 16190 . . . . . 6 (ℕ ⊆ ℕ → (𝐹‘ℕ):ℕ⟶ℝ)
74, 6mp1i 13 . . . . 5 (𝐴 ⊆ ℕ → (𝐹‘ℕ):ℕ⟶ℝ)
87ffvelcdmda 7059 . . . 4 ((𝐴 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹‘ℕ)‘𝑘) ∈ ℝ)
95rpnnen2lem2 16190 . . . . 5 (𝐴 ⊆ ℕ → (𝐹𝐴):ℕ⟶ℝ)
109ffvelcdmda 7059 . . . 4 ((𝐴 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹𝐴)‘𝑘) ∈ ℝ)
115rpnnen2lem3 16191 . . . . 5 seq1( + , (𝐹‘ℕ)) ⇝ (1 / 2)
12 seqex 13975 . . . . . 6 seq1( + , (𝐹‘ℕ)) ∈ V
13 ovex 7423 . . . . . 6 (1 / 2) ∈ V
1412, 13breldm 5875 . . . . 5 (seq1( + , (𝐹‘ℕ)) ⇝ (1 / 2) → seq1( + , (𝐹‘ℕ)) ∈ dom ⇝ )
1511, 14mp1i 13 . . . 4 (𝐴 ⊆ ℕ → seq1( + , (𝐹‘ℕ)) ∈ dom ⇝ )
16 elnnuz 12844 . . . . . 6 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
175rpnnen2lem4 16192 . . . . . . 7 ((𝐴 ⊆ ℕ ∧ ℕ ⊆ ℕ ∧ 𝑘 ∈ ℕ) → (0 ≤ ((𝐹𝐴)‘𝑘) ∧ ((𝐹𝐴)‘𝑘) ≤ ((𝐹‘ℕ)‘𝑘)))
184, 17mp3an2 1451 . . . . . 6 ((𝐴 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → (0 ≤ ((𝐹𝐴)‘𝑘) ∧ ((𝐹𝐴)‘𝑘) ≤ ((𝐹‘ℕ)‘𝑘)))
1916, 18sylan2br 595 . . . . 5 ((𝐴 ⊆ ℕ ∧ 𝑘 ∈ (ℤ‘1)) → (0 ≤ ((𝐹𝐴)‘𝑘) ∧ ((𝐹𝐴)‘𝑘) ≤ ((𝐹‘ℕ)‘𝑘)))
2019simpld 494 . . . 4 ((𝐴 ⊆ ℕ ∧ 𝑘 ∈ (ℤ‘1)) → 0 ≤ ((𝐹𝐴)‘𝑘))
2119simprd 495 . . . 4 ((𝐴 ⊆ ℕ ∧ 𝑘 ∈ (ℤ‘1)) → ((𝐹𝐴)‘𝑘) ≤ ((𝐹‘ℕ)‘𝑘))
221, 3, 8, 10, 15, 20, 21cvgcmp 15789 . . 3 (𝐴 ⊆ ℕ → seq1( + , (𝐹𝐴)) ∈ dom ⇝ )
2322adantr 480 . 2 ((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → seq1( + , (𝐹𝐴)) ∈ dom ⇝ )
24 simpr 484 . . 3 ((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℕ)
2510adantlr 715 . . . 4 (((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝐴)‘𝑘) ∈ ℝ)
2625recnd 11209 . . 3 (((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝐴)‘𝑘) ∈ ℂ)
271, 24, 26iserex 15630 . 2 ((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → (seq1( + , (𝐹𝐴)) ∈ dom ⇝ ↔ seq𝑀( + , (𝐹𝐴)) ∈ dom ⇝ ))
2823, 27mpbid 232 1 ((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → seq𝑀( + , (𝐹𝐴)) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wss 3917  ifcif 4491  𝒫 cpw 4566   class class class wbr 5110  cmpt 5191  dom cdm 5641  wf 6510  cfv 6514  (class class class)co 7390  cr 11074  0cc0 11075  1c1 11076   + caddc 11078  cle 11216   / cdiv 11842  cn 12193  2c2 12248  3c3 12249  cuz 12800  seqcseq 13973  cexp 14033  cli 15457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-ico 13319  df-fz 13476  df-fzo 13623  df-fl 13761  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660
This theorem is referenced by:  rpnnen2lem6  16194  rpnnen2lem7  16195  rpnnen2lem8  16196  rpnnen2lem9  16197  rpnnen2lem12  16200
  Copyright terms: Public domain W3C validator