MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen2lem5 Structured version   Visualization version   GIF version

Theorem rpnnen2lem5 16215
Description: Lemma for rpnnen2 16223. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 30-Apr-2014.)
Hypothesis
Ref Expression
rpnnen2.1 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
Assertion
Ref Expression
rpnnen2lem5 ((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → seq𝑀( + , (𝐹𝐴)) ∈ dom ⇝ )
Distinct variable groups:   𝑥,𝑛,𝐴   𝑛,𝑀,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑛)

Proof of Theorem rpnnen2lem5
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nnuz 12911 . . . 4 ℕ = (ℤ‘1)
2 1nn 12269 . . . . 5 1 ∈ ℕ
32a1i 11 . . . 4 (𝐴 ⊆ ℕ → 1 ∈ ℕ)
4 ssid 4001 . . . . . 6 ℕ ⊆ ℕ
5 rpnnen2.1 . . . . . . 7 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
65rpnnen2lem2 16212 . . . . . 6 (ℕ ⊆ ℕ → (𝐹‘ℕ):ℕ⟶ℝ)
74, 6mp1i 13 . . . . 5 (𝐴 ⊆ ℕ → (𝐹‘ℕ):ℕ⟶ℝ)
87ffvelcdmda 7090 . . . 4 ((𝐴 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹‘ℕ)‘𝑘) ∈ ℝ)
95rpnnen2lem2 16212 . . . . 5 (𝐴 ⊆ ℕ → (𝐹𝐴):ℕ⟶ℝ)
109ffvelcdmda 7090 . . . 4 ((𝐴 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹𝐴)‘𝑘) ∈ ℝ)
115rpnnen2lem3 16213 . . . . 5 seq1( + , (𝐹‘ℕ)) ⇝ (1 / 2)
12 seqex 14017 . . . . . 6 seq1( + , (𝐹‘ℕ)) ∈ V
13 ovex 7449 . . . . . 6 (1 / 2) ∈ V
1412, 13breldm 5907 . . . . 5 (seq1( + , (𝐹‘ℕ)) ⇝ (1 / 2) → seq1( + , (𝐹‘ℕ)) ∈ dom ⇝ )
1511, 14mp1i 13 . . . 4 (𝐴 ⊆ ℕ → seq1( + , (𝐹‘ℕ)) ∈ dom ⇝ )
16 elnnuz 12912 . . . . . 6 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
175rpnnen2lem4 16214 . . . . . . 7 ((𝐴 ⊆ ℕ ∧ ℕ ⊆ ℕ ∧ 𝑘 ∈ ℕ) → (0 ≤ ((𝐹𝐴)‘𝑘) ∧ ((𝐹𝐴)‘𝑘) ≤ ((𝐹‘ℕ)‘𝑘)))
184, 17mp3an2 1446 . . . . . 6 ((𝐴 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → (0 ≤ ((𝐹𝐴)‘𝑘) ∧ ((𝐹𝐴)‘𝑘) ≤ ((𝐹‘ℕ)‘𝑘)))
1916, 18sylan2br 593 . . . . 5 ((𝐴 ⊆ ℕ ∧ 𝑘 ∈ (ℤ‘1)) → (0 ≤ ((𝐹𝐴)‘𝑘) ∧ ((𝐹𝐴)‘𝑘) ≤ ((𝐹‘ℕ)‘𝑘)))
2019simpld 493 . . . 4 ((𝐴 ⊆ ℕ ∧ 𝑘 ∈ (ℤ‘1)) → 0 ≤ ((𝐹𝐴)‘𝑘))
2119simprd 494 . . . 4 ((𝐴 ⊆ ℕ ∧ 𝑘 ∈ (ℤ‘1)) → ((𝐹𝐴)‘𝑘) ≤ ((𝐹‘ℕ)‘𝑘))
221, 3, 8, 10, 15, 20, 21cvgcmp 15815 . . 3 (𝐴 ⊆ ℕ → seq1( + , (𝐹𝐴)) ∈ dom ⇝ )
2322adantr 479 . 2 ((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → seq1( + , (𝐹𝐴)) ∈ dom ⇝ )
24 simpr 483 . . 3 ((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℕ)
2510adantlr 713 . . . 4 (((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝐴)‘𝑘) ∈ ℝ)
2625recnd 11283 . . 3 (((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝐴)‘𝑘) ∈ ℂ)
271, 24, 26iserex 15656 . 2 ((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → (seq1( + , (𝐹𝐴)) ∈ dom ⇝ ↔ seq𝑀( + , (𝐹𝐴)) ∈ dom ⇝ ))
2823, 27mpbid 231 1 ((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → seq𝑀( + , (𝐹𝐴)) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  wss 3946  ifcif 4523  𝒫 cpw 4597   class class class wbr 5145  cmpt 5228  dom cdm 5674  wf 6542  cfv 6546  (class class class)co 7416  cr 11148  0cc0 11149  1c1 11150   + caddc 11152  cle 11290   / cdiv 11912  cn 12258  2c2 12313  3c3 12314  cuz 12868  seqcseq 14015  cexp 14075  cli 15481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-inf2 9677  ax-cnex 11205  ax-resscn 11206  ax-1cn 11207  ax-icn 11208  ax-addcl 11209  ax-addrcl 11210  ax-mulcl 11211  ax-mulrcl 11212  ax-mulcom 11213  ax-addass 11214  ax-mulass 11215  ax-distr 11216  ax-i2m1 11217  ax-1ne0 11218  ax-1rid 11219  ax-rnegex 11220  ax-rrecex 11221  ax-cnre 11222  ax-pre-lttri 11223  ax-pre-lttrn 11224  ax-pre-ltadd 11225  ax-pre-mulgt0 11226  ax-pre-sup 11227
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-int 4947  df-iun 4995  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-se 5630  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6371  df-on 6372  df-lim 6373  df-suc 6374  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-isom 6555  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-om 7869  df-1st 7995  df-2nd 7996  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-er 8726  df-pm 8850  df-en 8967  df-dom 8968  df-sdom 8969  df-fin 8970  df-sup 9478  df-inf 9479  df-oi 9546  df-card 9975  df-pnf 11291  df-mnf 11292  df-xr 11293  df-ltxr 11294  df-le 11295  df-sub 11487  df-neg 11488  df-div 11913  df-nn 12259  df-2 12321  df-3 12322  df-n0 12519  df-z 12605  df-uz 12869  df-rp 13023  df-ico 13378  df-fz 13533  df-fzo 13676  df-fl 13806  df-seq 14016  df-exp 14076  df-hash 14343  df-cj 15099  df-re 15100  df-im 15101  df-sqrt 15235  df-abs 15236  df-limsup 15468  df-clim 15485  df-rlim 15486  df-sum 15686
This theorem is referenced by:  rpnnen2lem6  16216  rpnnen2lem7  16217  rpnnen2lem8  16218  rpnnen2lem9  16219  rpnnen2lem12  16222
  Copyright terms: Public domain W3C validator