Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rpnnen2lem5 | Structured version Visualization version GIF version |
Description: Lemma for rpnnen2 15945. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 30-Apr-2014.) |
Ref | Expression |
---|---|
rpnnen2.1 | ⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) |
Ref | Expression |
---|---|
rpnnen2lem5 | ⊢ ((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → seq𝑀( + , (𝐹‘𝐴)) ∈ dom ⇝ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnuz 12631 | . . . 4 ⊢ ℕ = (ℤ≥‘1) | |
2 | 1nn 11994 | . . . . 5 ⊢ 1 ∈ ℕ | |
3 | 2 | a1i 11 | . . . 4 ⊢ (𝐴 ⊆ ℕ → 1 ∈ ℕ) |
4 | ssid 3942 | . . . . . 6 ⊢ ℕ ⊆ ℕ | |
5 | rpnnen2.1 | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) | |
6 | 5 | rpnnen2lem2 15934 | . . . . . 6 ⊢ (ℕ ⊆ ℕ → (𝐹‘ℕ):ℕ⟶ℝ) |
7 | 4, 6 | mp1i 13 | . . . . 5 ⊢ (𝐴 ⊆ ℕ → (𝐹‘ℕ):ℕ⟶ℝ) |
8 | 7 | ffvelrnda 6953 | . . . 4 ⊢ ((𝐴 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹‘ℕ)‘𝑘) ∈ ℝ) |
9 | 5 | rpnnen2lem2 15934 | . . . . 5 ⊢ (𝐴 ⊆ ℕ → (𝐹‘𝐴):ℕ⟶ℝ) |
10 | 9 | ffvelrnda 6953 | . . . 4 ⊢ ((𝐴 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝐴)‘𝑘) ∈ ℝ) |
11 | 5 | rpnnen2lem3 15935 | . . . . 5 ⊢ seq1( + , (𝐹‘ℕ)) ⇝ (1 / 2) |
12 | seqex 13733 | . . . . . 6 ⊢ seq1( + , (𝐹‘ℕ)) ∈ V | |
13 | ovex 7300 | . . . . . 6 ⊢ (1 / 2) ∈ V | |
14 | 12, 13 | breldm 5810 | . . . . 5 ⊢ (seq1( + , (𝐹‘ℕ)) ⇝ (1 / 2) → seq1( + , (𝐹‘ℕ)) ∈ dom ⇝ ) |
15 | 11, 14 | mp1i 13 | . . . 4 ⊢ (𝐴 ⊆ ℕ → seq1( + , (𝐹‘ℕ)) ∈ dom ⇝ ) |
16 | elnnuz 12632 | . . . . . 6 ⊢ (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ≥‘1)) | |
17 | 5 | rpnnen2lem4 15936 | . . . . . . 7 ⊢ ((𝐴 ⊆ ℕ ∧ ℕ ⊆ ℕ ∧ 𝑘 ∈ ℕ) → (0 ≤ ((𝐹‘𝐴)‘𝑘) ∧ ((𝐹‘𝐴)‘𝑘) ≤ ((𝐹‘ℕ)‘𝑘))) |
18 | 4, 17 | mp3an2 1448 | . . . . . 6 ⊢ ((𝐴 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → (0 ≤ ((𝐹‘𝐴)‘𝑘) ∧ ((𝐹‘𝐴)‘𝑘) ≤ ((𝐹‘ℕ)‘𝑘))) |
19 | 16, 18 | sylan2br 595 | . . . . 5 ⊢ ((𝐴 ⊆ ℕ ∧ 𝑘 ∈ (ℤ≥‘1)) → (0 ≤ ((𝐹‘𝐴)‘𝑘) ∧ ((𝐹‘𝐴)‘𝑘) ≤ ((𝐹‘ℕ)‘𝑘))) |
20 | 19 | simpld 495 | . . . 4 ⊢ ((𝐴 ⊆ ℕ ∧ 𝑘 ∈ (ℤ≥‘1)) → 0 ≤ ((𝐹‘𝐴)‘𝑘)) |
21 | 19 | simprd 496 | . . . 4 ⊢ ((𝐴 ⊆ ℕ ∧ 𝑘 ∈ (ℤ≥‘1)) → ((𝐹‘𝐴)‘𝑘) ≤ ((𝐹‘ℕ)‘𝑘)) |
22 | 1, 3, 8, 10, 15, 20, 21 | cvgcmp 15538 | . . 3 ⊢ (𝐴 ⊆ ℕ → seq1( + , (𝐹‘𝐴)) ∈ dom ⇝ ) |
23 | 22 | adantr 481 | . 2 ⊢ ((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → seq1( + , (𝐹‘𝐴)) ∈ dom ⇝ ) |
24 | simpr 485 | . . 3 ⊢ ((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℕ) | |
25 | 10 | adantlr 712 | . . . 4 ⊢ (((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝐴)‘𝑘) ∈ ℝ) |
26 | 25 | recnd 11013 | . . 3 ⊢ (((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝐴)‘𝑘) ∈ ℂ) |
27 | 1, 24, 26 | iserex 15378 | . 2 ⊢ ((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → (seq1( + , (𝐹‘𝐴)) ∈ dom ⇝ ↔ seq𝑀( + , (𝐹‘𝐴)) ∈ dom ⇝ )) |
28 | 23, 27 | mpbid 231 | 1 ⊢ ((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → seq𝑀( + , (𝐹‘𝐴)) ∈ dom ⇝ ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ⊆ wss 3886 ifcif 4459 𝒫 cpw 4533 class class class wbr 5073 ↦ cmpt 5156 dom cdm 5584 ⟶wf 6422 ‘cfv 6426 (class class class)co 7267 ℝcr 10880 0cc0 10881 1c1 10882 + caddc 10884 ≤ cle 11020 / cdiv 11642 ℕcn 11983 2c2 12038 3c3 12039 ℤ≥cuz 12592 seqcseq 13731 ↑cexp 13792 ⇝ cli 15203 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5208 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 ax-inf2 9386 ax-cnex 10937 ax-resscn 10938 ax-1cn 10939 ax-icn 10940 ax-addcl 10941 ax-addrcl 10942 ax-mulcl 10943 ax-mulrcl 10944 ax-mulcom 10945 ax-addass 10946 ax-mulass 10947 ax-distr 10948 ax-i2m1 10949 ax-1ne0 10950 ax-1rid 10951 ax-rnegex 10952 ax-rrecex 10953 ax-cnre 10954 ax-pre-lttri 10955 ax-pre-lttrn 10956 ax-pre-ltadd 10957 ax-pre-mulgt0 10958 ax-pre-sup 10959 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-pss 3905 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5074 df-opab 5136 df-mpt 5157 df-tr 5191 df-id 5484 df-eprel 5490 df-po 5498 df-so 5499 df-fr 5539 df-se 5540 df-we 5541 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-pred 6195 df-ord 6262 df-on 6263 df-lim 6264 df-suc 6265 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-isom 6435 df-riota 7224 df-ov 7270 df-oprab 7271 df-mpo 7272 df-om 7703 df-1st 7820 df-2nd 7821 df-frecs 8084 df-wrecs 8115 df-recs 8189 df-rdg 8228 df-1o 8284 df-er 8485 df-pm 8605 df-en 8721 df-dom 8722 df-sdom 8723 df-fin 8724 df-sup 9188 df-inf 9189 df-oi 9256 df-card 9707 df-pnf 11021 df-mnf 11022 df-xr 11023 df-ltxr 11024 df-le 11025 df-sub 11217 df-neg 11218 df-div 11643 df-nn 11984 df-2 12046 df-3 12047 df-n0 12244 df-z 12330 df-uz 12593 df-rp 12741 df-ico 13095 df-fz 13250 df-fzo 13393 df-fl 13522 df-seq 13732 df-exp 13793 df-hash 14055 df-cj 14820 df-re 14821 df-im 14822 df-sqrt 14956 df-abs 14957 df-limsup 15190 df-clim 15207 df-rlim 15208 df-sum 15408 |
This theorem is referenced by: rpnnen2lem6 15938 rpnnen2lem7 15939 rpnnen2lem8 15940 rpnnen2lem9 15941 rpnnen2lem12 15944 |
Copyright terms: Public domain | W3C validator |