| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpnnen2lem5 | Structured version Visualization version GIF version | ||
| Description: Lemma for rpnnen2 16244. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| Ref | Expression |
|---|---|
| rpnnen2.1 | ⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) |
| Ref | Expression |
|---|---|
| rpnnen2lem5 | ⊢ ((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → seq𝑀( + , (𝐹‘𝐴)) ∈ dom ⇝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnuz 12895 | . . . 4 ⊢ ℕ = (ℤ≥‘1) | |
| 2 | 1nn 12251 | . . . . 5 ⊢ 1 ∈ ℕ | |
| 3 | 2 | a1i 11 | . . . 4 ⊢ (𝐴 ⊆ ℕ → 1 ∈ ℕ) |
| 4 | ssid 3981 | . . . . . 6 ⊢ ℕ ⊆ ℕ | |
| 5 | rpnnen2.1 | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) | |
| 6 | 5 | rpnnen2lem2 16233 | . . . . . 6 ⊢ (ℕ ⊆ ℕ → (𝐹‘ℕ):ℕ⟶ℝ) |
| 7 | 4, 6 | mp1i 13 | . . . . 5 ⊢ (𝐴 ⊆ ℕ → (𝐹‘ℕ):ℕ⟶ℝ) |
| 8 | 7 | ffvelcdmda 7074 | . . . 4 ⊢ ((𝐴 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹‘ℕ)‘𝑘) ∈ ℝ) |
| 9 | 5 | rpnnen2lem2 16233 | . . . . 5 ⊢ (𝐴 ⊆ ℕ → (𝐹‘𝐴):ℕ⟶ℝ) |
| 10 | 9 | ffvelcdmda 7074 | . . . 4 ⊢ ((𝐴 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝐴)‘𝑘) ∈ ℝ) |
| 11 | 5 | rpnnen2lem3 16234 | . . . . 5 ⊢ seq1( + , (𝐹‘ℕ)) ⇝ (1 / 2) |
| 12 | seqex 14021 | . . . . . 6 ⊢ seq1( + , (𝐹‘ℕ)) ∈ V | |
| 13 | ovex 7438 | . . . . . 6 ⊢ (1 / 2) ∈ V | |
| 14 | 12, 13 | breldm 5888 | . . . . 5 ⊢ (seq1( + , (𝐹‘ℕ)) ⇝ (1 / 2) → seq1( + , (𝐹‘ℕ)) ∈ dom ⇝ ) |
| 15 | 11, 14 | mp1i 13 | . . . 4 ⊢ (𝐴 ⊆ ℕ → seq1( + , (𝐹‘ℕ)) ∈ dom ⇝ ) |
| 16 | elnnuz 12896 | . . . . . 6 ⊢ (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ≥‘1)) | |
| 17 | 5 | rpnnen2lem4 16235 | . . . . . . 7 ⊢ ((𝐴 ⊆ ℕ ∧ ℕ ⊆ ℕ ∧ 𝑘 ∈ ℕ) → (0 ≤ ((𝐹‘𝐴)‘𝑘) ∧ ((𝐹‘𝐴)‘𝑘) ≤ ((𝐹‘ℕ)‘𝑘))) |
| 18 | 4, 17 | mp3an2 1451 | . . . . . 6 ⊢ ((𝐴 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → (0 ≤ ((𝐹‘𝐴)‘𝑘) ∧ ((𝐹‘𝐴)‘𝑘) ≤ ((𝐹‘ℕ)‘𝑘))) |
| 19 | 16, 18 | sylan2br 595 | . . . . 5 ⊢ ((𝐴 ⊆ ℕ ∧ 𝑘 ∈ (ℤ≥‘1)) → (0 ≤ ((𝐹‘𝐴)‘𝑘) ∧ ((𝐹‘𝐴)‘𝑘) ≤ ((𝐹‘ℕ)‘𝑘))) |
| 20 | 19 | simpld 494 | . . . 4 ⊢ ((𝐴 ⊆ ℕ ∧ 𝑘 ∈ (ℤ≥‘1)) → 0 ≤ ((𝐹‘𝐴)‘𝑘)) |
| 21 | 19 | simprd 495 | . . . 4 ⊢ ((𝐴 ⊆ ℕ ∧ 𝑘 ∈ (ℤ≥‘1)) → ((𝐹‘𝐴)‘𝑘) ≤ ((𝐹‘ℕ)‘𝑘)) |
| 22 | 1, 3, 8, 10, 15, 20, 21 | cvgcmp 15832 | . . 3 ⊢ (𝐴 ⊆ ℕ → seq1( + , (𝐹‘𝐴)) ∈ dom ⇝ ) |
| 23 | 22 | adantr 480 | . 2 ⊢ ((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → seq1( + , (𝐹‘𝐴)) ∈ dom ⇝ ) |
| 24 | simpr 484 | . . 3 ⊢ ((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℕ) | |
| 25 | 10 | adantlr 715 | . . . 4 ⊢ (((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝐴)‘𝑘) ∈ ℝ) |
| 26 | 25 | recnd 11263 | . . 3 ⊢ (((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝐴)‘𝑘) ∈ ℂ) |
| 27 | 1, 24, 26 | iserex 15673 | . 2 ⊢ ((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → (seq1( + , (𝐹‘𝐴)) ∈ dom ⇝ ↔ seq𝑀( + , (𝐹‘𝐴)) ∈ dom ⇝ )) |
| 28 | 23, 27 | mpbid 232 | 1 ⊢ ((𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ) → seq𝑀( + , (𝐹‘𝐴)) ∈ dom ⇝ ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ⊆ wss 3926 ifcif 4500 𝒫 cpw 4575 class class class wbr 5119 ↦ cmpt 5201 dom cdm 5654 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 ℝcr 11128 0cc0 11129 1c1 11130 + caddc 11132 ≤ cle 11270 / cdiv 11894 ℕcn 12240 2c2 12295 3c3 12296 ℤ≥cuz 12852 seqcseq 14019 ↑cexp 14079 ⇝ cli 15500 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-pm 8843 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-inf 9455 df-oi 9524 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-n0 12502 df-z 12589 df-uz 12853 df-rp 13009 df-ico 13368 df-fz 13525 df-fzo 13672 df-fl 13809 df-seq 14020 df-exp 14080 df-hash 14349 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-limsup 15487 df-clim 15504 df-rlim 15505 df-sum 15703 |
| This theorem is referenced by: rpnnen2lem6 16237 rpnnen2lem7 16238 rpnnen2lem8 16239 rpnnen2lem9 16240 rpnnen2lem12 16243 |
| Copyright terms: Public domain | W3C validator |