Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppcnlem6 Structured version   Visualization version   GIF version

Theorem knoppcnlem6 36499
Description: Lemma for knoppcn 36505. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppcnlem6.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppcnlem6.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppcnlem6.n (𝜑𝑁 ∈ ℕ)
knoppcnlem6.1 (𝜑𝐶 ∈ ℝ)
knoppcnlem6.2 (𝜑 → (abs‘𝐶) < 1)
Assertion
Ref Expression
knoppcnlem6 (𝜑 → seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))) ∈ dom (⇝𝑢‘ℝ))
Distinct variable groups:   𝐶,𝑚,𝑛,𝑦   𝑚,𝐹,𝑧   𝑛,𝑁,𝑦   𝑥,𝑁   𝑇,𝑛,𝑦   𝜑,𝑚,𝑛,𝑦,𝑧   𝑥,𝑚,𝑧
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥,𝑧)   𝑇(𝑥,𝑧,𝑚)   𝐹(𝑥,𝑦,𝑛)   𝑁(𝑧,𝑚)

Proof of Theorem knoppcnlem6
Dummy variables 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 12920 . 2 0 = (ℤ‘0)
2 0zd 12625 . 2 (𝜑 → 0 ∈ ℤ)
3 reex 11246 . . 3 ℝ ∈ V
43a1i 11 . 2 (𝜑 → ℝ ∈ V)
5 knoppcnlem6.t . . 3 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
6 knoppcnlem6.f . . 3 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
7 knoppcnlem6.n . . 3 (𝜑𝑁 ∈ ℕ)
8 knoppcnlem6.1 . . 3 (𝜑𝐶 ∈ ℝ)
95, 6, 7, 8knoppcnlem5 36498 . 2 (𝜑 → (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))):ℕ0⟶(ℂ ↑m ℝ))
10 nn0ex 12532 . . . 4 0 ∈ V
1110mptex 7243 . . 3 (𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚)) ∈ V
1211a1i 11 . 2 (𝜑 → (𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚)) ∈ V)
13 eqid 2737 . . . . 5 (𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚)) = (𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))
1413a1i 11 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚)) = (𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚)))
15 simpr 484 . . . . 5 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑚 = 𝑘) → 𝑚 = 𝑘)
1615oveq2d 7447 . . . 4 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑚 = 𝑘) → ((abs‘𝐶)↑𝑚) = ((abs‘𝐶)↑𝑘))
17 simpr 484 . . . 4 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
18 ovexd 7466 . . . 4 ((𝜑𝑘 ∈ ℕ0) → ((abs‘𝐶)↑𝑘) ∈ V)
1914, 16, 17, 18fvmptd 7023 . . 3 ((𝜑𝑘 ∈ ℕ0) → ((𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))‘𝑘) = ((abs‘𝐶)↑𝑘))
208recnd 11289 . . . . . 6 (𝜑𝐶 ∈ ℂ)
2120abscld 15475 . . . . 5 (𝜑 → (abs‘𝐶) ∈ ℝ)
2221adantr 480 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (abs‘𝐶) ∈ ℝ)
2322, 17reexpcld 14203 . . 3 ((𝜑𝑘 ∈ ℕ0) → ((abs‘𝐶)↑𝑘) ∈ ℝ)
2419, 23eqeltrd 2841 . 2 ((𝜑𝑘 ∈ ℕ0) → ((𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))‘𝑘) ∈ ℝ)
25 eqid 2737 . . . . . . 7 (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))) = (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))
2625a1i 11 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) → (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))) = (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))
27 simpr 484 . . . . . . . 8 (((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) ∧ 𝑚 = 𝑘) → 𝑚 = 𝑘)
2827fveq2d 6910 . . . . . . 7 (((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) ∧ 𝑚 = 𝑘) → ((𝐹𝑧)‘𝑚) = ((𝐹𝑧)‘𝑘))
2928mpteq2dv 5244 . . . . . 6 (((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) ∧ 𝑚 = 𝑘) → (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)) = (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑘)))
3017adantrr 717 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) → 𝑘 ∈ ℕ0)
313mptex 7243 . . . . . . 7 (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑘)) ∈ V
3231a1i 11 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) → (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑘)) ∈ V)
3326, 29, 30, 32fvmptd 7023 . . . . 5 ((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) → ((𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))‘𝑘) = (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑘)))
34 simpr 484 . . . . . . 7 (((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) ∧ 𝑧 = 𝑤) → 𝑧 = 𝑤)
3534fveq2d 6910 . . . . . 6 (((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) ∧ 𝑧 = 𝑤) → (𝐹𝑧) = (𝐹𝑤))
3635fveq1d 6908 . . . . 5 (((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) ∧ 𝑧 = 𝑤) → ((𝐹𝑧)‘𝑘) = ((𝐹𝑤)‘𝑘))
37 simprr 773 . . . . 5 ((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) → 𝑤 ∈ ℝ)
38 fvexd 6921 . . . . 5 ((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) → ((𝐹𝑤)‘𝑘) ∈ V)
3933, 36, 37, 38fvmptd 7023 . . . 4 ((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) → (((𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))‘𝑘)‘𝑤) = ((𝐹𝑤)‘𝑘))
4039fveq2d 6910 . . 3 ((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) → (abs‘(((𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))‘𝑘)‘𝑤)) = (abs‘((𝐹𝑤)‘𝑘)))
417adantr 480 . . . 4 ((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) → 𝑁 ∈ ℕ)
428adantr 480 . . . 4 ((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) → 𝐶 ∈ ℝ)
435, 6, 41, 42, 37, 30knoppcnlem4 36497 . . 3 ((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) → (abs‘((𝐹𝑤)‘𝑘)) ≤ ((𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))‘𝑘))
4440, 43eqbrtrd 5165 . 2 ((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) → (abs‘(((𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))‘𝑘)‘𝑤)) ≤ ((𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))‘𝑘))
4521recnd 11289 . . . 4 (𝜑 → (abs‘𝐶) ∈ ℂ)
46 absidm 15362 . . . . . 6 (𝐶 ∈ ℂ → (abs‘(abs‘𝐶)) = (abs‘𝐶))
4720, 46syl 17 . . . . 5 (𝜑 → (abs‘(abs‘𝐶)) = (abs‘𝐶))
48 knoppcnlem6.2 . . . . 5 (𝜑 → (abs‘𝐶) < 1)
4947, 48eqbrtrd 5165 . . . 4 (𝜑 → (abs‘(abs‘𝐶)) < 1)
5045, 49, 19geolim 15906 . . 3 (𝜑 → seq0( + , (𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))) ⇝ (1 / (1 − (abs‘𝐶))))
51 seqex 14044 . . . 4 seq0( + , (𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))) ∈ V
52 ovex 7464 . . . 4 (1 / (1 − (abs‘𝐶))) ∈ V
5351, 52breldm 5919 . . 3 (seq0( + , (𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))) ⇝ (1 / (1 − (abs‘𝐶))) → seq0( + , (𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))) ∈ dom ⇝ )
5450, 53syl 17 . 2 (𝜑 → seq0( + , (𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))) ∈ dom ⇝ )
551, 2, 4, 9, 12, 24, 44, 54mtest 26447 1 (𝜑 → seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))) ∈ dom (⇝𝑢‘ℝ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  Vcvv 3480   class class class wbr 5143  cmpt 5225  dom cdm 5685  cfv 6561  (class class class)co 7431  f cof 7695  cc 11153  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160   < clt 11295  cle 11296  cmin 11492   / cdiv 11920  cn 12266  2c2 12321  0cn0 12526  cfl 13830  seqcseq 14042  cexp 14102  abscabs 15273  cli 15520  𝑢culm 26419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-ico 13393  df-fz 13548  df-fzo 13695  df-fl 13832  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-ulm 26420
This theorem is referenced by:  knoppcnlem9  36502
  Copyright terms: Public domain W3C validator