Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppcnlem6 Structured version   Visualization version   GIF version

Theorem knoppcnlem6 36464
Description: Lemma for knoppcn 36470. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppcnlem6.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppcnlem6.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppcnlem6.n (𝜑𝑁 ∈ ℕ)
knoppcnlem6.1 (𝜑𝐶 ∈ ℝ)
knoppcnlem6.2 (𝜑 → (abs‘𝐶) < 1)
Assertion
Ref Expression
knoppcnlem6 (𝜑 → seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))) ∈ dom (⇝𝑢‘ℝ))
Distinct variable groups:   𝐶,𝑚,𝑛,𝑦   𝑚,𝐹,𝑧   𝑛,𝑁,𝑦   𝑥,𝑁   𝑇,𝑛,𝑦   𝜑,𝑚,𝑛,𝑦,𝑧   𝑥,𝑚,𝑧
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥,𝑧)   𝑇(𝑥,𝑧,𝑚)   𝐹(𝑥,𝑦,𝑛)   𝑁(𝑧,𝑚)

Proof of Theorem knoppcnlem6
Dummy variables 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 12945 . 2 0 = (ℤ‘0)
2 0zd 12651 . 2 (𝜑 → 0 ∈ ℤ)
3 reex 11275 . . 3 ℝ ∈ V
43a1i 11 . 2 (𝜑 → ℝ ∈ V)
5 knoppcnlem6.t . . 3 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
6 knoppcnlem6.f . . 3 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
7 knoppcnlem6.n . . 3 (𝜑𝑁 ∈ ℕ)
8 knoppcnlem6.1 . . 3 (𝜑𝐶 ∈ ℝ)
95, 6, 7, 8knoppcnlem5 36463 . 2 (𝜑 → (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))):ℕ0⟶(ℂ ↑m ℝ))
10 nn0ex 12559 . . . 4 0 ∈ V
1110mptex 7260 . . 3 (𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚)) ∈ V
1211a1i 11 . 2 (𝜑 → (𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚)) ∈ V)
13 eqid 2740 . . . . 5 (𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚)) = (𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))
1413a1i 11 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚)) = (𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚)))
15 simpr 484 . . . . 5 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑚 = 𝑘) → 𝑚 = 𝑘)
1615oveq2d 7464 . . . 4 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑚 = 𝑘) → ((abs‘𝐶)↑𝑚) = ((abs‘𝐶)↑𝑘))
17 simpr 484 . . . 4 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
18 ovexd 7483 . . . 4 ((𝜑𝑘 ∈ ℕ0) → ((abs‘𝐶)↑𝑘) ∈ V)
1914, 16, 17, 18fvmptd 7036 . . 3 ((𝜑𝑘 ∈ ℕ0) → ((𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))‘𝑘) = ((abs‘𝐶)↑𝑘))
208recnd 11318 . . . . . 6 (𝜑𝐶 ∈ ℂ)
2120abscld 15485 . . . . 5 (𝜑 → (abs‘𝐶) ∈ ℝ)
2221adantr 480 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (abs‘𝐶) ∈ ℝ)
2322, 17reexpcld 14213 . . 3 ((𝜑𝑘 ∈ ℕ0) → ((abs‘𝐶)↑𝑘) ∈ ℝ)
2419, 23eqeltrd 2844 . 2 ((𝜑𝑘 ∈ ℕ0) → ((𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))‘𝑘) ∈ ℝ)
25 eqid 2740 . . . . . . 7 (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))) = (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))
2625a1i 11 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) → (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))) = (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚))))
27 simpr 484 . . . . . . . 8 (((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) ∧ 𝑚 = 𝑘) → 𝑚 = 𝑘)
2827fveq2d 6924 . . . . . . 7 (((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) ∧ 𝑚 = 𝑘) → ((𝐹𝑧)‘𝑚) = ((𝐹𝑧)‘𝑘))
2928mpteq2dv 5268 . . . . . 6 (((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) ∧ 𝑚 = 𝑘) → (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)) = (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑘)))
3017adantrr 716 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) → 𝑘 ∈ ℕ0)
313mptex 7260 . . . . . . 7 (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑘)) ∈ V
3231a1i 11 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) → (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑘)) ∈ V)
3326, 29, 30, 32fvmptd 7036 . . . . 5 ((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) → ((𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))‘𝑘) = (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑘)))
34 simpr 484 . . . . . . 7 (((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) ∧ 𝑧 = 𝑤) → 𝑧 = 𝑤)
3534fveq2d 6924 . . . . . 6 (((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) ∧ 𝑧 = 𝑤) → (𝐹𝑧) = (𝐹𝑤))
3635fveq1d 6922 . . . . 5 (((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) ∧ 𝑧 = 𝑤) → ((𝐹𝑧)‘𝑘) = ((𝐹𝑤)‘𝑘))
37 simprr 772 . . . . 5 ((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) → 𝑤 ∈ ℝ)
38 fvexd 6935 . . . . 5 ((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) → ((𝐹𝑤)‘𝑘) ∈ V)
3933, 36, 37, 38fvmptd 7036 . . . 4 ((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) → (((𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))‘𝑘)‘𝑤) = ((𝐹𝑤)‘𝑘))
4039fveq2d 6924 . . 3 ((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) → (abs‘(((𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))‘𝑘)‘𝑤)) = (abs‘((𝐹𝑤)‘𝑘)))
417adantr 480 . . . 4 ((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) → 𝑁 ∈ ℕ)
428adantr 480 . . . 4 ((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) → 𝐶 ∈ ℝ)
435, 6, 41, 42, 37, 30knoppcnlem4 36462 . . 3 ((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) → (abs‘((𝐹𝑤)‘𝑘)) ≤ ((𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))‘𝑘))
4440, 43eqbrtrd 5188 . 2 ((𝜑 ∧ (𝑘 ∈ ℕ0𝑤 ∈ ℝ)) → (abs‘(((𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))‘𝑘)‘𝑤)) ≤ ((𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))‘𝑘))
4521recnd 11318 . . . 4 (𝜑 → (abs‘𝐶) ∈ ℂ)
46 absidm 15372 . . . . . 6 (𝐶 ∈ ℂ → (abs‘(abs‘𝐶)) = (abs‘𝐶))
4720, 46syl 17 . . . . 5 (𝜑 → (abs‘(abs‘𝐶)) = (abs‘𝐶))
48 knoppcnlem6.2 . . . . 5 (𝜑 → (abs‘𝐶) < 1)
4947, 48eqbrtrd 5188 . . . 4 (𝜑 → (abs‘(abs‘𝐶)) < 1)
5045, 49, 19geolim 15918 . . 3 (𝜑 → seq0( + , (𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))) ⇝ (1 / (1 − (abs‘𝐶))))
51 seqex 14054 . . . 4 seq0( + , (𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))) ∈ V
52 ovex 7481 . . . 4 (1 / (1 − (abs‘𝐶))) ∈ V
5351, 52breldm 5933 . . 3 (seq0( + , (𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))) ⇝ (1 / (1 − (abs‘𝐶))) → seq0( + , (𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))) ∈ dom ⇝ )
5450, 53syl 17 . 2 (𝜑 → seq0( + , (𝑚 ∈ ℕ0 ↦ ((abs‘𝐶)↑𝑚))) ∈ dom ⇝ )
551, 2, 4, 9, 12, 24, 44, 54mtest 26465 1 (𝜑 → seq0( ∘f + , (𝑚 ∈ ℕ0 ↦ (𝑧 ∈ ℝ ↦ ((𝐹𝑧)‘𝑚)))) ∈ dom (⇝𝑢‘ℝ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488   class class class wbr 5166  cmpt 5249  dom cdm 5700  cfv 6573  (class class class)co 7448  f cof 7712  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189   < clt 11324  cle 11325  cmin 11520   / cdiv 11947  cn 12293  2c2 12348  0cn0 12553  cfl 13841  seqcseq 14052  cexp 14112  abscabs 15283  cli 15530  𝑢culm 26437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-ico 13413  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-ulm 26438
This theorem is referenced by:  knoppcnlem9  36467
  Copyright terms: Public domain W3C validator