Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppf Structured version   Visualization version   GIF version

Theorem knoppf 33431
Description: Knopp's function is a function. (Contributed by Asger C. Ipsen, 25-Aug-2021.)
Hypotheses
Ref Expression
knoppf.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppf.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppf.w 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))
knoppf.c (𝜑𝐶 ∈ (-1(,)1))
knoppf.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
knoppf (𝜑𝑊:ℝ⟶ℝ)
Distinct variable groups:   𝐶,𝑛,𝑦   𝑖,𝐹,𝑤   𝑛,𝑁,𝑦   𝑥,𝑁   𝑇,𝑛,𝑦   𝜑,𝑖,𝑛,𝑤,𝑦   𝑥,𝑖,𝑤
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥,𝑤,𝑖)   𝑇(𝑥,𝑤,𝑖)   𝐹(𝑥,𝑦,𝑛)   𝑁(𝑤,𝑖)   𝑊(𝑥,𝑦,𝑤,𝑖,𝑛)

Proof of Theorem knoppf
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nn0uz 12092 . . 3 0 = (ℤ‘0)
2 0zd 11803 . . 3 ((𝜑𝑤 ∈ ℝ) → 0 ∈ ℤ)
3 eqidd 2772 . . 3 (((𝜑𝑤 ∈ ℝ) ∧ 𝑖 ∈ ℕ0) → ((𝐹𝑤)‘𝑖) = ((𝐹𝑤)‘𝑖))
4 knoppf.t . . . 4 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
5 knoppf.f . . . 4 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
6 knoppf.n . . . . . 6 (𝜑𝑁 ∈ ℕ)
76adantr 473 . . . . 5 ((𝜑𝑤 ∈ ℝ) → 𝑁 ∈ ℕ)
87adantr 473 . . . 4 (((𝜑𝑤 ∈ ℝ) ∧ 𝑖 ∈ ℕ0) → 𝑁 ∈ ℕ)
9 knoppf.c . . . . . . . 8 (𝜑𝐶 ∈ (-1(,)1))
109knoppndvlem3 33410 . . . . . . 7 (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1))
1110simpld 487 . . . . . 6 (𝜑𝐶 ∈ ℝ)
1211adantr 473 . . . . 5 ((𝜑𝑤 ∈ ℝ) → 𝐶 ∈ ℝ)
1312adantr 473 . . . 4 (((𝜑𝑤 ∈ ℝ) ∧ 𝑖 ∈ ℕ0) → 𝐶 ∈ ℝ)
14 simpr 477 . . . . 5 ((𝜑𝑤 ∈ ℝ) → 𝑤 ∈ ℝ)
1514adantr 473 . . . 4 (((𝜑𝑤 ∈ ℝ) ∧ 𝑖 ∈ ℕ0) → 𝑤 ∈ ℝ)
16 simpr 477 . . . 4 (((𝜑𝑤 ∈ ℝ) ∧ 𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0)
174, 5, 8, 13, 15, 16knoppcnlem3 33391 . . 3 (((𝜑𝑤 ∈ ℝ) ∧ 𝑖 ∈ ℕ0) → ((𝐹𝑤)‘𝑖) ∈ ℝ)
18 knoppf.w . . . . . 6 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))
19 fveq2 6496 . . . . . . . . 9 (𝑤 = 𝑧 → (𝐹𝑤) = (𝐹𝑧))
2019fveq1d 6498 . . . . . . . 8 (𝑤 = 𝑧 → ((𝐹𝑤)‘𝑖) = ((𝐹𝑧)‘𝑖))
2120sumeq2sdv 14919 . . . . . . 7 (𝑤 = 𝑧 → Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖) = Σ𝑖 ∈ ℕ0 ((𝐹𝑧)‘𝑖))
2221cbvmptv 5024 . . . . . 6 (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖)) = (𝑧 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑧)‘𝑖))
2318, 22eqtri 2795 . . . . 5 𝑊 = (𝑧 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑧)‘𝑖))
249adantr 473 . . . . 5 ((𝜑𝑤 ∈ ℝ) → 𝐶 ∈ (-1(,)1))
254, 5, 23, 14, 24, 7knoppndvlem4 33411 . . . 4 ((𝜑𝑤 ∈ ℝ) → seq0( + , (𝐹𝑤)) ⇝ (𝑊𝑤))
26 seqex 13184 . . . . 5 seq0( + , (𝐹𝑤)) ∈ V
27 fvex 6509 . . . . 5 (𝑊𝑤) ∈ V
2826, 27breldm 5623 . . . 4 (seq0( + , (𝐹𝑤)) ⇝ (𝑊𝑤) → seq0( + , (𝐹𝑤)) ∈ dom ⇝ )
2925, 28syl 17 . . 3 ((𝜑𝑤 ∈ ℝ) → seq0( + , (𝐹𝑤)) ∈ dom ⇝ )
301, 2, 3, 17, 29isumrecl 14978 . 2 ((𝜑𝑤 ∈ ℝ) → Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖) ∈ ℝ)
3130, 18fmptd 6699 1 (𝜑𝑊:ℝ⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1508  wcel 2051   class class class wbr 4925  cmpt 5004  dom cdm 5403  wf 6181  cfv 6185  (class class class)co 6974  cr 10332  0cc0 10333  1c1 10334   + caddc 10336   · cmul 10338   < clt 10472  cmin 10668  -cneg 10669   / cdiv 11096  cn 11437  2c2 11493  0cn0 11705  (,)cioo 12552  cfl 12973  seqcseq 13182  cexp 13242  abscabs 14452  cli 14700  Σcsu 14901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2743  ax-rep 5045  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277  ax-inf2 8896  ax-cnex 10389  ax-resscn 10390  ax-1cn 10391  ax-icn 10392  ax-addcl 10393  ax-addrcl 10394  ax-mulcl 10395  ax-mulrcl 10396  ax-mulcom 10397  ax-addass 10398  ax-mulass 10399  ax-distr 10400  ax-i2m1 10401  ax-1ne0 10402  ax-1rid 10403  ax-rnegex 10404  ax-rrecex 10405  ax-cnre 10406  ax-pre-lttri 10407  ax-pre-lttrn 10408  ax-pre-ltadd 10409  ax-pre-mulgt0 10410  ax-pre-sup 10411  ax-addf 10412  ax-mulf 10413
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-fal 1521  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2752  df-cleq 2764  df-clel 2839  df-nfc 2911  df-ne 2961  df-nel 3067  df-ral 3086  df-rex 3087  df-reu 3088  df-rmo 3089  df-rab 3090  df-v 3410  df-sbc 3675  df-csb 3780  df-dif 3825  df-un 3827  df-in 3829  df-ss 3836  df-pss 3838  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4709  df-int 4746  df-iun 4790  df-br 4926  df-opab 4988  df-mpt 5005  df-tr 5027  df-id 5308  df-eprel 5313  df-po 5322  df-so 5323  df-fr 5362  df-se 5363  df-we 5364  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-pred 5983  df-ord 6029  df-on 6030  df-lim 6031  df-suc 6032  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-f1 6190  df-fo 6191  df-f1o 6192  df-fv 6193  df-isom 6194  df-riota 6935  df-ov 6977  df-oprab 6978  df-mpo 6979  df-of 7225  df-om 7395  df-1st 7499  df-2nd 7500  df-wrecs 7748  df-recs 7810  df-rdg 7848  df-1o 7903  df-oadd 7907  df-er 8087  df-map 8206  df-pm 8207  df-en 8305  df-dom 8306  df-sdom 8307  df-fin 8308  df-sup 8699  df-inf 8700  df-oi 8767  df-card 9160  df-pnf 10474  df-mnf 10475  df-xr 10476  df-ltxr 10477  df-le 10478  df-sub 10670  df-neg 10671  df-div 11097  df-nn 11438  df-2 11501  df-3 11502  df-n0 11706  df-z 11792  df-uz 12057  df-rp 12203  df-ioo 12556  df-ico 12558  df-fz 12707  df-fzo 12848  df-fl 12975  df-seq 13183  df-exp 13243  df-hash 13504  df-cj 14317  df-re 14318  df-im 14319  df-sqrt 14453  df-abs 14454  df-limsup 14687  df-clim 14704  df-rlim 14705  df-sum 14902  df-ulm 24683
This theorem is referenced by:  knoppcn2  33432
  Copyright terms: Public domain W3C validator