Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppf Structured version   Visualization version   GIF version

Theorem knoppf 36568
Description: Knopp's function is a function. (Contributed by Asger C. Ipsen, 25-Aug-2021.)
Hypotheses
Ref Expression
knoppf.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppf.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppf.w 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))
knoppf.c (𝜑𝐶 ∈ (-1(,)1))
knoppf.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
knoppf (𝜑𝑊:ℝ⟶ℝ)
Distinct variable groups:   𝐶,𝑛,𝑦   𝑖,𝐹,𝑤   𝑛,𝑁,𝑦   𝑥,𝑁   𝑇,𝑛,𝑦   𝜑,𝑖,𝑛,𝑤,𝑦   𝑥,𝑖,𝑤
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥,𝑤,𝑖)   𝑇(𝑥,𝑤,𝑖)   𝐹(𝑥,𝑦,𝑛)   𝑁(𝑤,𝑖)   𝑊(𝑥,𝑦,𝑤,𝑖,𝑛)

Proof of Theorem knoppf
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nn0uz 12771 . . 3 0 = (ℤ‘0)
2 0zd 12477 . . 3 ((𝜑𝑤 ∈ ℝ) → 0 ∈ ℤ)
3 eqidd 2732 . . 3 (((𝜑𝑤 ∈ ℝ) ∧ 𝑖 ∈ ℕ0) → ((𝐹𝑤)‘𝑖) = ((𝐹𝑤)‘𝑖))
4 knoppf.t . . . 4 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
5 knoppf.f . . . 4 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
6 knoppf.n . . . . . 6 (𝜑𝑁 ∈ ℕ)
76adantr 480 . . . . 5 ((𝜑𝑤 ∈ ℝ) → 𝑁 ∈ ℕ)
87adantr 480 . . . 4 (((𝜑𝑤 ∈ ℝ) ∧ 𝑖 ∈ ℕ0) → 𝑁 ∈ ℕ)
9 knoppf.c . . . . . . . 8 (𝜑𝐶 ∈ (-1(,)1))
109knoppndvlem3 36547 . . . . . . 7 (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1))
1110simpld 494 . . . . . 6 (𝜑𝐶 ∈ ℝ)
1211adantr 480 . . . . 5 ((𝜑𝑤 ∈ ℝ) → 𝐶 ∈ ℝ)
1312adantr 480 . . . 4 (((𝜑𝑤 ∈ ℝ) ∧ 𝑖 ∈ ℕ0) → 𝐶 ∈ ℝ)
14 simpr 484 . . . . 5 ((𝜑𝑤 ∈ ℝ) → 𝑤 ∈ ℝ)
1514adantr 480 . . . 4 (((𝜑𝑤 ∈ ℝ) ∧ 𝑖 ∈ ℕ0) → 𝑤 ∈ ℝ)
16 simpr 484 . . . 4 (((𝜑𝑤 ∈ ℝ) ∧ 𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0)
174, 5, 8, 13, 15, 16knoppcnlem3 36528 . . 3 (((𝜑𝑤 ∈ ℝ) ∧ 𝑖 ∈ ℕ0) → ((𝐹𝑤)‘𝑖) ∈ ℝ)
18 knoppf.w . . . . . 6 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))
19 fveq2 6822 . . . . . . . . 9 (𝑤 = 𝑧 → (𝐹𝑤) = (𝐹𝑧))
2019fveq1d 6824 . . . . . . . 8 (𝑤 = 𝑧 → ((𝐹𝑤)‘𝑖) = ((𝐹𝑧)‘𝑖))
2120sumeq2sdv 15607 . . . . . . 7 (𝑤 = 𝑧 → Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖) = Σ𝑖 ∈ ℕ0 ((𝐹𝑧)‘𝑖))
2221cbvmptv 5195 . . . . . 6 (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖)) = (𝑧 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑧)‘𝑖))
2318, 22eqtri 2754 . . . . 5 𝑊 = (𝑧 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑧)‘𝑖))
249adantr 480 . . . . 5 ((𝜑𝑤 ∈ ℝ) → 𝐶 ∈ (-1(,)1))
254, 5, 23, 14, 24, 7knoppndvlem4 36548 . . . 4 ((𝜑𝑤 ∈ ℝ) → seq0( + , (𝐹𝑤)) ⇝ (𝑊𝑤))
26 seqex 13907 . . . . 5 seq0( + , (𝐹𝑤)) ∈ V
27 fvex 6835 . . . . 5 (𝑊𝑤) ∈ V
2826, 27breldm 5848 . . . 4 (seq0( + , (𝐹𝑤)) ⇝ (𝑊𝑤) → seq0( + , (𝐹𝑤)) ∈ dom ⇝ )
2925, 28syl 17 . . 3 ((𝜑𝑤 ∈ ℝ) → seq0( + , (𝐹𝑤)) ∈ dom ⇝ )
301, 2, 3, 17, 29isumrecl 15669 . 2 ((𝜑𝑤 ∈ ℝ) → Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖) ∈ ℝ)
3130, 18fmptd 7047 1 (𝜑𝑊:ℝ⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111   class class class wbr 5091  cmpt 5172  dom cdm 5616  wf 6477  cfv 6481  (class class class)co 7346  cr 11002  0cc0 11003  1c1 11004   + caddc 11006   · cmul 11008   < clt 11143  cmin 11341  -cneg 11342   / cdiv 11771  cn 12122  2c2 12177  0cn0 12378  (,)cioo 13242  cfl 13691  seqcseq 13905  cexp 13965  abscabs 15138  cli 15388  Σcsu 15590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-n0 12379  df-z 12466  df-uz 12730  df-rp 12888  df-ioo 13246  df-ico 13248  df-fz 13405  df-fzo 13552  df-fl 13693  df-seq 13906  df-exp 13966  df-hash 14235  df-cj 15003  df-re 15004  df-im 15005  df-sqrt 15139  df-abs 15140  df-limsup 15375  df-clim 15392  df-rlim 15393  df-sum 15591  df-ulm 26311
This theorem is referenced by:  knoppcn2  36569
  Copyright terms: Public domain W3C validator