| Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > knoppf | Structured version Visualization version GIF version | ||
| Description: Knopp's function is a function. (Contributed by Asger C. Ipsen, 25-Aug-2021.) |
| Ref | Expression |
|---|---|
| knoppf.t | ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) |
| knoppf.f | ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) |
| knoppf.w | ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) |
| knoppf.c | ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) |
| knoppf.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| Ref | Expression |
|---|---|
| knoppf | ⊢ (𝜑 → 𝑊:ℝ⟶ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0uz 12776 | . . 3 ⊢ ℕ0 = (ℤ≥‘0) | |
| 2 | 0zd 12487 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ ℝ) → 0 ∈ ℤ) | |
| 3 | eqidd 2734 | . . 3 ⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ 𝑖 ∈ ℕ0) → ((𝐹‘𝑤)‘𝑖) = ((𝐹‘𝑤)‘𝑖)) | |
| 4 | knoppf.t | . . . 4 ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) | |
| 5 | knoppf.f | . . . 4 ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) | |
| 6 | knoppf.n | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 7 | 6 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ ℝ) → 𝑁 ∈ ℕ) |
| 8 | 7 | adantr 480 | . . . 4 ⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ 𝑖 ∈ ℕ0) → 𝑁 ∈ ℕ) |
| 9 | knoppf.c | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) | |
| 10 | 9 | knoppndvlem3 36579 | . . . . . . 7 ⊢ (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1)) |
| 11 | 10 | simpld 494 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| 12 | 11 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ ℝ) → 𝐶 ∈ ℝ) |
| 13 | 12 | adantr 480 | . . . 4 ⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ 𝑖 ∈ ℕ0) → 𝐶 ∈ ℝ) |
| 14 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ ℝ) → 𝑤 ∈ ℝ) | |
| 15 | 14 | adantr 480 | . . . 4 ⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ 𝑖 ∈ ℕ0) → 𝑤 ∈ ℝ) |
| 16 | simpr 484 | . . . 4 ⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ 𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0) | |
| 17 | 4, 5, 8, 13, 15, 16 | knoppcnlem3 36560 | . . 3 ⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ 𝑖 ∈ ℕ0) → ((𝐹‘𝑤)‘𝑖) ∈ ℝ) |
| 18 | knoppf.w | . . . . . 6 ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) | |
| 19 | fveq2 6828 | . . . . . . . . 9 ⊢ (𝑤 = 𝑧 → (𝐹‘𝑤) = (𝐹‘𝑧)) | |
| 20 | 19 | fveq1d 6830 | . . . . . . . 8 ⊢ (𝑤 = 𝑧 → ((𝐹‘𝑤)‘𝑖) = ((𝐹‘𝑧)‘𝑖)) |
| 21 | 20 | sumeq2sdv 15612 | . . . . . . 7 ⊢ (𝑤 = 𝑧 → Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖) = Σ𝑖 ∈ ℕ0 ((𝐹‘𝑧)‘𝑖)) |
| 22 | 21 | cbvmptv 5197 | . . . . . 6 ⊢ (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) = (𝑧 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑧)‘𝑖)) |
| 23 | 18, 22 | eqtri 2756 | . . . . 5 ⊢ 𝑊 = (𝑧 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑧)‘𝑖)) |
| 24 | 9 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ ℝ) → 𝐶 ∈ (-1(,)1)) |
| 25 | 4, 5, 23, 14, 24, 7 | knoppndvlem4 36580 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ ℝ) → seq0( + , (𝐹‘𝑤)) ⇝ (𝑊‘𝑤)) |
| 26 | seqex 13912 | . . . . 5 ⊢ seq0( + , (𝐹‘𝑤)) ∈ V | |
| 27 | fvex 6841 | . . . . 5 ⊢ (𝑊‘𝑤) ∈ V | |
| 28 | 26, 27 | breldm 5852 | . . . 4 ⊢ (seq0( + , (𝐹‘𝑤)) ⇝ (𝑊‘𝑤) → seq0( + , (𝐹‘𝑤)) ∈ dom ⇝ ) |
| 29 | 25, 28 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ ℝ) → seq0( + , (𝐹‘𝑤)) ∈ dom ⇝ ) |
| 30 | 1, 2, 3, 17, 29 | isumrecl 15674 | . 2 ⊢ ((𝜑 ∧ 𝑤 ∈ ℝ) → Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖) ∈ ℝ) |
| 31 | 30, 18 | fmptd 7053 | 1 ⊢ (𝜑 → 𝑊:ℝ⟶ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 class class class wbr 5093 ↦ cmpt 5174 dom cdm 5619 ⟶wf 6482 ‘cfv 6486 (class class class)co 7352 ℝcr 11012 0cc0 11013 1c1 11014 + caddc 11016 · cmul 11018 < clt 11153 − cmin 11351 -cneg 11352 / cdiv 11781 ℕcn 12132 2c2 12187 ℕ0cn0 12388 (,)cioo 13247 ⌊cfl 13696 seqcseq 13910 ↑cexp 13970 abscabs 15143 ⇝ cli 15393 Σcsu 15595 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9538 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-map 8758 df-pm 8759 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-sup 9333 df-inf 9334 df-oi 9403 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-n0 12389 df-z 12476 df-uz 12739 df-rp 12893 df-ioo 13251 df-ico 13253 df-fz 13410 df-fzo 13557 df-fl 13698 df-seq 13911 df-exp 13971 df-hash 14240 df-cj 15008 df-re 15009 df-im 15010 df-sqrt 15144 df-abs 15145 df-limsup 15380 df-clim 15397 df-rlim 15398 df-sum 15596 df-ulm 26314 |
| This theorem is referenced by: knoppcn2 36601 |
| Copyright terms: Public domain | W3C validator |