Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppf Structured version   Visualization version   GIF version

Theorem knoppf 33988
Description: Knopp's function is a function. (Contributed by Asger C. Ipsen, 25-Aug-2021.)
Hypotheses
Ref Expression
knoppf.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppf.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppf.w 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))
knoppf.c (𝜑𝐶 ∈ (-1(,)1))
knoppf.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
knoppf (𝜑𝑊:ℝ⟶ℝ)
Distinct variable groups:   𝐶,𝑛,𝑦   𝑖,𝐹,𝑤   𝑛,𝑁,𝑦   𝑥,𝑁   𝑇,𝑛,𝑦   𝜑,𝑖,𝑛,𝑤,𝑦   𝑥,𝑖,𝑤
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥,𝑤,𝑖)   𝑇(𝑥,𝑤,𝑖)   𝐹(𝑥,𝑦,𝑛)   𝑁(𝑤,𝑖)   𝑊(𝑥,𝑦,𝑤,𝑖,𝑛)

Proof of Theorem knoppf
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nn0uz 12272 . . 3 0 = (ℤ‘0)
2 0zd 11985 . . 3 ((𝜑𝑤 ∈ ℝ) → 0 ∈ ℤ)
3 eqidd 2802 . . 3 (((𝜑𝑤 ∈ ℝ) ∧ 𝑖 ∈ ℕ0) → ((𝐹𝑤)‘𝑖) = ((𝐹𝑤)‘𝑖))
4 knoppf.t . . . 4 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
5 knoppf.f . . . 4 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
6 knoppf.n . . . . . 6 (𝜑𝑁 ∈ ℕ)
76adantr 484 . . . . 5 ((𝜑𝑤 ∈ ℝ) → 𝑁 ∈ ℕ)
87adantr 484 . . . 4 (((𝜑𝑤 ∈ ℝ) ∧ 𝑖 ∈ ℕ0) → 𝑁 ∈ ℕ)
9 knoppf.c . . . . . . . 8 (𝜑𝐶 ∈ (-1(,)1))
109knoppndvlem3 33967 . . . . . . 7 (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1))
1110simpld 498 . . . . . 6 (𝜑𝐶 ∈ ℝ)
1211adantr 484 . . . . 5 ((𝜑𝑤 ∈ ℝ) → 𝐶 ∈ ℝ)
1312adantr 484 . . . 4 (((𝜑𝑤 ∈ ℝ) ∧ 𝑖 ∈ ℕ0) → 𝐶 ∈ ℝ)
14 simpr 488 . . . . 5 ((𝜑𝑤 ∈ ℝ) → 𝑤 ∈ ℝ)
1514adantr 484 . . . 4 (((𝜑𝑤 ∈ ℝ) ∧ 𝑖 ∈ ℕ0) → 𝑤 ∈ ℝ)
16 simpr 488 . . . 4 (((𝜑𝑤 ∈ ℝ) ∧ 𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0)
174, 5, 8, 13, 15, 16knoppcnlem3 33948 . . 3 (((𝜑𝑤 ∈ ℝ) ∧ 𝑖 ∈ ℕ0) → ((𝐹𝑤)‘𝑖) ∈ ℝ)
18 knoppf.w . . . . . 6 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖))
19 fveq2 6649 . . . . . . . . 9 (𝑤 = 𝑧 → (𝐹𝑤) = (𝐹𝑧))
2019fveq1d 6651 . . . . . . . 8 (𝑤 = 𝑧 → ((𝐹𝑤)‘𝑖) = ((𝐹𝑧)‘𝑖))
2120sumeq2sdv 15057 . . . . . . 7 (𝑤 = 𝑧 → Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖) = Σ𝑖 ∈ ℕ0 ((𝐹𝑧)‘𝑖))
2221cbvmptv 5136 . . . . . 6 (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖)) = (𝑧 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑧)‘𝑖))
2318, 22eqtri 2824 . . . . 5 𝑊 = (𝑧 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹𝑧)‘𝑖))
249adantr 484 . . . . 5 ((𝜑𝑤 ∈ ℝ) → 𝐶 ∈ (-1(,)1))
254, 5, 23, 14, 24, 7knoppndvlem4 33968 . . . 4 ((𝜑𝑤 ∈ ℝ) → seq0( + , (𝐹𝑤)) ⇝ (𝑊𝑤))
26 seqex 13370 . . . . 5 seq0( + , (𝐹𝑤)) ∈ V
27 fvex 6662 . . . . 5 (𝑊𝑤) ∈ V
2826, 27breldm 5745 . . . 4 (seq0( + , (𝐹𝑤)) ⇝ (𝑊𝑤) → seq0( + , (𝐹𝑤)) ∈ dom ⇝ )
2925, 28syl 17 . . 3 ((𝜑𝑤 ∈ ℝ) → seq0( + , (𝐹𝑤)) ∈ dom ⇝ )
301, 2, 3, 17, 29isumrecl 15116 . 2 ((𝜑𝑤 ∈ ℝ) → Σ𝑖 ∈ ℕ0 ((𝐹𝑤)‘𝑖) ∈ ℝ)
3130, 18fmptd 6859 1 (𝜑𝑊:ℝ⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2112   class class class wbr 5033  cmpt 5113  dom cdm 5523  wf 6324  cfv 6328  (class class class)co 7139  cr 10529  0cc0 10530  1c1 10531   + caddc 10533   · cmul 10535   < clt 10668  cmin 10863  -cneg 10864   / cdiv 11290  cn 11629  2c2 11684  0cn0 11889  (,)cioo 12730  cfl 13159  seqcseq 13368  cexp 13429  abscabs 14589  cli 14837  Σcsu 15038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-inf2 9092  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608  ax-addf 10609  ax-mulf 10610
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-of 7393  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-map 8395  df-pm 8396  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-ioo 12734  df-ico 12736  df-fz 12890  df-fzo 13033  df-fl 13161  df-seq 13369  df-exp 13430  df-hash 13691  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591  df-limsup 14824  df-clim 14841  df-rlim 14842  df-sum 15039  df-ulm 24976
This theorem is referenced by:  knoppcn2  33989
  Copyright terms: Public domain W3C validator