| Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > knoppf | Structured version Visualization version GIF version | ||
| Description: Knopp's function is a function. (Contributed by Asger C. Ipsen, 25-Aug-2021.) |
| Ref | Expression |
|---|---|
| knoppf.t | ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) |
| knoppf.f | ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) |
| knoppf.w | ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) |
| knoppf.c | ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) |
| knoppf.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| Ref | Expression |
|---|---|
| knoppf | ⊢ (𝜑 → 𝑊:ℝ⟶ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0uz 12842 | . . 3 ⊢ ℕ0 = (ℤ≥‘0) | |
| 2 | 0zd 12548 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ ℝ) → 0 ∈ ℤ) | |
| 3 | eqidd 2731 | . . 3 ⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ 𝑖 ∈ ℕ0) → ((𝐹‘𝑤)‘𝑖) = ((𝐹‘𝑤)‘𝑖)) | |
| 4 | knoppf.t | . . . 4 ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) | |
| 5 | knoppf.f | . . . 4 ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) | |
| 6 | knoppf.n | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 7 | 6 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ ℝ) → 𝑁 ∈ ℕ) |
| 8 | 7 | adantr 480 | . . . 4 ⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ 𝑖 ∈ ℕ0) → 𝑁 ∈ ℕ) |
| 9 | knoppf.c | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ (-1(,)1)) | |
| 10 | 9 | knoppndvlem3 36509 | . . . . . . 7 ⊢ (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1)) |
| 11 | 10 | simpld 494 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| 12 | 11 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ ℝ) → 𝐶 ∈ ℝ) |
| 13 | 12 | adantr 480 | . . . 4 ⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ 𝑖 ∈ ℕ0) → 𝐶 ∈ ℝ) |
| 14 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ ℝ) → 𝑤 ∈ ℝ) | |
| 15 | 14 | adantr 480 | . . . 4 ⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ 𝑖 ∈ ℕ0) → 𝑤 ∈ ℝ) |
| 16 | simpr 484 | . . . 4 ⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ 𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0) | |
| 17 | 4, 5, 8, 13, 15, 16 | knoppcnlem3 36490 | . . 3 ⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ 𝑖 ∈ ℕ0) → ((𝐹‘𝑤)‘𝑖) ∈ ℝ) |
| 18 | knoppf.w | . . . . . 6 ⊢ 𝑊 = (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) | |
| 19 | fveq2 6861 | . . . . . . . . 9 ⊢ (𝑤 = 𝑧 → (𝐹‘𝑤) = (𝐹‘𝑧)) | |
| 20 | 19 | fveq1d 6863 | . . . . . . . 8 ⊢ (𝑤 = 𝑧 → ((𝐹‘𝑤)‘𝑖) = ((𝐹‘𝑧)‘𝑖)) |
| 21 | 20 | sumeq2sdv 15676 | . . . . . . 7 ⊢ (𝑤 = 𝑧 → Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖) = Σ𝑖 ∈ ℕ0 ((𝐹‘𝑧)‘𝑖)) |
| 22 | 21 | cbvmptv 5214 | . . . . . 6 ⊢ (𝑤 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖)) = (𝑧 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑧)‘𝑖)) |
| 23 | 18, 22 | eqtri 2753 | . . . . 5 ⊢ 𝑊 = (𝑧 ∈ ℝ ↦ Σ𝑖 ∈ ℕ0 ((𝐹‘𝑧)‘𝑖)) |
| 24 | 9 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ ℝ) → 𝐶 ∈ (-1(,)1)) |
| 25 | 4, 5, 23, 14, 24, 7 | knoppndvlem4 36510 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ ℝ) → seq0( + , (𝐹‘𝑤)) ⇝ (𝑊‘𝑤)) |
| 26 | seqex 13975 | . . . . 5 ⊢ seq0( + , (𝐹‘𝑤)) ∈ V | |
| 27 | fvex 6874 | . . . . 5 ⊢ (𝑊‘𝑤) ∈ V | |
| 28 | 26, 27 | breldm 5875 | . . . 4 ⊢ (seq0( + , (𝐹‘𝑤)) ⇝ (𝑊‘𝑤) → seq0( + , (𝐹‘𝑤)) ∈ dom ⇝ ) |
| 29 | 25, 28 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ ℝ) → seq0( + , (𝐹‘𝑤)) ∈ dom ⇝ ) |
| 30 | 1, 2, 3, 17, 29 | isumrecl 15738 | . 2 ⊢ ((𝜑 ∧ 𝑤 ∈ ℝ) → Σ𝑖 ∈ ℕ0 ((𝐹‘𝑤)‘𝑖) ∈ ℝ) |
| 31 | 30, 18 | fmptd 7089 | 1 ⊢ (𝜑 → 𝑊:ℝ⟶ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5110 ↦ cmpt 5191 dom cdm 5641 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ℝcr 11074 0cc0 11075 1c1 11076 + caddc 11078 · cmul 11080 < clt 11215 − cmin 11412 -cneg 11413 / cdiv 11842 ℕcn 12193 2c2 12248 ℕ0cn0 12449 (,)cioo 13313 ⌊cfl 13759 seqcseq 13973 ↑cexp 14033 abscabs 15207 ⇝ cli 15457 Σcsu 15659 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-pm 8805 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-inf 9401 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-ioo 13317 df-ico 13319 df-fz 13476 df-fzo 13623 df-fl 13761 df-seq 13974 df-exp 14034 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-limsup 15444 df-clim 15461 df-rlim 15462 df-sum 15660 df-ulm 26293 |
| This theorem is referenced by: knoppcn2 36531 |
| Copyright terms: Public domain | W3C validator |