| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alephord2 | Structured version Visualization version GIF version | ||
| Description: Ordering property of the aleph function. Theorem 8A(a) of [Enderton] p. 213 and its converse. (Contributed by NM, 3-Nov-2003.) (Revised by Mario Carneiro, 9-Feb-2013.) |
| Ref | Expression |
|---|---|
| alephord2 | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∈ 𝐵 ↔ (ℵ‘𝐴) ∈ (ℵ‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alephord 9973 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∈ 𝐵 ↔ (ℵ‘𝐴) ≺ (ℵ‘𝐵))) | |
| 2 | alephon 9967 | . . . 4 ⊢ (ℵ‘𝐴) ∈ On | |
| 3 | alephon 9967 | . . . . 5 ⊢ (ℵ‘𝐵) ∈ On | |
| 4 | onenon 9849 | . . . . 5 ⊢ ((ℵ‘𝐵) ∈ On → (ℵ‘𝐵) ∈ dom card) | |
| 5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ (ℵ‘𝐵) ∈ dom card |
| 6 | cardsdomel 9874 | . . . 4 ⊢ (((ℵ‘𝐴) ∈ On ∧ (ℵ‘𝐵) ∈ dom card) → ((ℵ‘𝐴) ≺ (ℵ‘𝐵) ↔ (ℵ‘𝐴) ∈ (card‘(ℵ‘𝐵)))) | |
| 7 | 2, 5, 6 | mp2an 692 | . . 3 ⊢ ((ℵ‘𝐴) ≺ (ℵ‘𝐵) ↔ (ℵ‘𝐴) ∈ (card‘(ℵ‘𝐵))) |
| 8 | alephcard 9968 | . . . 4 ⊢ (card‘(ℵ‘𝐵)) = (ℵ‘𝐵) | |
| 9 | 8 | eleq2i 2825 | . . 3 ⊢ ((ℵ‘𝐴) ∈ (card‘(ℵ‘𝐵)) ↔ (ℵ‘𝐴) ∈ (ℵ‘𝐵)) |
| 10 | 7, 9 | bitri 275 | . 2 ⊢ ((ℵ‘𝐴) ≺ (ℵ‘𝐵) ↔ (ℵ‘𝐴) ∈ (ℵ‘𝐵)) |
| 11 | 1, 10 | bitrdi 287 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∈ 𝐵 ↔ (ℵ‘𝐴) ∈ (ℵ‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2113 class class class wbr 5093 dom cdm 5619 Oncon0 6311 ‘cfv 6486 ≺ csdm 8874 cardccrd 9835 ℵcale 9836 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9538 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-oi 9403 df-har 9450 df-card 9839 df-aleph 9840 |
| This theorem is referenced by: alephord2i 9975 alephord3 9976 alephiso 9996 alephval3 10008 alephiso2 43675 |
| Copyright terms: Public domain | W3C validator |