Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > alephord2 | Structured version Visualization version GIF version |
Description: Ordering property of the aleph function. Theorem 8A(a) of [Enderton] p. 213 and its converse. (Contributed by NM, 3-Nov-2003.) (Revised by Mario Carneiro, 9-Feb-2013.) |
Ref | Expression |
---|---|
alephord2 | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∈ 𝐵 ↔ (ℵ‘𝐴) ∈ (ℵ‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alephord 9713 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∈ 𝐵 ↔ (ℵ‘𝐴) ≺ (ℵ‘𝐵))) | |
2 | alephon 9707 | . . . 4 ⊢ (ℵ‘𝐴) ∈ On | |
3 | alephon 9707 | . . . . 5 ⊢ (ℵ‘𝐵) ∈ On | |
4 | onenon 9589 | . . . . 5 ⊢ ((ℵ‘𝐵) ∈ On → (ℵ‘𝐵) ∈ dom card) | |
5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ (ℵ‘𝐵) ∈ dom card |
6 | cardsdomel 9614 | . . . 4 ⊢ (((ℵ‘𝐴) ∈ On ∧ (ℵ‘𝐵) ∈ dom card) → ((ℵ‘𝐴) ≺ (ℵ‘𝐵) ↔ (ℵ‘𝐴) ∈ (card‘(ℵ‘𝐵)))) | |
7 | 2, 5, 6 | mp2an 692 | . . 3 ⊢ ((ℵ‘𝐴) ≺ (ℵ‘𝐵) ↔ (ℵ‘𝐴) ∈ (card‘(ℵ‘𝐵))) |
8 | alephcard 9708 | . . . 4 ⊢ (card‘(ℵ‘𝐵)) = (ℵ‘𝐵) | |
9 | 8 | eleq2i 2830 | . . 3 ⊢ ((ℵ‘𝐴) ∈ (card‘(ℵ‘𝐵)) ↔ (ℵ‘𝐴) ∈ (ℵ‘𝐵)) |
10 | 7, 9 | bitri 278 | . 2 ⊢ ((ℵ‘𝐴) ≺ (ℵ‘𝐵) ↔ (ℵ‘𝐴) ∈ (ℵ‘𝐵)) |
11 | 1, 10 | bitrdi 290 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∈ 𝐵 ↔ (ℵ‘𝐴) ∈ (ℵ‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∈ wcel 2111 class class class wbr 5067 dom cdm 5565 Oncon0 6230 ‘cfv 6397 ≺ csdm 8645 cardccrd 9575 ℵcale 9576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-rep 5193 ax-sep 5206 ax-nul 5213 ax-pow 5272 ax-pr 5336 ax-un 7541 ax-inf2 9280 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-ral 3067 df-rex 3068 df-reu 3069 df-rmo 3070 df-rab 3071 df-v 3422 df-sbc 3709 df-csb 3826 df-dif 3883 df-un 3885 df-in 3887 df-ss 3897 df-pss 3899 df-nul 4252 df-if 4454 df-pw 4529 df-sn 4556 df-pr 4558 df-tp 4560 df-op 4562 df-uni 4834 df-int 4874 df-iun 4920 df-br 5068 df-opab 5130 df-mpt 5150 df-tr 5176 df-id 5469 df-eprel 5474 df-po 5482 df-so 5483 df-fr 5523 df-se 5524 df-we 5525 df-xp 5571 df-rel 5572 df-cnv 5573 df-co 5574 df-dm 5575 df-rn 5576 df-res 5577 df-ima 5578 df-pred 6175 df-ord 6233 df-on 6234 df-lim 6235 df-suc 6236 df-iota 6355 df-fun 6399 df-fn 6400 df-f 6401 df-f1 6402 df-fo 6403 df-f1o 6404 df-fv 6405 df-isom 6406 df-riota 7188 df-om 7663 df-wrecs 8067 df-recs 8128 df-rdg 8166 df-er 8411 df-en 8647 df-dom 8648 df-sdom 8649 df-fin 8650 df-oi 9150 df-har 9197 df-card 9579 df-aleph 9580 |
This theorem is referenced by: alephord2i 9715 alephord3 9716 alephiso 9736 alephval3 9748 alephiso2 40869 |
Copyright terms: Public domain | W3C validator |