MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephord2 Structured version   Visualization version   GIF version

Theorem alephord2 9714
Description: Ordering property of the aleph function. Theorem 8A(a) of [Enderton] p. 213 and its converse. (Contributed by NM, 3-Nov-2003.) (Revised by Mario Carneiro, 9-Feb-2013.)
Assertion
Ref Expression
alephord2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ (ℵ‘𝐴) ∈ (ℵ‘𝐵)))

Proof of Theorem alephord2
StepHypRef Expression
1 alephord 9713 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ (ℵ‘𝐴) ≺ (ℵ‘𝐵)))
2 alephon 9707 . . . 4 (ℵ‘𝐴) ∈ On
3 alephon 9707 . . . . 5 (ℵ‘𝐵) ∈ On
4 onenon 9589 . . . . 5 ((ℵ‘𝐵) ∈ On → (ℵ‘𝐵) ∈ dom card)
53, 4ax-mp 5 . . . 4 (ℵ‘𝐵) ∈ dom card
6 cardsdomel 9614 . . . 4 (((ℵ‘𝐴) ∈ On ∧ (ℵ‘𝐵) ∈ dom card) → ((ℵ‘𝐴) ≺ (ℵ‘𝐵) ↔ (ℵ‘𝐴) ∈ (card‘(ℵ‘𝐵))))
72, 5, 6mp2an 692 . . 3 ((ℵ‘𝐴) ≺ (ℵ‘𝐵) ↔ (ℵ‘𝐴) ∈ (card‘(ℵ‘𝐵)))
8 alephcard 9708 . . . 4 (card‘(ℵ‘𝐵)) = (ℵ‘𝐵)
98eleq2i 2830 . . 3 ((ℵ‘𝐴) ∈ (card‘(ℵ‘𝐵)) ↔ (ℵ‘𝐴) ∈ (ℵ‘𝐵))
107, 9bitri 278 . 2 ((ℵ‘𝐴) ≺ (ℵ‘𝐵) ↔ (ℵ‘𝐴) ∈ (ℵ‘𝐵))
111, 10bitrdi 290 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ (ℵ‘𝐴) ∈ (ℵ‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wcel 2111   class class class wbr 5067  dom cdm 5565  Oncon0 6230  cfv 6397  csdm 8645  cardccrd 9575  cale 9576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5272  ax-pr 5336  ax-un 7541  ax-inf2 9280
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-ral 3067  df-rex 3068  df-reu 3069  df-rmo 3070  df-rab 3071  df-v 3422  df-sbc 3709  df-csb 3826  df-dif 3883  df-un 3885  df-in 3887  df-ss 3897  df-pss 3899  df-nul 4252  df-if 4454  df-pw 4529  df-sn 4556  df-pr 4558  df-tp 4560  df-op 4562  df-uni 4834  df-int 4874  df-iun 4920  df-br 5068  df-opab 5130  df-mpt 5150  df-tr 5176  df-id 5469  df-eprel 5474  df-po 5482  df-so 5483  df-fr 5523  df-se 5524  df-we 5525  df-xp 5571  df-rel 5572  df-cnv 5573  df-co 5574  df-dm 5575  df-rn 5576  df-res 5577  df-ima 5578  df-pred 6175  df-ord 6233  df-on 6234  df-lim 6235  df-suc 6236  df-iota 6355  df-fun 6399  df-fn 6400  df-f 6401  df-f1 6402  df-fo 6403  df-f1o 6404  df-fv 6405  df-isom 6406  df-riota 7188  df-om 7663  df-wrecs 8067  df-recs 8128  df-rdg 8166  df-er 8411  df-en 8647  df-dom 8648  df-sdom 8649  df-fin 8650  df-oi 9150  df-har 9197  df-card 9579  df-aleph 9580
This theorem is referenced by:  alephord2i  9715  alephord3  9716  alephiso  9736  alephval3  9748  alephiso2  40869
  Copyright terms: Public domain W3C validator