![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemeg46rvOLDN | Structured version Visualization version GIF version |
Description: Value of gs(r) when r is an atom under pq and s is any atom not under pq, using very compact hypotheses. TODO FIX COMMENT. (Contributed by NM, 3-Apr-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cdlemef46g.b | β’ π΅ = (BaseβπΎ) |
cdlemef46g.l | β’ β€ = (leβπΎ) |
cdlemef46g.j | β’ β¨ = (joinβπΎ) |
cdlemef46g.m | β’ β§ = (meetβπΎ) |
cdlemef46g.a | β’ π΄ = (AtomsβπΎ) |
cdlemef46g.h | β’ π» = (LHypβπΎ) |
cdlemef46g.u | β’ π = ((π β¨ π) β§ π) |
cdlemef46g.d | β’ π· = ((π‘ β¨ π) β§ (π β¨ ((π β¨ π‘) β§ π))) |
cdlemefs46g.e | β’ πΈ = ((π β¨ π) β§ (π· β¨ ((π β¨ π‘) β§ π))) |
cdlemef46g.f | β’ πΉ = (π₯ β π΅ β¦ if((π β π β§ Β¬ π₯ β€ π), (β©π§ β π΅ βπ β π΄ ((Β¬ π β€ π β§ (π β¨ (π₯ β§ π)) = π₯) β π§ = (if(π β€ (π β¨ π), (β©π¦ β π΅ βπ‘ β π΄ ((Β¬ π‘ β€ π β§ Β¬ π‘ β€ (π β¨ π)) β π¦ = πΈ)), β¦π / π‘β¦π·) β¨ (π₯ β§ π)))), π₯)) |
cdlemef46.v | β’ π = ((π β¨ π) β§ π) |
cdlemef46.n | β’ π = ((π£ β¨ π) β§ (π β¨ ((π β¨ π£) β§ π))) |
cdlemefs46.o | β’ π = ((π β¨ π) β§ (π β¨ ((π’ β¨ π£) β§ π))) |
cdlemef46.g | β’ πΊ = (π β π΅ β¦ if((π β π β§ Β¬ π β€ π), (β©π β π΅ βπ’ β π΄ ((Β¬ π’ β€ π β§ (π’ β¨ (π β§ π)) = π) β π = (if(π’ β€ (π β¨ π), (β©π β π΅ βπ£ β π΄ ((Β¬ π£ β€ π β§ Β¬ π£ β€ (π β¨ π)) β π = π)), β¦π’ / π£β¦π) β¨ (π β§ π)))), π)) |
Ref | Expression |
---|---|
cdlemeg46rvOLDN | β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β (πΊβπ ) = β¦π / π’β¦β¦π / π£β¦π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemef46g.b | . 2 β’ π΅ = (BaseβπΎ) | |
2 | cdlemef46g.l | . 2 β’ β€ = (leβπΎ) | |
3 | cdlemef46g.j | . 2 β’ β¨ = (joinβπΎ) | |
4 | cdlemef46g.m | . 2 β’ β§ = (meetβπΎ) | |
5 | cdlemef46g.a | . 2 β’ π΄ = (AtomsβπΎ) | |
6 | cdlemef46g.h | . 2 β’ π» = (LHypβπΎ) | |
7 | cdlemef46.v | . 2 β’ π = ((π β¨ π) β§ π) | |
8 | cdlemef46.n | . 2 β’ π = ((π£ β¨ π) β§ (π β¨ ((π β¨ π£) β§ π))) | |
9 | cdlemefs46.o | . 2 β’ π = ((π β¨ π) β§ (π β¨ ((π’ β¨ π£) β§ π))) | |
10 | cdlemef46.g | . 2 β’ πΊ = (π β π΅ β¦ if((π β π β§ Β¬ π β€ π), (β©π β π΅ βπ’ β π΄ ((Β¬ π’ β€ π β§ (π’ β¨ (π β§ π)) = π) β π = (if(π’ β€ (π β¨ π), (β©π β π΅ βπ£ β π΄ ((Β¬ π£ β€ π β§ Β¬ π£ β€ (π β¨ π)) β π = π)), β¦π’ / π£β¦π) β¨ (π β§ π)))), π)) | |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | cdlemeg47rv 40051 | 1 β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π))) β (πΊβπ ) = β¦π / π’β¦β¦π / π£β¦π) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 394 β§ w3a 1084 = wceq 1533 β wcel 2098 β wne 2930 βwral 3051 β¦csb 3890 ifcif 4529 class class class wbr 5148 β¦ cmpt 5231 βcfv 6547 β©crio 7372 (class class class)co 7417 Basecbs 17179 lecple 17239 joincjn 18302 meetcmee 18303 Atomscatm 38804 HLchlt 38891 LHypclh 39526 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 ax-riotaBAD 38494 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-riota 7373 df-ov 7420 df-oprab 7421 df-mpo 7422 df-1st 7992 df-2nd 7993 df-undef 8277 df-proset 18286 df-poset 18304 df-plt 18321 df-lub 18337 df-glb 18338 df-join 18339 df-meet 18340 df-p0 18416 df-p1 18417 df-lat 18423 df-clat 18490 df-oposet 38717 df-ol 38719 df-oml 38720 df-covers 38807 df-ats 38808 df-atl 38839 df-cvlat 38863 df-hlat 38892 df-llines 39040 df-lplanes 39041 df-lvols 39042 df-lines 39043 df-psubsp 39045 df-pmap 39046 df-padd 39338 df-lhyp 39530 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |