Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg31a Structured version   Visualization version   GIF version

Theorem cdlemg31a 37965
 Description: TODO: fix comment. (Contributed by NM, 29-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l = (le‘𝐾)
cdlemg12.j = (join‘𝐾)
cdlemg12.m = (meet‘𝐾)
cdlemg12.a 𝐴 = (Atoms‘𝐾)
cdlemg12.h 𝐻 = (LHyp‘𝐾)
cdlemg12.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg12b.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemg31.n 𝑁 = ((𝑃 𝑣) (𝑄 (𝑅𝐹)))
Assertion
Ref Expression
cdlemg31a (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑣𝐴𝐹𝑇)) → 𝑁 (𝑃 𝑣))

Proof of Theorem cdlemg31a
StepHypRef Expression
1 cdlemg31.n . 2 𝑁 = ((𝑃 𝑣) (𝑄 (𝑅𝐹)))
2 simp1l 1194 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑣𝐴𝐹𝑇)) → 𝐾 ∈ HL)
32hllatd 36632 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑣𝐴𝐹𝑇)) → 𝐾 ∈ Lat)
4 simp2l 1196 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑣𝐴𝐹𝑇)) → 𝑃𝐴)
5 simp3l 1198 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑣𝐴𝐹𝑇)) → 𝑣𝐴)
6 eqid 2824 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
7 cdlemg12.j . . . . 5 = (join‘𝐾)
8 cdlemg12.a . . . . 5 𝐴 = (Atoms‘𝐾)
96, 7, 8hlatjcl 36635 . . . 4 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑣𝐴) → (𝑃 𝑣) ∈ (Base‘𝐾))
102, 4, 5, 9syl3anc 1368 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑣𝐴𝐹𝑇)) → (𝑃 𝑣) ∈ (Base‘𝐾))
11 simp2r 1197 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑣𝐴𝐹𝑇)) → 𝑄𝐴)
126, 8atbase 36557 . . . . 5 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
1311, 12syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑣𝐴𝐹𝑇)) → 𝑄 ∈ (Base‘𝐾))
14 simp1 1133 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑣𝐴𝐹𝑇)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
15 simp3r 1199 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑣𝐴𝐹𝑇)) → 𝐹𝑇)
16 cdlemg12.h . . . . . 6 𝐻 = (LHyp‘𝐾)
17 cdlemg12.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
18 cdlemg12b.r . . . . . 6 𝑅 = ((trL‘𝐾)‘𝑊)
196, 16, 17, 18trlcl 37432 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) ∈ (Base‘𝐾))
2014, 15, 19syl2anc 587 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑣𝐴𝐹𝑇)) → (𝑅𝐹) ∈ (Base‘𝐾))
216, 7latjcl 17663 . . . 4 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ (𝑅𝐹) ∈ (Base‘𝐾)) → (𝑄 (𝑅𝐹)) ∈ (Base‘𝐾))
223, 13, 20, 21syl3anc 1368 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑣𝐴𝐹𝑇)) → (𝑄 (𝑅𝐹)) ∈ (Base‘𝐾))
23 cdlemg12.l . . . 4 = (le‘𝐾)
24 cdlemg12.m . . . 4 = (meet‘𝐾)
256, 23, 24latmle1 17688 . . 3 ((𝐾 ∈ Lat ∧ (𝑃 𝑣) ∈ (Base‘𝐾) ∧ (𝑄 (𝑅𝐹)) ∈ (Base‘𝐾)) → ((𝑃 𝑣) (𝑄 (𝑅𝐹))) (𝑃 𝑣))
263, 10, 22, 25syl3anc 1368 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑣𝐴𝐹𝑇)) → ((𝑃 𝑣) (𝑄 (𝑅𝐹))) (𝑃 𝑣))
271, 26eqbrtrid 5088 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑣𝐴𝐹𝑇)) → 𝑁 (𝑃 𝑣))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2115   class class class wbr 5053  ‘cfv 6345  (class class class)co 7151  Basecbs 16485  lecple 16574  joincjn 17556  meetcmee 17557  Latclat 17657  Atomscatm 36531  HLchlt 36618  LHypclh 37252  LTrncltrn 37369  trLctrl 37426 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7457 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-iun 4907  df-br 5054  df-opab 5116  df-mpt 5134  df-id 5448  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-iota 6304  df-fun 6347  df-fn 6348  df-f 6349  df-f1 6350  df-fo 6351  df-f1o 6352  df-fv 6353  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-map 8406  df-proset 17540  df-poset 17558  df-plt 17570  df-lub 17586  df-glb 17587  df-join 17588  df-meet 17589  df-p0 17651  df-p1 17652  df-lat 17658  df-oposet 36444  df-ol 36446  df-oml 36447  df-covers 36534  df-ats 36535  df-atl 36566  df-cvlat 36590  df-hlat 36619  df-lhyp 37256  df-laut 37257  df-ldil 37372  df-ltrn 37373  df-trl 37427 This theorem is referenced by:  cdlemg31c  37967  cdlemg33b0  37969  cdlemg33a  37974
 Copyright terms: Public domain W3C validator