| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemg31a | Structured version Visualization version GIF version | ||
| Description: TODO: fix comment. (Contributed by NM, 29-May-2013.) |
| Ref | Expression |
|---|---|
| cdlemg12.l | ⊢ ≤ = (le‘𝐾) |
| cdlemg12.j | ⊢ ∨ = (join‘𝐾) |
| cdlemg12.m | ⊢ ∧ = (meet‘𝐾) |
| cdlemg12.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| cdlemg12.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| cdlemg12.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| cdlemg12b.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
| cdlemg31.n | ⊢ 𝑁 = ((𝑃 ∨ 𝑣) ∧ (𝑄 ∨ (𝑅‘𝐹))) |
| Ref | Expression |
|---|---|
| cdlemg31a | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑣 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇)) → 𝑁 ≤ (𝑃 ∨ 𝑣)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cdlemg31.n | . 2 ⊢ 𝑁 = ((𝑃 ∨ 𝑣) ∧ (𝑄 ∨ (𝑅‘𝐹))) | |
| 2 | simp1l 1198 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑣 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇)) → 𝐾 ∈ HL) | |
| 3 | 2 | hllatd 39382 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑣 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇)) → 𝐾 ∈ Lat) |
| 4 | simp2l 1200 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑣 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇)) → 𝑃 ∈ 𝐴) | |
| 5 | simp3l 1202 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑣 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇)) → 𝑣 ∈ 𝐴) | |
| 6 | eqid 2735 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 7 | cdlemg12.j | . . . . 5 ⊢ ∨ = (join‘𝐾) | |
| 8 | cdlemg12.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 9 | 6, 7, 8 | hlatjcl 39385 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) → (𝑃 ∨ 𝑣) ∈ (Base‘𝐾)) |
| 10 | 2, 4, 5, 9 | syl3anc 1373 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑣 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇)) → (𝑃 ∨ 𝑣) ∈ (Base‘𝐾)) |
| 11 | simp2r 1201 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑣 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇)) → 𝑄 ∈ 𝐴) | |
| 12 | 6, 8 | atbase 39307 | . . . . 5 ⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
| 13 | 11, 12 | syl 17 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑣 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇)) → 𝑄 ∈ (Base‘𝐾)) |
| 14 | simp1 1136 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑣 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 15 | simp3r 1203 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑣 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇)) → 𝐹 ∈ 𝑇) | |
| 16 | cdlemg12.h | . . . . . 6 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 17 | cdlemg12.t | . . . . . 6 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 18 | cdlemg12b.r | . . . . . 6 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
| 19 | 6, 16, 17, 18 | trlcl 40183 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘𝐹) ∈ (Base‘𝐾)) |
| 20 | 14, 15, 19 | syl2anc 584 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑣 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇)) → (𝑅‘𝐹) ∈ (Base‘𝐾)) |
| 21 | 6, 7 | latjcl 18449 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ (𝑅‘𝐹) ∈ (Base‘𝐾)) → (𝑄 ∨ (𝑅‘𝐹)) ∈ (Base‘𝐾)) |
| 22 | 3, 13, 20, 21 | syl3anc 1373 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑣 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇)) → (𝑄 ∨ (𝑅‘𝐹)) ∈ (Base‘𝐾)) |
| 23 | cdlemg12.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 24 | cdlemg12.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
| 25 | 6, 23, 24 | latmle1 18474 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑣) ∈ (Base‘𝐾) ∧ (𝑄 ∨ (𝑅‘𝐹)) ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑣) ∧ (𝑄 ∨ (𝑅‘𝐹))) ≤ (𝑃 ∨ 𝑣)) |
| 26 | 3, 10, 22, 25 | syl3anc 1373 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑣 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇)) → ((𝑃 ∨ 𝑣) ∧ (𝑄 ∨ (𝑅‘𝐹))) ≤ (𝑃 ∨ 𝑣)) |
| 27 | 1, 26 | eqbrtrid 5154 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑣 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇)) → 𝑁 ≤ (𝑃 ∨ 𝑣)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 class class class wbr 5119 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 lecple 17278 joincjn 18323 meetcmee 18324 Latclat 18441 Atomscatm 39281 HLchlt 39368 LHypclh 40003 LTrncltrn 40120 trLctrl 40177 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-map 8842 df-proset 18306 df-poset 18325 df-plt 18340 df-lub 18356 df-glb 18357 df-join 18358 df-meet 18359 df-p0 18435 df-p1 18436 df-lat 18442 df-oposet 39194 df-ol 39196 df-oml 39197 df-covers 39284 df-ats 39285 df-atl 39316 df-cvlat 39340 df-hlat 39369 df-lhyp 40007 df-laut 40008 df-ldil 40123 df-ltrn 40124 df-trl 40178 |
| This theorem is referenced by: cdlemg31c 40718 cdlemg33b0 40720 cdlemg33a 40725 |
| Copyright terms: Public domain | W3C validator |