MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climshft2 Structured version   Visualization version   GIF version

Theorem climshft2 15291
Description: A shifted function converges iff the original function converges. (Contributed by Paul Chapman, 21-Nov-2007.) (Revised by Mario Carneiro, 6-Feb-2014.)
Hypotheses
Ref Expression
climshft2.1 𝑍 = (ℤ𝑀)
climshft2.2 (𝜑𝑀 ∈ ℤ)
climshft2.3 (𝜑𝐾 ∈ ℤ)
climshft2.5 (𝜑𝐹𝑊)
climshft2.6 (𝜑𝐺𝑋)
climshft2.7 ((𝜑𝑘𝑍) → (𝐺‘(𝑘 + 𝐾)) = (𝐹𝑘))
Assertion
Ref Expression
climshft2 (𝜑 → (𝐹𝐴𝐺𝐴))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑘,𝐾   𝑘,𝑀   𝜑,𝑘   𝑘,𝑍   𝐴,𝑘
Allowed substitution hints:   𝑊(𝑘)   𝑋(𝑘)

Proof of Theorem climshft2
StepHypRef Expression
1 climshft2.1 . . 3 𝑍 = (ℤ𝑀)
2 ovexd 7310 . . 3 (𝜑 → (𝐺 shift -𝐾) ∈ V)
3 climshft2.5 . . 3 (𝜑𝐹𝑊)
4 climshft2.2 . . 3 (𝜑𝑀 ∈ ℤ)
5 climshft2.3 . . . . . . 7 (𝜑𝐾 ∈ ℤ)
65zcnd 12427 . . . . . 6 (𝜑𝐾 ∈ ℂ)
7 eluzelz 12592 . . . . . . . 8 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
87, 1eleq2s 2857 . . . . . . 7 (𝑘𝑍𝑘 ∈ ℤ)
98zcnd 12427 . . . . . 6 (𝑘𝑍𝑘 ∈ ℂ)
10 fvex 6787 . . . . . . 7 ( I ‘𝐺) ∈ V
1110shftval4 14788 . . . . . 6 ((𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((( I ‘𝐺) shift -𝐾)‘𝑘) = (( I ‘𝐺)‘(𝐾 + 𝑘)))
126, 9, 11syl2an 596 . . . . 5 ((𝜑𝑘𝑍) → ((( I ‘𝐺) shift -𝐾)‘𝑘) = (( I ‘𝐺)‘(𝐾 + 𝑘)))
13 climshft2.6 . . . . . . . . 9 (𝜑𝐺𝑋)
14 fvi 6844 . . . . . . . . 9 (𝐺𝑋 → ( I ‘𝐺) = 𝐺)
1513, 14syl 17 . . . . . . . 8 (𝜑 → ( I ‘𝐺) = 𝐺)
1615adantr 481 . . . . . . 7 ((𝜑𝑘𝑍) → ( I ‘𝐺) = 𝐺)
1716oveq1d 7290 . . . . . 6 ((𝜑𝑘𝑍) → (( I ‘𝐺) shift -𝐾) = (𝐺 shift -𝐾))
1817fveq1d 6776 . . . . 5 ((𝜑𝑘𝑍) → ((( I ‘𝐺) shift -𝐾)‘𝑘) = ((𝐺 shift -𝐾)‘𝑘))
19 addcom 11161 . . . . . . 7 ((𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐾 + 𝑘) = (𝑘 + 𝐾))
206, 9, 19syl2an 596 . . . . . 6 ((𝜑𝑘𝑍) → (𝐾 + 𝑘) = (𝑘 + 𝐾))
2116, 20fveq12d 6781 . . . . 5 ((𝜑𝑘𝑍) → (( I ‘𝐺)‘(𝐾 + 𝑘)) = (𝐺‘(𝑘 + 𝐾)))
2212, 18, 213eqtr3d 2786 . . . 4 ((𝜑𝑘𝑍) → ((𝐺 shift -𝐾)‘𝑘) = (𝐺‘(𝑘 + 𝐾)))
23 climshft2.7 . . . 4 ((𝜑𝑘𝑍) → (𝐺‘(𝑘 + 𝐾)) = (𝐹𝑘))
2422, 23eqtrd 2778 . . 3 ((𝜑𝑘𝑍) → ((𝐺 shift -𝐾)‘𝑘) = (𝐹𝑘))
251, 2, 3, 4, 24climeq 15276 . 2 (𝜑 → ((𝐺 shift -𝐾) ⇝ 𝐴𝐹𝐴))
265znegcld 12428 . . 3 (𝜑 → -𝐾 ∈ ℤ)
27 climshft 15285 . . 3 ((-𝐾 ∈ ℤ ∧ 𝐺𝑋) → ((𝐺 shift -𝐾) ⇝ 𝐴𝐺𝐴))
2826, 13, 27syl2anc 584 . 2 (𝜑 → ((𝐺 shift -𝐾) ⇝ 𝐴𝐺𝐴))
2925, 28bitr3d 280 1 (𝜑 → (𝐹𝐴𝐺𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  Vcvv 3432   class class class wbr 5074   I cid 5488  cfv 6433  (class class class)co 7275  cc 10869   + caddc 10874  -cneg 11206  cz 12319  cuz 12582   shift cshi 14777  cli 15193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-shft 14778  df-clim 15197
This theorem is referenced by:  isercoll2  15380  divcnvshft  15567  divcnvlin  33698
  Copyright terms: Public domain W3C validator