MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climshft2 Structured version   Visualization version   GIF version

Theorem climshft2 15598
Description: A shifted function converges iff the original function converges. (Contributed by Paul Chapman, 21-Nov-2007.) (Revised by Mario Carneiro, 6-Feb-2014.)
Hypotheses
Ref Expression
climshft2.1 𝑍 = (ℤ𝑀)
climshft2.2 (𝜑𝑀 ∈ ℤ)
climshft2.3 (𝜑𝐾 ∈ ℤ)
climshft2.5 (𝜑𝐹𝑊)
climshft2.6 (𝜑𝐺𝑋)
climshft2.7 ((𝜑𝑘𝑍) → (𝐺‘(𝑘 + 𝐾)) = (𝐹𝑘))
Assertion
Ref Expression
climshft2 (𝜑 → (𝐹𝐴𝐺𝐴))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑘,𝐾   𝑘,𝑀   𝜑,𝑘   𝑘,𝑍   𝐴,𝑘
Allowed substitution hints:   𝑊(𝑘)   𝑋(𝑘)

Proof of Theorem climshft2
StepHypRef Expression
1 climshft2.1 . . 3 𝑍 = (ℤ𝑀)
2 ovexd 7440 . . 3 (𝜑 → (𝐺 shift -𝐾) ∈ V)
3 climshft2.5 . . 3 (𝜑𝐹𝑊)
4 climshft2.2 . . 3 (𝜑𝑀 ∈ ℤ)
5 climshft2.3 . . . . . . 7 (𝜑𝐾 ∈ ℤ)
65zcnd 12698 . . . . . 6 (𝜑𝐾 ∈ ℂ)
7 eluzelz 12862 . . . . . . . 8 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
87, 1eleq2s 2852 . . . . . . 7 (𝑘𝑍𝑘 ∈ ℤ)
98zcnd 12698 . . . . . 6 (𝑘𝑍𝑘 ∈ ℂ)
10 fvex 6889 . . . . . . 7 ( I ‘𝐺) ∈ V
1110shftval4 15096 . . . . . 6 ((𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((( I ‘𝐺) shift -𝐾)‘𝑘) = (( I ‘𝐺)‘(𝐾 + 𝑘)))
126, 9, 11syl2an 596 . . . . 5 ((𝜑𝑘𝑍) → ((( I ‘𝐺) shift -𝐾)‘𝑘) = (( I ‘𝐺)‘(𝐾 + 𝑘)))
13 climshft2.6 . . . . . . . . 9 (𝜑𝐺𝑋)
14 fvi 6955 . . . . . . . . 9 (𝐺𝑋 → ( I ‘𝐺) = 𝐺)
1513, 14syl 17 . . . . . . . 8 (𝜑 → ( I ‘𝐺) = 𝐺)
1615adantr 480 . . . . . . 7 ((𝜑𝑘𝑍) → ( I ‘𝐺) = 𝐺)
1716oveq1d 7420 . . . . . 6 ((𝜑𝑘𝑍) → (( I ‘𝐺) shift -𝐾) = (𝐺 shift -𝐾))
1817fveq1d 6878 . . . . 5 ((𝜑𝑘𝑍) → ((( I ‘𝐺) shift -𝐾)‘𝑘) = ((𝐺 shift -𝐾)‘𝑘))
19 addcom 11421 . . . . . . 7 ((𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐾 + 𝑘) = (𝑘 + 𝐾))
206, 9, 19syl2an 596 . . . . . 6 ((𝜑𝑘𝑍) → (𝐾 + 𝑘) = (𝑘 + 𝐾))
2116, 20fveq12d 6883 . . . . 5 ((𝜑𝑘𝑍) → (( I ‘𝐺)‘(𝐾 + 𝑘)) = (𝐺‘(𝑘 + 𝐾)))
2212, 18, 213eqtr3d 2778 . . . 4 ((𝜑𝑘𝑍) → ((𝐺 shift -𝐾)‘𝑘) = (𝐺‘(𝑘 + 𝐾)))
23 climshft2.7 . . . 4 ((𝜑𝑘𝑍) → (𝐺‘(𝑘 + 𝐾)) = (𝐹𝑘))
2422, 23eqtrd 2770 . . 3 ((𝜑𝑘𝑍) → ((𝐺 shift -𝐾)‘𝑘) = (𝐹𝑘))
251, 2, 3, 4, 24climeq 15583 . 2 (𝜑 → ((𝐺 shift -𝐾) ⇝ 𝐴𝐹𝐴))
265znegcld 12699 . . 3 (𝜑 → -𝐾 ∈ ℤ)
27 climshft 15592 . . 3 ((-𝐾 ∈ ℤ ∧ 𝐺𝑋) → ((𝐺 shift -𝐾) ⇝ 𝐴𝐺𝐴))
2826, 13, 27syl2anc 584 . 2 (𝜑 → ((𝐺 shift -𝐾) ⇝ 𝐴𝐺𝐴))
2925, 28bitr3d 281 1 (𝜑 → (𝐹𝐴𝐺𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  Vcvv 3459   class class class wbr 5119   I cid 5547  cfv 6531  (class class class)co 7405  cc 11127   + caddc 11132  -cneg 11467  cz 12588  cuz 12852   shift cshi 15085  cli 15500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-n0 12502  df-z 12589  df-uz 12853  df-shft 15086  df-clim 15504
This theorem is referenced by:  isercoll2  15685  divcnvshft  15871  divcnvlin  35750
  Copyright terms: Public domain W3C validator