Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > climshft2 | Structured version Visualization version GIF version |
Description: A shifted function converges iff the original function converges. (Contributed by Paul Chapman, 21-Nov-2007.) (Revised by Mario Carneiro, 6-Feb-2014.) |
Ref | Expression |
---|---|
climshft2.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climshft2.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climshft2.3 | ⊢ (𝜑 → 𝐾 ∈ ℤ) |
climshft2.5 | ⊢ (𝜑 → 𝐹 ∈ 𝑊) |
climshft2.6 | ⊢ (𝜑 → 𝐺 ∈ 𝑋) |
climshft2.7 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘(𝑘 + 𝐾)) = (𝐹‘𝑘)) |
Ref | Expression |
---|---|
climshft2 | ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climshft2.1 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | ovexd 7310 | . . 3 ⊢ (𝜑 → (𝐺 shift -𝐾) ∈ V) | |
3 | climshft2.5 | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑊) | |
4 | climshft2.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
5 | climshft2.3 | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ ℤ) | |
6 | 5 | zcnd 12427 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ ℂ) |
7 | eluzelz 12592 | . . . . . . . 8 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → 𝑘 ∈ ℤ) | |
8 | 7, 1 | eleq2s 2857 | . . . . . . 7 ⊢ (𝑘 ∈ 𝑍 → 𝑘 ∈ ℤ) |
9 | 8 | zcnd 12427 | . . . . . 6 ⊢ (𝑘 ∈ 𝑍 → 𝑘 ∈ ℂ) |
10 | fvex 6787 | . . . . . . 7 ⊢ ( I ‘𝐺) ∈ V | |
11 | 10 | shftval4 14788 | . . . . . 6 ⊢ ((𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((( I ‘𝐺) shift -𝐾)‘𝑘) = (( I ‘𝐺)‘(𝐾 + 𝑘))) |
12 | 6, 9, 11 | syl2an 596 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((( I ‘𝐺) shift -𝐾)‘𝑘) = (( I ‘𝐺)‘(𝐾 + 𝑘))) |
13 | climshft2.6 | . . . . . . . . 9 ⊢ (𝜑 → 𝐺 ∈ 𝑋) | |
14 | fvi 6844 | . . . . . . . . 9 ⊢ (𝐺 ∈ 𝑋 → ( I ‘𝐺) = 𝐺) | |
15 | 13, 14 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → ( I ‘𝐺) = 𝐺) |
16 | 15 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ( I ‘𝐺) = 𝐺) |
17 | 16 | oveq1d 7290 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (( I ‘𝐺) shift -𝐾) = (𝐺 shift -𝐾)) |
18 | 17 | fveq1d 6776 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((( I ‘𝐺) shift -𝐾)‘𝑘) = ((𝐺 shift -𝐾)‘𝑘)) |
19 | addcom 11161 | . . . . . . 7 ⊢ ((𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐾 + 𝑘) = (𝑘 + 𝐾)) | |
20 | 6, 9, 19 | syl2an 596 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐾 + 𝑘) = (𝑘 + 𝐾)) |
21 | 16, 20 | fveq12d 6781 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (( I ‘𝐺)‘(𝐾 + 𝑘)) = (𝐺‘(𝑘 + 𝐾))) |
22 | 12, 18, 21 | 3eqtr3d 2786 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐺 shift -𝐾)‘𝑘) = (𝐺‘(𝑘 + 𝐾))) |
23 | climshft2.7 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘(𝑘 + 𝐾)) = (𝐹‘𝑘)) | |
24 | 22, 23 | eqtrd 2778 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐺 shift -𝐾)‘𝑘) = (𝐹‘𝑘)) |
25 | 1, 2, 3, 4, 24 | climeq 15276 | . 2 ⊢ (𝜑 → ((𝐺 shift -𝐾) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴)) |
26 | 5 | znegcld 12428 | . . 3 ⊢ (𝜑 → -𝐾 ∈ ℤ) |
27 | climshft 15285 | . . 3 ⊢ ((-𝐾 ∈ ℤ ∧ 𝐺 ∈ 𝑋) → ((𝐺 shift -𝐾) ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) | |
28 | 26, 13, 27 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝐺 shift -𝐾) ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) |
29 | 25, 28 | bitr3d 280 | 1 ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 class class class wbr 5074 I cid 5488 ‘cfv 6433 (class class class)co 7275 ℂcc 10869 + caddc 10874 -cneg 11206 ℤcz 12319 ℤ≥cuz 12582 shift cshi 14777 ⇝ cli 15193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 df-shft 14778 df-clim 15197 |
This theorem is referenced by: isercoll2 15380 divcnvshft 15567 divcnvlin 33698 |
Copyright terms: Public domain | W3C validator |