| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > climshft2 | Structured version Visualization version GIF version | ||
| Description: A shifted function converges iff the original function converges. (Contributed by Paul Chapman, 21-Nov-2007.) (Revised by Mario Carneiro, 6-Feb-2014.) |
| Ref | Expression |
|---|---|
| climshft2.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| climshft2.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| climshft2.3 | ⊢ (𝜑 → 𝐾 ∈ ℤ) |
| climshft2.5 | ⊢ (𝜑 → 𝐹 ∈ 𝑊) |
| climshft2.6 | ⊢ (𝜑 → 𝐺 ∈ 𝑋) |
| climshft2.7 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘(𝑘 + 𝐾)) = (𝐹‘𝑘)) |
| Ref | Expression |
|---|---|
| climshft2 | ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climshft2.1 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | ovexd 7422 | . . 3 ⊢ (𝜑 → (𝐺 shift -𝐾) ∈ V) | |
| 3 | climshft2.5 | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑊) | |
| 4 | climshft2.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 5 | climshft2.3 | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ ℤ) | |
| 6 | 5 | zcnd 12639 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ ℂ) |
| 7 | eluzelz 12803 | . . . . . . . 8 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → 𝑘 ∈ ℤ) | |
| 8 | 7, 1 | eleq2s 2846 | . . . . . . 7 ⊢ (𝑘 ∈ 𝑍 → 𝑘 ∈ ℤ) |
| 9 | 8 | zcnd 12639 | . . . . . 6 ⊢ (𝑘 ∈ 𝑍 → 𝑘 ∈ ℂ) |
| 10 | fvex 6871 | . . . . . . 7 ⊢ ( I ‘𝐺) ∈ V | |
| 11 | 10 | shftval4 15043 | . . . . . 6 ⊢ ((𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((( I ‘𝐺) shift -𝐾)‘𝑘) = (( I ‘𝐺)‘(𝐾 + 𝑘))) |
| 12 | 6, 9, 11 | syl2an 596 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((( I ‘𝐺) shift -𝐾)‘𝑘) = (( I ‘𝐺)‘(𝐾 + 𝑘))) |
| 13 | climshft2.6 | . . . . . . . . 9 ⊢ (𝜑 → 𝐺 ∈ 𝑋) | |
| 14 | fvi 6937 | . . . . . . . . 9 ⊢ (𝐺 ∈ 𝑋 → ( I ‘𝐺) = 𝐺) | |
| 15 | 13, 14 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → ( I ‘𝐺) = 𝐺) |
| 16 | 15 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ( I ‘𝐺) = 𝐺) |
| 17 | 16 | oveq1d 7402 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (( I ‘𝐺) shift -𝐾) = (𝐺 shift -𝐾)) |
| 18 | 17 | fveq1d 6860 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((( I ‘𝐺) shift -𝐾)‘𝑘) = ((𝐺 shift -𝐾)‘𝑘)) |
| 19 | addcom 11360 | . . . . . . 7 ⊢ ((𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐾 + 𝑘) = (𝑘 + 𝐾)) | |
| 20 | 6, 9, 19 | syl2an 596 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐾 + 𝑘) = (𝑘 + 𝐾)) |
| 21 | 16, 20 | fveq12d 6865 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (( I ‘𝐺)‘(𝐾 + 𝑘)) = (𝐺‘(𝑘 + 𝐾))) |
| 22 | 12, 18, 21 | 3eqtr3d 2772 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐺 shift -𝐾)‘𝑘) = (𝐺‘(𝑘 + 𝐾))) |
| 23 | climshft2.7 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘(𝑘 + 𝐾)) = (𝐹‘𝑘)) | |
| 24 | 22, 23 | eqtrd 2764 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐺 shift -𝐾)‘𝑘) = (𝐹‘𝑘)) |
| 25 | 1, 2, 3, 4, 24 | climeq 15533 | . 2 ⊢ (𝜑 → ((𝐺 shift -𝐾) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴)) |
| 26 | 5 | znegcld 12640 | . . 3 ⊢ (𝜑 → -𝐾 ∈ ℤ) |
| 27 | climshft 15542 | . . 3 ⊢ ((-𝐾 ∈ ℤ ∧ 𝐺 ∈ 𝑋) → ((𝐺 shift -𝐾) ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) | |
| 28 | 26, 13, 27 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝐺 shift -𝐾) ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) |
| 29 | 25, 28 | bitr3d 281 | 1 ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 class class class wbr 5107 I cid 5532 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 + caddc 11071 -cneg 11406 ℤcz 12529 ℤ≥cuz 12793 shift cshi 15032 ⇝ cli 15450 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-shft 15033 df-clim 15454 |
| This theorem is referenced by: isercoll2 15635 divcnvshft 15821 divcnvlin 35720 |
| Copyright terms: Public domain | W3C validator |