| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > climshft2 | Structured version Visualization version GIF version | ||
| Description: A shifted function converges iff the original function converges. (Contributed by Paul Chapman, 21-Nov-2007.) (Revised by Mario Carneiro, 6-Feb-2014.) |
| Ref | Expression |
|---|---|
| climshft2.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| climshft2.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| climshft2.3 | ⊢ (𝜑 → 𝐾 ∈ ℤ) |
| climshft2.5 | ⊢ (𝜑 → 𝐹 ∈ 𝑊) |
| climshft2.6 | ⊢ (𝜑 → 𝐺 ∈ 𝑋) |
| climshft2.7 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘(𝑘 + 𝐾)) = (𝐹‘𝑘)) |
| Ref | Expression |
|---|---|
| climshft2 | ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climshft2.1 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | ovexd 7388 | . . 3 ⊢ (𝜑 → (𝐺 shift -𝐾) ∈ V) | |
| 3 | climshft2.5 | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑊) | |
| 4 | climshft2.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 5 | climshft2.3 | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ ℤ) | |
| 6 | 5 | zcnd 12599 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ ℂ) |
| 7 | eluzelz 12763 | . . . . . . . 8 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → 𝑘 ∈ ℤ) | |
| 8 | 7, 1 | eleq2s 2846 | . . . . . . 7 ⊢ (𝑘 ∈ 𝑍 → 𝑘 ∈ ℤ) |
| 9 | 8 | zcnd 12599 | . . . . . 6 ⊢ (𝑘 ∈ 𝑍 → 𝑘 ∈ ℂ) |
| 10 | fvex 6839 | . . . . . . 7 ⊢ ( I ‘𝐺) ∈ V | |
| 11 | 10 | shftval4 15002 | . . . . . 6 ⊢ ((𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((( I ‘𝐺) shift -𝐾)‘𝑘) = (( I ‘𝐺)‘(𝐾 + 𝑘))) |
| 12 | 6, 9, 11 | syl2an 596 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((( I ‘𝐺) shift -𝐾)‘𝑘) = (( I ‘𝐺)‘(𝐾 + 𝑘))) |
| 13 | climshft2.6 | . . . . . . . . 9 ⊢ (𝜑 → 𝐺 ∈ 𝑋) | |
| 14 | fvi 6903 | . . . . . . . . 9 ⊢ (𝐺 ∈ 𝑋 → ( I ‘𝐺) = 𝐺) | |
| 15 | 13, 14 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → ( I ‘𝐺) = 𝐺) |
| 16 | 15 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ( I ‘𝐺) = 𝐺) |
| 17 | 16 | oveq1d 7368 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (( I ‘𝐺) shift -𝐾) = (𝐺 shift -𝐾)) |
| 18 | 17 | fveq1d 6828 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((( I ‘𝐺) shift -𝐾)‘𝑘) = ((𝐺 shift -𝐾)‘𝑘)) |
| 19 | addcom 11320 | . . . . . . 7 ⊢ ((𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐾 + 𝑘) = (𝑘 + 𝐾)) | |
| 20 | 6, 9, 19 | syl2an 596 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐾 + 𝑘) = (𝑘 + 𝐾)) |
| 21 | 16, 20 | fveq12d 6833 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (( I ‘𝐺)‘(𝐾 + 𝑘)) = (𝐺‘(𝑘 + 𝐾))) |
| 22 | 12, 18, 21 | 3eqtr3d 2772 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐺 shift -𝐾)‘𝑘) = (𝐺‘(𝑘 + 𝐾))) |
| 23 | climshft2.7 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘(𝑘 + 𝐾)) = (𝐹‘𝑘)) | |
| 24 | 22, 23 | eqtrd 2764 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐺 shift -𝐾)‘𝑘) = (𝐹‘𝑘)) |
| 25 | 1, 2, 3, 4, 24 | climeq 15492 | . 2 ⊢ (𝜑 → ((𝐺 shift -𝐾) ⇝ 𝐴 ↔ 𝐹 ⇝ 𝐴)) |
| 26 | 5 | znegcld 12600 | . . 3 ⊢ (𝜑 → -𝐾 ∈ ℤ) |
| 27 | climshft 15501 | . . 3 ⊢ ((-𝐾 ∈ ℤ ∧ 𝐺 ∈ 𝑋) → ((𝐺 shift -𝐾) ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) | |
| 28 | 26, 13, 27 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝐺 shift -𝐾) ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) |
| 29 | 25, 28 | bitr3d 281 | 1 ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3438 class class class wbr 5095 I cid 5517 ‘cfv 6486 (class class class)co 7353 ℂcc 11026 + caddc 11031 -cneg 11366 ℤcz 12489 ℤ≥cuz 12753 shift cshi 14991 ⇝ cli 15409 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-n0 12403 df-z 12490 df-uz 12754 df-shft 14992 df-clim 15413 |
| This theorem is referenced by: isercoll2 15594 divcnvshft 15780 divcnvlin 35708 |
| Copyright terms: Public domain | W3C validator |