| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > climexp | Structured version Visualization version GIF version | ||
| Description: The limit of natural powers, is the natural power of the limit. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| Ref | Expression |
|---|---|
| climexp.1 | ⊢ Ⅎ𝑘𝜑 |
| climexp.2 | ⊢ Ⅎ𝑘𝐹 |
| climexp.3 | ⊢ Ⅎ𝑘𝐻 |
| climexp.4 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| climexp.5 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| climexp.6 | ⊢ (𝜑 → 𝐹:𝑍⟶ℂ) |
| climexp.7 | ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
| climexp.8 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| climexp.9 | ⊢ (𝜑 → 𝐻 ∈ 𝑉) |
| climexp.10 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘)↑𝑁)) |
| Ref | Expression |
|---|---|
| climexp | ⊢ (𝜑 → 𝐻 ⇝ (𝐴↑𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climexp.4 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | climexp.5 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 3 | climexp.8 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 4 | eqid 2733 | . . . . . . 7 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 5 | 4 | expcn 24791 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))) |
| 6 | 3, 5 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))) |
| 7 | 4 | cncfcn1 24832 | . . . . 5 ⊢ (ℂ–cn→ℂ) = ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)) |
| 8 | 6, 7 | eleqtrrdi 2844 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∈ (ℂ–cn→ℂ)) |
| 9 | climexp.6 | . . . 4 ⊢ (𝜑 → 𝐹:𝑍⟶ℂ) | |
| 10 | climexp.7 | . . . 4 ⊢ (𝜑 → 𝐹 ⇝ 𝐴) | |
| 11 | climcl 15408 | . . . . 5 ⊢ (𝐹 ⇝ 𝐴 → 𝐴 ∈ ℂ) | |
| 12 | 10, 11 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 13 | 1, 2, 8, 9, 10, 12 | climcncf 24821 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∘ 𝐹) ⇝ ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁))‘𝐴)) |
| 14 | eqidd 2734 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) = (𝑥 ∈ ℂ ↦ (𝑥↑𝑁))) | |
| 15 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝑥 = 𝐴) | |
| 16 | 15 | oveq1d 7367 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝑥↑𝑁) = (𝐴↑𝑁)) |
| 17 | 12, 3 | expcld 14055 | . . . 4 ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℂ) |
| 18 | 14, 16, 12, 17 | fvmptd 6942 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁))‘𝐴) = (𝐴↑𝑁)) |
| 19 | 13, 18 | breqtrd 5119 | . 2 ⊢ (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∘ 𝐹) ⇝ (𝐴↑𝑁)) |
| 20 | climexp.9 | . . 3 ⊢ (𝜑 → 𝐻 ∈ 𝑉) | |
| 21 | cnex 11094 | . . . . 5 ⊢ ℂ ∈ V | |
| 22 | 21 | mptex 7163 | . . . 4 ⊢ (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∈ V |
| 23 | 1 | fvexi 6842 | . . . . 5 ⊢ 𝑍 ∈ V |
| 24 | fex 7166 | . . . . 5 ⊢ ((𝐹:𝑍⟶ℂ ∧ 𝑍 ∈ V) → 𝐹 ∈ V) | |
| 25 | 9, 23, 24 | sylancl 586 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ V) |
| 26 | coexg 7865 | . . . 4 ⊢ (((𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∈ V ∧ 𝐹 ∈ V) → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∘ 𝐹) ∈ V) | |
| 27 | 22, 25, 26 | sylancr 587 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∘ 𝐹) ∈ V) |
| 28 | eqidd 2734 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) = (𝑥 ∈ ℂ ↦ (𝑥↑𝑁))) | |
| 29 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑥 = (𝐹‘𝑗)) → 𝑥 = (𝐹‘𝑗)) | |
| 30 | 29 | oveq1d 7367 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑥 = (𝐹‘𝑗)) → (𝑥↑𝑁) = ((𝐹‘𝑗)↑𝑁)) |
| 31 | 9 | ffvelcdmda 7023 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) ∈ ℂ) |
| 32 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑁 ∈ ℕ0) |
| 33 | 31, 32 | expcld 14055 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝐹‘𝑗)↑𝑁) ∈ ℂ) |
| 34 | 28, 30, 31, 33 | fvmptd 6942 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁))‘(𝐹‘𝑗)) = ((𝐹‘𝑗)↑𝑁)) |
| 35 | fvco3 6927 | . . . . 5 ⊢ ((𝐹:𝑍⟶ℂ ∧ 𝑗 ∈ 𝑍) → (((𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∘ 𝐹)‘𝑗) = ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁))‘(𝐹‘𝑗))) | |
| 36 | 9, 35 | sylan 580 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (((𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∘ 𝐹)‘𝑗) = ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁))‘(𝐹‘𝑗))) |
| 37 | climexp.1 | . . . . . . 7 ⊢ Ⅎ𝑘𝜑 | |
| 38 | nfv 1915 | . . . . . . 7 ⊢ Ⅎ𝑘 𝑗 ∈ 𝑍 | |
| 39 | 37, 38 | nfan 1900 | . . . . . 6 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝑍) |
| 40 | climexp.3 | . . . . . . . 8 ⊢ Ⅎ𝑘𝐻 | |
| 41 | nfcv 2895 | . . . . . . . 8 ⊢ Ⅎ𝑘𝑗 | |
| 42 | 40, 41 | nffv 6838 | . . . . . . 7 ⊢ Ⅎ𝑘(𝐻‘𝑗) |
| 43 | climexp.2 | . . . . . . . . 9 ⊢ Ⅎ𝑘𝐹 | |
| 44 | 43, 41 | nffv 6838 | . . . . . . . 8 ⊢ Ⅎ𝑘(𝐹‘𝑗) |
| 45 | nfcv 2895 | . . . . . . . 8 ⊢ Ⅎ𝑘↑ | |
| 46 | nfcv 2895 | . . . . . . . 8 ⊢ Ⅎ𝑘𝑁 | |
| 47 | 44, 45, 46 | nfov 7382 | . . . . . . 7 ⊢ Ⅎ𝑘((𝐹‘𝑗)↑𝑁) |
| 48 | 42, 47 | nfeq 2909 | . . . . . 6 ⊢ Ⅎ𝑘(𝐻‘𝑗) = ((𝐹‘𝑗)↑𝑁) |
| 49 | 39, 48 | nfim 1897 | . . . . 5 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐻‘𝑗) = ((𝐹‘𝑗)↑𝑁)) |
| 50 | eleq1w 2816 | . . . . . . 7 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝑍 ↔ 𝑗 ∈ 𝑍)) | |
| 51 | 50 | anbi2d 630 | . . . . . 6 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ 𝑍) ↔ (𝜑 ∧ 𝑗 ∈ 𝑍))) |
| 52 | fveq2 6828 | . . . . . . 7 ⊢ (𝑘 = 𝑗 → (𝐻‘𝑘) = (𝐻‘𝑗)) | |
| 53 | fveq2 6828 | . . . . . . . 8 ⊢ (𝑘 = 𝑗 → (𝐹‘𝑘) = (𝐹‘𝑗)) | |
| 54 | 53 | oveq1d 7367 | . . . . . . 7 ⊢ (𝑘 = 𝑗 → ((𝐹‘𝑘)↑𝑁) = ((𝐹‘𝑗)↑𝑁)) |
| 55 | 52, 54 | eqeq12d 2749 | . . . . . 6 ⊢ (𝑘 = 𝑗 → ((𝐻‘𝑘) = ((𝐹‘𝑘)↑𝑁) ↔ (𝐻‘𝑗) = ((𝐹‘𝑗)↑𝑁))) |
| 56 | 51, 55 | imbi12d 344 | . . . . 5 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘)↑𝑁)) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐻‘𝑗) = ((𝐹‘𝑗)↑𝑁)))) |
| 57 | climexp.10 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘)↑𝑁)) | |
| 58 | 49, 56, 57 | chvarfv 2245 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐻‘𝑗) = ((𝐹‘𝑗)↑𝑁)) |
| 59 | 34, 36, 58 | 3eqtr4rd 2779 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐻‘𝑗) = (((𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∘ 𝐹)‘𝑗)) |
| 60 | 1, 20, 27, 2, 59 | climeq 15476 | . 2 ⊢ (𝜑 → (𝐻 ⇝ (𝐴↑𝑁) ↔ ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∘ 𝐹) ⇝ (𝐴↑𝑁))) |
| 61 | 19, 60 | mpbird 257 | 1 ⊢ (𝜑 → 𝐻 ⇝ (𝐴↑𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2113 Ⅎwnfc 2880 Vcvv 3437 class class class wbr 5093 ↦ cmpt 5174 ∘ ccom 5623 ⟶wf 6482 ‘cfv 6486 (class class class)co 7352 ℂcc 11011 ℕ0cn0 12388 ℤcz 12475 ℤ≥cuz 12738 ↑cexp 13970 ⇝ cli 15393 TopOpenctopn 17327 ℂfldccnfld 21293 Cn ccn 23140 –cn→ccncf 24797 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-om 7803 df-1st 7927 df-2nd 7928 df-supp 8097 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-map 8758 df-ixp 8828 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fsupp 9253 df-fi 9302 df-sup 9333 df-inf 9334 df-oi 9403 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-z 12476 df-dec 12595 df-uz 12739 df-q 12849 df-rp 12893 df-xneg 13013 df-xadd 13014 df-xmul 13015 df-icc 13254 df-fz 13410 df-fzo 13557 df-seq 13911 df-exp 13971 df-hash 14240 df-cj 15008 df-re 15009 df-im 15010 df-sqrt 15144 df-abs 15145 df-clim 15397 df-struct 17060 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-mulr 17177 df-starv 17178 df-sca 17179 df-vsca 17180 df-ip 17181 df-tset 17182 df-ple 17183 df-ds 17185 df-unif 17186 df-hom 17187 df-cco 17188 df-rest 17328 df-topn 17329 df-0g 17347 df-gsum 17348 df-topgen 17349 df-pt 17350 df-prds 17353 df-xrs 17408 df-qtop 17413 df-imas 17414 df-xps 17416 df-mre 17490 df-mrc 17491 df-acs 17493 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-submnd 18694 df-mulg 18983 df-cntz 19231 df-cmn 19696 df-psmet 21285 df-xmet 21286 df-met 21287 df-bl 21288 df-mopn 21289 df-cnfld 21294 df-top 22810 df-topon 22827 df-topsp 22849 df-bases 22862 df-cn 23143 df-cnp 23144 df-tx 23478 df-hmeo 23671 df-xms 24236 df-ms 24237 df-tms 24238 df-cncf 24799 |
| This theorem is referenced by: stirlinglem8 46203 |
| Copyright terms: Public domain | W3C validator |