| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > climexp | Structured version Visualization version GIF version | ||
| Description: The limit of natural powers, is the natural power of the limit. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| Ref | Expression |
|---|---|
| climexp.1 | ⊢ Ⅎ𝑘𝜑 |
| climexp.2 | ⊢ Ⅎ𝑘𝐹 |
| climexp.3 | ⊢ Ⅎ𝑘𝐻 |
| climexp.4 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| climexp.5 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| climexp.6 | ⊢ (𝜑 → 𝐹:𝑍⟶ℂ) |
| climexp.7 | ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
| climexp.8 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| climexp.9 | ⊢ (𝜑 → 𝐻 ∈ 𝑉) |
| climexp.10 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘)↑𝑁)) |
| Ref | Expression |
|---|---|
| climexp | ⊢ (𝜑 → 𝐻 ⇝ (𝐴↑𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climexp.4 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | climexp.5 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 3 | climexp.8 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 4 | eqid 2731 | . . . . . . 7 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 5 | 4 | expcn 24788 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))) |
| 6 | 3, 5 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))) |
| 7 | 4 | cncfcn1 24829 | . . . . 5 ⊢ (ℂ–cn→ℂ) = ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)) |
| 8 | 6, 7 | eleqtrrdi 2842 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∈ (ℂ–cn→ℂ)) |
| 9 | climexp.6 | . . . 4 ⊢ (𝜑 → 𝐹:𝑍⟶ℂ) | |
| 10 | climexp.7 | . . . 4 ⊢ (𝜑 → 𝐹 ⇝ 𝐴) | |
| 11 | climcl 15403 | . . . . 5 ⊢ (𝐹 ⇝ 𝐴 → 𝐴 ∈ ℂ) | |
| 12 | 10, 11 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 13 | 1, 2, 8, 9, 10, 12 | climcncf 24818 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∘ 𝐹) ⇝ ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁))‘𝐴)) |
| 14 | eqidd 2732 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) = (𝑥 ∈ ℂ ↦ (𝑥↑𝑁))) | |
| 15 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝑥 = 𝐴) | |
| 16 | 15 | oveq1d 7361 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝑥↑𝑁) = (𝐴↑𝑁)) |
| 17 | 12, 3 | expcld 14050 | . . . 4 ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℂ) |
| 18 | 14, 16, 12, 17 | fvmptd 6936 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁))‘𝐴) = (𝐴↑𝑁)) |
| 19 | 13, 18 | breqtrd 5117 | . 2 ⊢ (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∘ 𝐹) ⇝ (𝐴↑𝑁)) |
| 20 | climexp.9 | . . 3 ⊢ (𝜑 → 𝐻 ∈ 𝑉) | |
| 21 | cnex 11084 | . . . . 5 ⊢ ℂ ∈ V | |
| 22 | 21 | mptex 7157 | . . . 4 ⊢ (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∈ V |
| 23 | 1 | fvexi 6836 | . . . . 5 ⊢ 𝑍 ∈ V |
| 24 | fex 7160 | . . . . 5 ⊢ ((𝐹:𝑍⟶ℂ ∧ 𝑍 ∈ V) → 𝐹 ∈ V) | |
| 25 | 9, 23, 24 | sylancl 586 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ V) |
| 26 | coexg 7859 | . . . 4 ⊢ (((𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∈ V ∧ 𝐹 ∈ V) → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∘ 𝐹) ∈ V) | |
| 27 | 22, 25, 26 | sylancr 587 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∘ 𝐹) ∈ V) |
| 28 | eqidd 2732 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) = (𝑥 ∈ ℂ ↦ (𝑥↑𝑁))) | |
| 29 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑥 = (𝐹‘𝑗)) → 𝑥 = (𝐹‘𝑗)) | |
| 30 | 29 | oveq1d 7361 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑥 = (𝐹‘𝑗)) → (𝑥↑𝑁) = ((𝐹‘𝑗)↑𝑁)) |
| 31 | 9 | ffvelcdmda 7017 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) ∈ ℂ) |
| 32 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑁 ∈ ℕ0) |
| 33 | 31, 32 | expcld 14050 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝐹‘𝑗)↑𝑁) ∈ ℂ) |
| 34 | 28, 30, 31, 33 | fvmptd 6936 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁))‘(𝐹‘𝑗)) = ((𝐹‘𝑗)↑𝑁)) |
| 35 | fvco3 6921 | . . . . 5 ⊢ ((𝐹:𝑍⟶ℂ ∧ 𝑗 ∈ 𝑍) → (((𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∘ 𝐹)‘𝑗) = ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁))‘(𝐹‘𝑗))) | |
| 36 | 9, 35 | sylan 580 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (((𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∘ 𝐹)‘𝑗) = ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁))‘(𝐹‘𝑗))) |
| 37 | climexp.1 | . . . . . . 7 ⊢ Ⅎ𝑘𝜑 | |
| 38 | nfv 1915 | . . . . . . 7 ⊢ Ⅎ𝑘 𝑗 ∈ 𝑍 | |
| 39 | 37, 38 | nfan 1900 | . . . . . 6 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝑍) |
| 40 | climexp.3 | . . . . . . . 8 ⊢ Ⅎ𝑘𝐻 | |
| 41 | nfcv 2894 | . . . . . . . 8 ⊢ Ⅎ𝑘𝑗 | |
| 42 | 40, 41 | nffv 6832 | . . . . . . 7 ⊢ Ⅎ𝑘(𝐻‘𝑗) |
| 43 | climexp.2 | . . . . . . . . 9 ⊢ Ⅎ𝑘𝐹 | |
| 44 | 43, 41 | nffv 6832 | . . . . . . . 8 ⊢ Ⅎ𝑘(𝐹‘𝑗) |
| 45 | nfcv 2894 | . . . . . . . 8 ⊢ Ⅎ𝑘↑ | |
| 46 | nfcv 2894 | . . . . . . . 8 ⊢ Ⅎ𝑘𝑁 | |
| 47 | 44, 45, 46 | nfov 7376 | . . . . . . 7 ⊢ Ⅎ𝑘((𝐹‘𝑗)↑𝑁) |
| 48 | 42, 47 | nfeq 2908 | . . . . . 6 ⊢ Ⅎ𝑘(𝐻‘𝑗) = ((𝐹‘𝑗)↑𝑁) |
| 49 | 39, 48 | nfim 1897 | . . . . 5 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐻‘𝑗) = ((𝐹‘𝑗)↑𝑁)) |
| 50 | eleq1w 2814 | . . . . . . 7 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝑍 ↔ 𝑗 ∈ 𝑍)) | |
| 51 | 50 | anbi2d 630 | . . . . . 6 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ 𝑍) ↔ (𝜑 ∧ 𝑗 ∈ 𝑍))) |
| 52 | fveq2 6822 | . . . . . . 7 ⊢ (𝑘 = 𝑗 → (𝐻‘𝑘) = (𝐻‘𝑗)) | |
| 53 | fveq2 6822 | . . . . . . . 8 ⊢ (𝑘 = 𝑗 → (𝐹‘𝑘) = (𝐹‘𝑗)) | |
| 54 | 53 | oveq1d 7361 | . . . . . . 7 ⊢ (𝑘 = 𝑗 → ((𝐹‘𝑘)↑𝑁) = ((𝐹‘𝑗)↑𝑁)) |
| 55 | 52, 54 | eqeq12d 2747 | . . . . . 6 ⊢ (𝑘 = 𝑗 → ((𝐻‘𝑘) = ((𝐹‘𝑘)↑𝑁) ↔ (𝐻‘𝑗) = ((𝐹‘𝑗)↑𝑁))) |
| 56 | 51, 55 | imbi12d 344 | . . . . 5 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘)↑𝑁)) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐻‘𝑗) = ((𝐹‘𝑗)↑𝑁)))) |
| 57 | climexp.10 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘)↑𝑁)) | |
| 58 | 49, 56, 57 | chvarfv 2243 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐻‘𝑗) = ((𝐹‘𝑗)↑𝑁)) |
| 59 | 34, 36, 58 | 3eqtr4rd 2777 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐻‘𝑗) = (((𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∘ 𝐹)‘𝑗)) |
| 60 | 1, 20, 27, 2, 59 | climeq 15471 | . 2 ⊢ (𝜑 → (𝐻 ⇝ (𝐴↑𝑁) ↔ ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∘ 𝐹) ⇝ (𝐴↑𝑁))) |
| 61 | 19, 60 | mpbird 257 | 1 ⊢ (𝜑 → 𝐻 ⇝ (𝐴↑𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2111 Ⅎwnfc 2879 Vcvv 3436 class class class wbr 5091 ↦ cmpt 5172 ∘ ccom 5620 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ℂcc 11001 ℕ0cn0 12378 ℤcz 12465 ℤ≥cuz 12729 ↑cexp 13965 ⇝ cli 15388 TopOpenctopn 17322 ℂfldccnfld 21289 Cn ccn 23137 –cn→ccncf 24794 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-fi 9295 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9829 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-dec 12586 df-uz 12730 df-q 12844 df-rp 12888 df-xneg 13008 df-xadd 13009 df-xmul 13010 df-icc 13249 df-fz 13405 df-fzo 13552 df-seq 13906 df-exp 13966 df-hash 14235 df-cj 15003 df-re 15004 df-im 15005 df-sqrt 15139 df-abs 15140 df-clim 15392 df-struct 17055 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-plusg 17171 df-mulr 17172 df-starv 17173 df-sca 17174 df-vsca 17175 df-ip 17176 df-tset 17177 df-ple 17178 df-ds 17180 df-unif 17181 df-hom 17182 df-cco 17183 df-rest 17323 df-topn 17324 df-0g 17342 df-gsum 17343 df-topgen 17344 df-pt 17345 df-prds 17348 df-xrs 17403 df-qtop 17408 df-imas 17409 df-xps 17411 df-mre 17485 df-mrc 17486 df-acs 17488 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-submnd 18689 df-mulg 18978 df-cntz 19227 df-cmn 19692 df-psmet 21281 df-xmet 21282 df-met 21283 df-bl 21284 df-mopn 21285 df-cnfld 21290 df-top 22807 df-topon 22824 df-topsp 22846 df-bases 22859 df-cn 23140 df-cnp 23141 df-tx 23475 df-hmeo 23668 df-xms 24233 df-ms 24234 df-tms 24235 df-cncf 24796 |
| This theorem is referenced by: stirlinglem8 46118 |
| Copyright terms: Public domain | W3C validator |