| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > climexp | Structured version Visualization version GIF version | ||
| Description: The limit of natural powers, is the natural power of the limit. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| Ref | Expression |
|---|---|
| climexp.1 | ⊢ Ⅎ𝑘𝜑 |
| climexp.2 | ⊢ Ⅎ𝑘𝐹 |
| climexp.3 | ⊢ Ⅎ𝑘𝐻 |
| climexp.4 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| climexp.5 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| climexp.6 | ⊢ (𝜑 → 𝐹:𝑍⟶ℂ) |
| climexp.7 | ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
| climexp.8 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| climexp.9 | ⊢ (𝜑 → 𝐻 ∈ 𝑉) |
| climexp.10 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘)↑𝑁)) |
| Ref | Expression |
|---|---|
| climexp | ⊢ (𝜑 → 𝐻 ⇝ (𝐴↑𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climexp.4 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | climexp.5 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 3 | climexp.8 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 4 | eqid 2730 | . . . . . . 7 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 5 | 4 | expcn 24770 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))) |
| 6 | 3, 5 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))) |
| 7 | 4 | cncfcn1 24811 | . . . . 5 ⊢ (ℂ–cn→ℂ) = ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)) |
| 8 | 6, 7 | eleqtrrdi 2840 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∈ (ℂ–cn→ℂ)) |
| 9 | climexp.6 | . . . 4 ⊢ (𝜑 → 𝐹:𝑍⟶ℂ) | |
| 10 | climexp.7 | . . . 4 ⊢ (𝜑 → 𝐹 ⇝ 𝐴) | |
| 11 | climcl 15472 | . . . . 5 ⊢ (𝐹 ⇝ 𝐴 → 𝐴 ∈ ℂ) | |
| 12 | 10, 11 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 13 | 1, 2, 8, 9, 10, 12 | climcncf 24800 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∘ 𝐹) ⇝ ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁))‘𝐴)) |
| 14 | eqidd 2731 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) = (𝑥 ∈ ℂ ↦ (𝑥↑𝑁))) | |
| 15 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝑥 = 𝐴) | |
| 16 | 15 | oveq1d 7405 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝑥↑𝑁) = (𝐴↑𝑁)) |
| 17 | 12, 3 | expcld 14118 | . . . 4 ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℂ) |
| 18 | 14, 16, 12, 17 | fvmptd 6978 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁))‘𝐴) = (𝐴↑𝑁)) |
| 19 | 13, 18 | breqtrd 5136 | . 2 ⊢ (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∘ 𝐹) ⇝ (𝐴↑𝑁)) |
| 20 | climexp.9 | . . 3 ⊢ (𝜑 → 𝐻 ∈ 𝑉) | |
| 21 | cnex 11156 | . . . . 5 ⊢ ℂ ∈ V | |
| 22 | 21 | mptex 7200 | . . . 4 ⊢ (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∈ V |
| 23 | 1 | fvexi 6875 | . . . . 5 ⊢ 𝑍 ∈ V |
| 24 | fex 7203 | . . . . 5 ⊢ ((𝐹:𝑍⟶ℂ ∧ 𝑍 ∈ V) → 𝐹 ∈ V) | |
| 25 | 9, 23, 24 | sylancl 586 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ V) |
| 26 | coexg 7908 | . . . 4 ⊢ (((𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∈ V ∧ 𝐹 ∈ V) → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∘ 𝐹) ∈ V) | |
| 27 | 22, 25, 26 | sylancr 587 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∘ 𝐹) ∈ V) |
| 28 | eqidd 2731 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) = (𝑥 ∈ ℂ ↦ (𝑥↑𝑁))) | |
| 29 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑥 = (𝐹‘𝑗)) → 𝑥 = (𝐹‘𝑗)) | |
| 30 | 29 | oveq1d 7405 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑥 = (𝐹‘𝑗)) → (𝑥↑𝑁) = ((𝐹‘𝑗)↑𝑁)) |
| 31 | 9 | ffvelcdmda 7059 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐹‘𝑗) ∈ ℂ) |
| 32 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑁 ∈ ℕ0) |
| 33 | 31, 32 | expcld 14118 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝐹‘𝑗)↑𝑁) ∈ ℂ) |
| 34 | 28, 30, 31, 33 | fvmptd 6978 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁))‘(𝐹‘𝑗)) = ((𝐹‘𝑗)↑𝑁)) |
| 35 | fvco3 6963 | . . . . 5 ⊢ ((𝐹:𝑍⟶ℂ ∧ 𝑗 ∈ 𝑍) → (((𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∘ 𝐹)‘𝑗) = ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁))‘(𝐹‘𝑗))) | |
| 36 | 9, 35 | sylan 580 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (((𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∘ 𝐹)‘𝑗) = ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁))‘(𝐹‘𝑗))) |
| 37 | climexp.1 | . . . . . . 7 ⊢ Ⅎ𝑘𝜑 | |
| 38 | nfv 1914 | . . . . . . 7 ⊢ Ⅎ𝑘 𝑗 ∈ 𝑍 | |
| 39 | 37, 38 | nfan 1899 | . . . . . 6 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝑍) |
| 40 | climexp.3 | . . . . . . . 8 ⊢ Ⅎ𝑘𝐻 | |
| 41 | nfcv 2892 | . . . . . . . 8 ⊢ Ⅎ𝑘𝑗 | |
| 42 | 40, 41 | nffv 6871 | . . . . . . 7 ⊢ Ⅎ𝑘(𝐻‘𝑗) |
| 43 | climexp.2 | . . . . . . . . 9 ⊢ Ⅎ𝑘𝐹 | |
| 44 | 43, 41 | nffv 6871 | . . . . . . . 8 ⊢ Ⅎ𝑘(𝐹‘𝑗) |
| 45 | nfcv 2892 | . . . . . . . 8 ⊢ Ⅎ𝑘↑ | |
| 46 | nfcv 2892 | . . . . . . . 8 ⊢ Ⅎ𝑘𝑁 | |
| 47 | 44, 45, 46 | nfov 7420 | . . . . . . 7 ⊢ Ⅎ𝑘((𝐹‘𝑗)↑𝑁) |
| 48 | 42, 47 | nfeq 2906 | . . . . . 6 ⊢ Ⅎ𝑘(𝐻‘𝑗) = ((𝐹‘𝑗)↑𝑁) |
| 49 | 39, 48 | nfim 1896 | . . . . 5 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐻‘𝑗) = ((𝐹‘𝑗)↑𝑁)) |
| 50 | eleq1w 2812 | . . . . . . 7 ⊢ (𝑘 = 𝑗 → (𝑘 ∈ 𝑍 ↔ 𝑗 ∈ 𝑍)) | |
| 51 | 50 | anbi2d 630 | . . . . . 6 ⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ 𝑍) ↔ (𝜑 ∧ 𝑗 ∈ 𝑍))) |
| 52 | fveq2 6861 | . . . . . . 7 ⊢ (𝑘 = 𝑗 → (𝐻‘𝑘) = (𝐻‘𝑗)) | |
| 53 | fveq2 6861 | . . . . . . . 8 ⊢ (𝑘 = 𝑗 → (𝐹‘𝑘) = (𝐹‘𝑗)) | |
| 54 | 53 | oveq1d 7405 | . . . . . . 7 ⊢ (𝑘 = 𝑗 → ((𝐹‘𝑘)↑𝑁) = ((𝐹‘𝑗)↑𝑁)) |
| 55 | 52, 54 | eqeq12d 2746 | . . . . . 6 ⊢ (𝑘 = 𝑗 → ((𝐻‘𝑘) = ((𝐹‘𝑘)↑𝑁) ↔ (𝐻‘𝑗) = ((𝐹‘𝑗)↑𝑁))) |
| 56 | 51, 55 | imbi12d 344 | . . . . 5 ⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘)↑𝑁)) ↔ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐻‘𝑗) = ((𝐹‘𝑗)↑𝑁)))) |
| 57 | climexp.10 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘)↑𝑁)) | |
| 58 | 49, 56, 57 | chvarfv 2241 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐻‘𝑗) = ((𝐹‘𝑗)↑𝑁)) |
| 59 | 34, 36, 58 | 3eqtr4rd 2776 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐻‘𝑗) = (((𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∘ 𝐹)‘𝑗)) |
| 60 | 1, 20, 27, 2, 59 | climeq 15540 | . 2 ⊢ (𝜑 → (𝐻 ⇝ (𝐴↑𝑁) ↔ ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∘ 𝐹) ⇝ (𝐴↑𝑁))) |
| 61 | 19, 60 | mpbird 257 | 1 ⊢ (𝜑 → 𝐻 ⇝ (𝐴↑𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 Ⅎwnfc 2877 Vcvv 3450 class class class wbr 5110 ↦ cmpt 5191 ∘ ccom 5645 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 ℕ0cn0 12449 ℤcz 12536 ℤ≥cuz 12800 ↑cexp 14033 ⇝ cli 15457 TopOpenctopn 17391 ℂfldccnfld 21271 Cn ccn 23118 –cn→ccncf 24776 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-fi 9369 df-sup 9400 df-inf 9401 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-q 12915 df-rp 12959 df-xneg 13079 df-xadd 13080 df-xmul 13081 df-icc 13320 df-fz 13476 df-fzo 13623 df-seq 13974 df-exp 14034 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15461 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-starv 17242 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-hom 17251 df-cco 17252 df-rest 17392 df-topn 17393 df-0g 17411 df-gsum 17412 df-topgen 17413 df-pt 17414 df-prds 17417 df-xrs 17472 df-qtop 17477 df-imas 17478 df-xps 17480 df-mre 17554 df-mrc 17555 df-acs 17557 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-submnd 18718 df-mulg 19007 df-cntz 19256 df-cmn 19719 df-psmet 21263 df-xmet 21264 df-met 21265 df-bl 21266 df-mopn 21267 df-cnfld 21272 df-top 22788 df-topon 22805 df-topsp 22827 df-bases 22840 df-cn 23121 df-cnp 23122 df-tx 23456 df-hmeo 23649 df-xms 24215 df-ms 24216 df-tms 24217 df-cncf 24778 |
| This theorem is referenced by: stirlinglem8 46086 |
| Copyright terms: Public domain | W3C validator |