|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > cnmptkc | Structured version Visualization version GIF version | ||
| Description: The curried first projection function is continuous. (Contributed by Mario Carneiro, 23-Mar-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) | 
| Ref | Expression | 
|---|---|
| cnmptk1.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | 
| cnmptk1.k | ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) | 
| Ref | Expression | 
|---|---|
| cnmptkc | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝑥)) ∈ (𝐽 Cn (𝐽 ↑ko 𝐾))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fconstmpt 5746 | . . 3 ⊢ (𝑌 × {𝑥}) = (𝑦 ∈ 𝑌 ↦ 𝑥) | |
| 2 | 1 | mpteq2i 5246 | . 2 ⊢ (𝑥 ∈ 𝑋 ↦ (𝑌 × {𝑥})) = (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝑥)) | 
| 3 | cnmptk1.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) | |
| 4 | cnmptk1.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
| 5 | xkoccn 23628 | . . 3 ⊢ ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝑥 ∈ 𝑋 ↦ (𝑌 × {𝑥})) ∈ (𝐽 Cn (𝐽 ↑ko 𝐾))) | |
| 6 | 3, 4, 5 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝑌 × {𝑥})) ∈ (𝐽 Cn (𝐽 ↑ko 𝐾))) | 
| 7 | 2, 6 | eqeltrrid 2845 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝑥)) ∈ (𝐽 Cn (𝐽 ↑ko 𝐾))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∈ wcel 2107 {csn 4625 ↦ cmpt 5224 × cxp 5682 ‘cfv 6560 (class class class)co 7432 TopOnctopon 22917 Cn ccn 23233 ↑ko cxko 23570 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-iin 4993 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-1o 8507 df-2o 8508 df-map 8869 df-en 8987 df-dom 8988 df-fin 8990 df-fi 9452 df-rest 17468 df-topgen 17489 df-top 22901 df-topon 22918 df-bases 22954 df-cn 23236 df-cnp 23237 df-cmp 23396 df-xko 23572 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |