Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnresima Structured version   Visualization version   GIF version

Theorem cnresima 37803
Description: A continuous function is continuous onto its image. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
Assertion
Ref Expression
cnresima ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 ∈ (𝐽 Cn (𝐾t ran 𝐹)))

Proof of Theorem cnresima
StepHypRef Expression
1 simp3 1138 . 2 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 ∈ (𝐽 Cn 𝐾))
2 simp2 1137 . . . 4 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Top)
3 eqid 2731 . . . . 5 𝐾 = 𝐾
43toptopon 22832 . . . 4 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
52, 4sylib 218 . . 3 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ (TopOn‘ 𝐾))
6 ssidd 3953 . . 3 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ran 𝐹 ⊆ ran 𝐹)
7 eqid 2731 . . . . . 6 𝐽 = 𝐽
87, 3cnf 23161 . . . . 5 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽 𝐾)
98frnd 6659 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → ran 𝐹 𝐾)
1093ad2ant3 1135 . . 3 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ran 𝐹 𝐾)
11 cnrest2 23201 . . 3 ((𝐾 ∈ (TopOn‘ 𝐾) ∧ ran 𝐹 ⊆ ran 𝐹 ∧ ran 𝐹 𝐾) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ 𝐹 ∈ (𝐽 Cn (𝐾t ran 𝐹))))
125, 6, 10, 11syl3anc 1373 . 2 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ 𝐹 ∈ (𝐽 Cn (𝐾t ran 𝐹))))
131, 12mpbid 232 1 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 ∈ (𝐽 Cn (𝐾t ran 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086  wcel 2111  wss 3897   cuni 4856  ran crn 5615  cfv 6481  (class class class)co 7346  t crest 17324  Topctop 22808  TopOnctopon 22825   Cn ccn 23139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-map 8752  df-en 8870  df-fin 8873  df-fi 9295  df-rest 17326  df-topgen 17347  df-top 22809  df-topon 22826  df-bases 22861  df-cn 23142
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator