![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnresima | Structured version Visualization version GIF version |
Description: A continuous function is continuous onto its image. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) |
Ref | Expression |
---|---|
cnresima | β’ ((π½ β Top β§ πΎ β Top β§ πΉ β (π½ Cn πΎ)) β πΉ β (π½ Cn (πΎ βΎt ran πΉ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1137 | . 2 β’ ((π½ β Top β§ πΎ β Top β§ πΉ β (π½ Cn πΎ)) β πΉ β (π½ Cn πΎ)) | |
2 | simp2 1136 | . . . 4 β’ ((π½ β Top β§ πΎ β Top β§ πΉ β (π½ Cn πΎ)) β πΎ β Top) | |
3 | eqid 2731 | . . . . 5 β’ βͺ πΎ = βͺ πΎ | |
4 | 3 | toptopon 22640 | . . . 4 β’ (πΎ β Top β πΎ β (TopOnββͺ πΎ)) |
5 | 2, 4 | sylib 217 | . . 3 β’ ((π½ β Top β§ πΎ β Top β§ πΉ β (π½ Cn πΎ)) β πΎ β (TopOnββͺ πΎ)) |
6 | ssidd 4005 | . . 3 β’ ((π½ β Top β§ πΎ β Top β§ πΉ β (π½ Cn πΎ)) β ran πΉ β ran πΉ) | |
7 | eqid 2731 | . . . . . 6 β’ βͺ π½ = βͺ π½ | |
8 | 7, 3 | cnf 22971 | . . . . 5 β’ (πΉ β (π½ Cn πΎ) β πΉ:βͺ π½βΆβͺ πΎ) |
9 | 8 | frnd 6725 | . . . 4 β’ (πΉ β (π½ Cn πΎ) β ran πΉ β βͺ πΎ) |
10 | 9 | 3ad2ant3 1134 | . . 3 β’ ((π½ β Top β§ πΎ β Top β§ πΉ β (π½ Cn πΎ)) β ran πΉ β βͺ πΎ) |
11 | cnrest2 23011 | . . 3 β’ ((πΎ β (TopOnββͺ πΎ) β§ ran πΉ β ran πΉ β§ ran πΉ β βͺ πΎ) β (πΉ β (π½ Cn πΎ) β πΉ β (π½ Cn (πΎ βΎt ran πΉ)))) | |
12 | 5, 6, 10, 11 | syl3anc 1370 | . 2 β’ ((π½ β Top β§ πΎ β Top β§ πΉ β (π½ Cn πΎ)) β (πΉ β (π½ Cn πΎ) β πΉ β (π½ Cn (πΎ βΎt ran πΉ)))) |
13 | 1, 12 | mpbid 231 | 1 β’ ((π½ β Top β§ πΎ β Top β§ πΉ β (π½ Cn πΎ)) β πΉ β (π½ Cn (πΎ βΎt ran πΉ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ w3a 1086 β wcel 2105 β wss 3948 βͺ cuni 4908 ran crn 5677 βcfv 6543 (class class class)co 7412 βΎt crest 17371 Topctop 22616 TopOnctopon 22633 Cn ccn 22949 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-map 8826 df-en 8944 df-fin 8947 df-fi 9410 df-rest 17373 df-topgen 17394 df-top 22617 df-topon 22634 df-bases 22670 df-cn 22952 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |