![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > divdivdivi | Structured version Visualization version GIF version |
Description: Division of two ratios. Theorem I.15 of [Apostol] p. 18. (Contributed by NM, 22-Feb-1995.) |
Ref | Expression |
---|---|
divclz.1 | ⊢ 𝐴 ∈ ℂ |
divclz.2 | ⊢ 𝐵 ∈ ℂ |
divmulz.3 | ⊢ 𝐶 ∈ ℂ |
divmuldiv.4 | ⊢ 𝐷 ∈ ℂ |
divmuldiv.5 | ⊢ 𝐵 ≠ 0 |
divmuldiv.6 | ⊢ 𝐷 ≠ 0 |
divdivdiv.7 | ⊢ 𝐶 ≠ 0 |
Ref | Expression |
---|---|
divdivdivi | ⊢ ((𝐴 / 𝐵) / (𝐶 / 𝐷)) = ((𝐴 · 𝐷) / (𝐵 · 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divclz.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | divclz.2 | . . 3 ⊢ 𝐵 ∈ ℂ | |
3 | divmuldiv.5 | . . 3 ⊢ 𝐵 ≠ 0 | |
4 | 2, 3 | pm3.2i 464 | . 2 ⊢ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) |
5 | divmulz.3 | . . 3 ⊢ 𝐶 ∈ ℂ | |
6 | divdivdiv.7 | . . 3 ⊢ 𝐶 ≠ 0 | |
7 | 5, 6 | pm3.2i 464 | . 2 ⊢ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) |
8 | divmuldiv.4 | . . 3 ⊢ 𝐷 ∈ ℂ | |
9 | divmuldiv.6 | . . 3 ⊢ 𝐷 ≠ 0 | |
10 | 8, 9 | pm3.2i 464 | . 2 ⊢ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0) |
11 | divdivdiv 11052 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → ((𝐴 / 𝐵) / (𝐶 / 𝐷)) = ((𝐴 · 𝐷) / (𝐵 · 𝐶))) | |
12 | 1, 4, 7, 10, 11 | mp4an 686 | 1 ⊢ ((𝐴 / 𝐵) / (𝐶 / 𝐷)) = ((𝐴 · 𝐷) / (𝐵 · 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 386 = wceq 1658 ∈ wcel 2166 ≠ wne 2999 (class class class)co 6905 ℂcc 10250 0cc0 10252 · cmul 10257 / cdiv 11009 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 ax-resscn 10309 ax-1cn 10310 ax-icn 10311 ax-addcl 10312 ax-addrcl 10313 ax-mulcl 10314 ax-mulrcl 10315 ax-mulcom 10316 ax-addass 10317 ax-mulass 10318 ax-distr 10319 ax-i2m1 10320 ax-1ne0 10321 ax-1rid 10322 ax-rnegex 10323 ax-rrecex 10324 ax-cnre 10325 ax-pre-lttri 10326 ax-pre-lttrn 10327 ax-pre-ltadd 10328 ax-pre-mulgt0 10329 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-br 4874 df-opab 4936 df-mpt 4953 df-id 5250 df-po 5263 df-so 5264 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-riota 6866 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-er 8009 df-en 8223 df-dom 8224 df-sdom 8225 df-pnf 10393 df-mnf 10394 df-xr 10395 df-ltxr 10396 df-le 10397 df-sub 10587 df-neg 10588 df-div 11010 |
This theorem is referenced by: log2tlbnd 25085 |
Copyright terms: Public domain | W3C validator |