![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > divdivdivi | Structured version Visualization version GIF version |
Description: Division of two ratios. Theorem I.15 of [Apostol] p. 18. (Contributed by NM, 22-Feb-1995.) |
Ref | Expression |
---|---|
divclz.1 | ⊢ 𝐴 ∈ ℂ |
divclz.2 | ⊢ 𝐵 ∈ ℂ |
divmulz.3 | ⊢ 𝐶 ∈ ℂ |
divmuldiv.4 | ⊢ 𝐷 ∈ ℂ |
divmuldiv.5 | ⊢ 𝐵 ≠ 0 |
divmuldiv.6 | ⊢ 𝐷 ≠ 0 |
divdivdiv.7 | ⊢ 𝐶 ≠ 0 |
Ref | Expression |
---|---|
divdivdivi | ⊢ ((𝐴 / 𝐵) / (𝐶 / 𝐷)) = ((𝐴 · 𝐷) / (𝐵 · 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divclz.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | divclz.2 | . . 3 ⊢ 𝐵 ∈ ℂ | |
3 | divmuldiv.5 | . . 3 ⊢ 𝐵 ≠ 0 | |
4 | 2, 3 | pm3.2i 472 | . 2 ⊢ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) |
5 | divmulz.3 | . . 3 ⊢ 𝐶 ∈ ℂ | |
6 | divdivdiv.7 | . . 3 ⊢ 𝐶 ≠ 0 | |
7 | 5, 6 | pm3.2i 472 | . 2 ⊢ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) |
8 | divmuldiv.4 | . . 3 ⊢ 𝐷 ∈ ℂ | |
9 | divmuldiv.6 | . . 3 ⊢ 𝐷 ≠ 0 | |
10 | 8, 9 | pm3.2i 472 | . 2 ⊢ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0) |
11 | divdivdiv 11902 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → ((𝐴 / 𝐵) / (𝐶 / 𝐷)) = ((𝐴 · 𝐷) / (𝐵 · 𝐶))) | |
12 | 1, 4, 7, 10, 11 | mp4an 692 | 1 ⊢ ((𝐴 / 𝐵) / (𝐶 / 𝐷)) = ((𝐴 · 𝐷) / (𝐵 · 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 397 = wceq 1542 ∈ wcel 2107 ≠ wne 2941 (class class class)co 7396 ℂcc 11095 0cc0 11097 · cmul 11102 / cdiv 11858 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5295 ax-nul 5302 ax-pow 5359 ax-pr 5423 ax-un 7712 ax-resscn 11154 ax-1cn 11155 ax-icn 11156 ax-addcl 11157 ax-addrcl 11158 ax-mulcl 11159 ax-mulrcl 11160 ax-mulcom 11161 ax-addass 11162 ax-mulass 11163 ax-distr 11164 ax-i2m1 11165 ax-1ne0 11166 ax-1rid 11167 ax-rnegex 11168 ax-rrecex 11169 ax-cnre 11170 ax-pre-lttri 11171 ax-pre-lttrn 11172 ax-pre-ltadd 11173 ax-pre-mulgt0 11174 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4321 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4905 df-br 5145 df-opab 5207 df-mpt 5228 df-id 5570 df-po 5584 df-so 5585 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6487 df-fun 6537 df-fn 6538 df-f 6539 df-f1 6540 df-fo 6541 df-f1o 6542 df-fv 6543 df-riota 7352 df-ov 7399 df-oprab 7400 df-mpo 7401 df-er 8691 df-en 8928 df-dom 8929 df-sdom 8930 df-pnf 11237 df-mnf 11238 df-xr 11239 df-ltxr 11240 df-le 11241 df-sub 11433 df-neg 11434 df-div 11859 |
This theorem is referenced by: log2tlbnd 26417 |
Copyright terms: Public domain | W3C validator |