MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divdivdiv Structured version   Visualization version   GIF version

Theorem divdivdiv 11919
Description: Division of two ratios. Theorem I.15 of [Apostol] p. 18. (Contributed by NM, 2-Aug-2004.)
Assertion
Ref Expression
divdivdiv (((๐ด โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต โ‰  0)) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท โ‰  0))) โ†’ ((๐ด / ๐ต) / (๐ถ / ๐ท)) = ((๐ด ยท ๐ท) / (๐ต ยท ๐ถ)))

Proof of Theorem divdivdiv
StepHypRef Expression
1 simprrl 778 . . . . . . 7 (((๐ด โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต โ‰  0)) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท โ‰  0))) โ†’ ๐ท โˆˆ โ„‚)
2 simprll 776 . . . . . . 7 (((๐ด โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต โ‰  0)) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท โ‰  0))) โ†’ ๐ถ โˆˆ โ„‚)
3 simprlr 777 . . . . . . 7 (((๐ด โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต โ‰  0)) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท โ‰  0))) โ†’ ๐ถ โ‰  0)
4 divcl 11882 . . . . . . 7 ((๐ท โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0) โ†’ (๐ท / ๐ถ) โˆˆ โ„‚)
51, 2, 3, 4syl3anc 1368 . . . . . 6 (((๐ด โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต โ‰  0)) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท โ‰  0))) โ†’ (๐ท / ๐ถ) โˆˆ โ„‚)
6 simpll 764 . . . . . . 7 (((๐ด โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต โ‰  0)) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท โ‰  0))) โ†’ ๐ด โˆˆ โ„‚)
7 simplrl 774 . . . . . . 7 (((๐ด โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต โ‰  0)) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท โ‰  0))) โ†’ ๐ต โˆˆ โ„‚)
8 simplrr 775 . . . . . . 7 (((๐ด โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต โ‰  0)) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท โ‰  0))) โ†’ ๐ต โ‰  0)
9 divcl 11882 . . . . . . 7 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ๐ต โ‰  0) โ†’ (๐ด / ๐ต) โˆˆ โ„‚)
106, 7, 8, 9syl3anc 1368 . . . . . 6 (((๐ด โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต โ‰  0)) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท โ‰  0))) โ†’ (๐ด / ๐ต) โˆˆ โ„‚)
115, 10mulcomd 11239 . . . . 5 (((๐ด โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต โ‰  0)) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท โ‰  0))) โ†’ ((๐ท / ๐ถ) ยท (๐ด / ๐ต)) = ((๐ด / ๐ต) ยท (๐ท / ๐ถ)))
12 simplr 766 . . . . . 6 (((๐ด โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต โ‰  0)) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท โ‰  0))) โ†’ (๐ต โˆˆ โ„‚ โˆง ๐ต โ‰  0))
13 simprl 768 . . . . . 6 (((๐ด โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต โ‰  0)) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท โ‰  0))) โ†’ (๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0))
14 divmuldiv 11918 . . . . . 6 (((๐ด โˆˆ โ„‚ โˆง ๐ท โˆˆ โ„‚) โˆง ((๐ต โˆˆ โ„‚ โˆง ๐ต โ‰  0) โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0))) โ†’ ((๐ด / ๐ต) ยท (๐ท / ๐ถ)) = ((๐ด ยท ๐ท) / (๐ต ยท ๐ถ)))
156, 1, 12, 13, 14syl22anc 836 . . . . 5 (((๐ด โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต โ‰  0)) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท โ‰  0))) โ†’ ((๐ด / ๐ต) ยท (๐ท / ๐ถ)) = ((๐ด ยท ๐ท) / (๐ต ยท ๐ถ)))
1611, 15eqtrd 2766 . . . 4 (((๐ด โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต โ‰  0)) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท โ‰  0))) โ†’ ((๐ท / ๐ถ) ยท (๐ด / ๐ต)) = ((๐ด ยท ๐ท) / (๐ต ยท ๐ถ)))
1716oveq2d 7421 . . 3 (((๐ด โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต โ‰  0)) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท โ‰  0))) โ†’ ((๐ถ / ๐ท) ยท ((๐ท / ๐ถ) ยท (๐ด / ๐ต))) = ((๐ถ / ๐ท) ยท ((๐ด ยท ๐ท) / (๐ต ยท ๐ถ))))
18 simprr 770 . . . . . . 7 (((๐ด โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต โ‰  0)) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท โ‰  0))) โ†’ (๐ท โˆˆ โ„‚ โˆง ๐ท โ‰  0))
19 divmuldiv 11918 . . . . . . 7 (((๐ถ โˆˆ โ„‚ โˆง ๐ท โˆˆ โ„‚) โˆง ((๐ท โˆˆ โ„‚ โˆง ๐ท โ‰  0) โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0))) โ†’ ((๐ถ / ๐ท) ยท (๐ท / ๐ถ)) = ((๐ถ ยท ๐ท) / (๐ท ยท ๐ถ)))
202, 1, 18, 13, 19syl22anc 836 . . . . . 6 (((๐ด โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต โ‰  0)) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท โ‰  0))) โ†’ ((๐ถ / ๐ท) ยท (๐ท / ๐ถ)) = ((๐ถ ยท ๐ท) / (๐ท ยท ๐ถ)))
212, 1mulcomd 11239 . . . . . . . 8 (((๐ด โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต โ‰  0)) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท โ‰  0))) โ†’ (๐ถ ยท ๐ท) = (๐ท ยท ๐ถ))
2221oveq1d 7420 . . . . . . 7 (((๐ด โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต โ‰  0)) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท โ‰  0))) โ†’ ((๐ถ ยท ๐ท) / (๐ท ยท ๐ถ)) = ((๐ท ยท ๐ถ) / (๐ท ยท ๐ถ)))
231, 2mulcld 11238 . . . . . . . 8 (((๐ด โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต โ‰  0)) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท โ‰  0))) โ†’ (๐ท ยท ๐ถ) โˆˆ โ„‚)
24 simprrr 779 . . . . . . . . 9 (((๐ด โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต โ‰  0)) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท โ‰  0))) โ†’ ๐ท โ‰  0)
251, 2, 24, 3mulne0d 11870 . . . . . . . 8 (((๐ด โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต โ‰  0)) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท โ‰  0))) โ†’ (๐ท ยท ๐ถ) โ‰  0)
26 divid 11905 . . . . . . . 8 (((๐ท ยท ๐ถ) โˆˆ โ„‚ โˆง (๐ท ยท ๐ถ) โ‰  0) โ†’ ((๐ท ยท ๐ถ) / (๐ท ยท ๐ถ)) = 1)
2723, 25, 26syl2anc 583 . . . . . . 7 (((๐ด โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต โ‰  0)) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท โ‰  0))) โ†’ ((๐ท ยท ๐ถ) / (๐ท ยท ๐ถ)) = 1)
2822, 27eqtrd 2766 . . . . . 6 (((๐ด โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต โ‰  0)) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท โ‰  0))) โ†’ ((๐ถ ยท ๐ท) / (๐ท ยท ๐ถ)) = 1)
2920, 28eqtrd 2766 . . . . 5 (((๐ด โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต โ‰  0)) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท โ‰  0))) โ†’ ((๐ถ / ๐ท) ยท (๐ท / ๐ถ)) = 1)
3029oveq1d 7420 . . . 4 (((๐ด โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต โ‰  0)) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท โ‰  0))) โ†’ (((๐ถ / ๐ท) ยท (๐ท / ๐ถ)) ยท (๐ด / ๐ต)) = (1 ยท (๐ด / ๐ต)))
31 divcl 11882 . . . . . 6 ((๐ถ โˆˆ โ„‚ โˆง ๐ท โˆˆ โ„‚ โˆง ๐ท โ‰  0) โ†’ (๐ถ / ๐ท) โˆˆ โ„‚)
322, 1, 24, 31syl3anc 1368 . . . . 5 (((๐ด โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต โ‰  0)) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท โ‰  0))) โ†’ (๐ถ / ๐ท) โˆˆ โ„‚)
3332, 5, 10mulassd 11241 . . . 4 (((๐ด โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต โ‰  0)) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท โ‰  0))) โ†’ (((๐ถ / ๐ท) ยท (๐ท / ๐ถ)) ยท (๐ด / ๐ต)) = ((๐ถ / ๐ท) ยท ((๐ท / ๐ถ) ยท (๐ด / ๐ต))))
3410mullidd 11236 . . . 4 (((๐ด โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต โ‰  0)) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท โ‰  0))) โ†’ (1 ยท (๐ด / ๐ต)) = (๐ด / ๐ต))
3530, 33, 343eqtr3d 2774 . . 3 (((๐ด โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต โ‰  0)) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท โ‰  0))) โ†’ ((๐ถ / ๐ท) ยท ((๐ท / ๐ถ) ยท (๐ด / ๐ต))) = (๐ด / ๐ต))
3617, 35eqtr3d 2768 . 2 (((๐ด โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต โ‰  0)) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท โ‰  0))) โ†’ ((๐ถ / ๐ท) ยท ((๐ด ยท ๐ท) / (๐ต ยท ๐ถ))) = (๐ด / ๐ต))
376, 1mulcld 11238 . . . 4 (((๐ด โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต โ‰  0)) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท โ‰  0))) โ†’ (๐ด ยท ๐ท) โˆˆ โ„‚)
387, 2mulcld 11238 . . . 4 (((๐ด โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต โ‰  0)) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท โ‰  0))) โ†’ (๐ต ยท ๐ถ) โˆˆ โ„‚)
39 mulne0 11860 . . . . 5 (((๐ต โˆˆ โ„‚ โˆง ๐ต โ‰  0) โˆง (๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0)) โ†’ (๐ต ยท ๐ถ) โ‰  0)
4039ad2ant2lr 745 . . . 4 (((๐ด โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต โ‰  0)) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท โ‰  0))) โ†’ (๐ต ยท ๐ถ) โ‰  0)
41 divcl 11882 . . . 4 (((๐ด ยท ๐ท) โˆˆ โ„‚ โˆง (๐ต ยท ๐ถ) โˆˆ โ„‚ โˆง (๐ต ยท ๐ถ) โ‰  0) โ†’ ((๐ด ยท ๐ท) / (๐ต ยท ๐ถ)) โˆˆ โ„‚)
4237, 38, 40, 41syl3anc 1368 . . 3 (((๐ด โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต โ‰  0)) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท โ‰  0))) โ†’ ((๐ด ยท ๐ท) / (๐ต ยท ๐ถ)) โˆˆ โ„‚)
43 divne0 11888 . . . 4 (((๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท โ‰  0)) โ†’ (๐ถ / ๐ท) โ‰  0)
4443adantl 481 . . 3 (((๐ด โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต โ‰  0)) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท โ‰  0))) โ†’ (๐ถ / ๐ท) โ‰  0)
45 divmul 11879 . . 3 (((๐ด / ๐ต) โˆˆ โ„‚ โˆง ((๐ด ยท ๐ท) / (๐ต ยท ๐ถ)) โˆˆ โ„‚ โˆง ((๐ถ / ๐ท) โˆˆ โ„‚ โˆง (๐ถ / ๐ท) โ‰  0)) โ†’ (((๐ด / ๐ต) / (๐ถ / ๐ท)) = ((๐ด ยท ๐ท) / (๐ต ยท ๐ถ)) โ†” ((๐ถ / ๐ท) ยท ((๐ด ยท ๐ท) / (๐ต ยท ๐ถ))) = (๐ด / ๐ต)))
4610, 42, 32, 44, 45syl112anc 1371 . 2 (((๐ด โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต โ‰  0)) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท โ‰  0))) โ†’ (((๐ด / ๐ต) / (๐ถ / ๐ท)) = ((๐ด ยท ๐ท) / (๐ต ยท ๐ถ)) โ†” ((๐ถ / ๐ท) ยท ((๐ด ยท ๐ท) / (๐ต ยท ๐ถ))) = (๐ด / ๐ต)))
4736, 46mpbird 257 1 (((๐ด โˆˆ โ„‚ โˆง (๐ต โˆˆ โ„‚ โˆง ๐ต โ‰  0)) โˆง ((๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0) โˆง (๐ท โˆˆ โ„‚ โˆง ๐ท โ‰  0))) โ†’ ((๐ด / ๐ต) / (๐ถ / ๐ท)) = ((๐ด ยท ๐ท) / (๐ต ยท ๐ถ)))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โ†” wb 205   โˆง wa 395   = wceq 1533   โˆˆ wcel 2098   โ‰  wne 2934  (class class class)co 7405  โ„‚cc 11110  0cc0 11112  1c1 11113   ยท cmul 11117   / cdiv 11875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-po 5581  df-so 5582  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876
This theorem is referenced by:  recdiv  11924  divcan7  11927  divdiv1  11929  divdiv2  11930  divdivdivi  11981  divdivdivd  12041  qreccl  12957  pnt2  27501
  Copyright terms: Public domain W3C validator