MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divadddivi Structured version   Visualization version   GIF version

Theorem divadddivi 11883
Description: Addition of two ratios. Theorem I.13 of [Apostol] p. 18. (Contributed by NM, 21-Feb-1995.)
Hypotheses
Ref Expression
divclz.1 𝐴 ∈ ℂ
divclz.2 𝐵 ∈ ℂ
divmulz.3 𝐶 ∈ ℂ
divmuldiv.4 𝐷 ∈ ℂ
divmuldiv.5 𝐵 ≠ 0
divmuldiv.6 𝐷 ≠ 0
Assertion
Ref Expression
divadddivi ((𝐴 / 𝐵) + (𝐶 / 𝐷)) = (((𝐴 · 𝐷) + (𝐶 · 𝐵)) / (𝐵 · 𝐷))

Proof of Theorem divadddivi
StepHypRef Expression
1 divclz.1 . 2 𝐴 ∈ ℂ
2 divmulz.3 . 2 𝐶 ∈ ℂ
3 divclz.2 . . 3 𝐵 ∈ ℂ
4 divmuldiv.5 . . 3 𝐵 ≠ 0
53, 4pm3.2i 470 . 2 (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)
6 divmuldiv.4 . . 3 𝐷 ∈ ℂ
7 divmuldiv.6 . . 3 𝐷 ≠ 0
86, 7pm3.2i 470 . 2 (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)
9 divadddiv 11836 . 2 (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → ((𝐴 / 𝐵) + (𝐶 / 𝐷)) = (((𝐴 · 𝐷) + (𝐶 · 𝐵)) / (𝐵 · 𝐷)))
101, 2, 5, 8, 9mp4an 693 1 ((𝐴 / 𝐵) + (𝐶 / 𝐷)) = (((𝐴 · 𝐷) + (𝐶 · 𝐵)) / (𝐵 · 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wcel 2111  wne 2928  (class class class)co 7346  cc 11004  0cc0 11006   + caddc 11009   · cmul 11011   / cdiv 11774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775
This theorem is referenced by:  stoweidlem13  46121
  Copyright terms: Public domain W3C validator