MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divadddivi Structured version   Visualization version   GIF version

Theorem divadddivi 11394
Description: Addition of two ratios. Theorem I.13 of [Apostol] p. 18. (Contributed by NM, 21-Feb-1995.)
Hypotheses
Ref Expression
divclz.1 𝐴 ∈ ℂ
divclz.2 𝐵 ∈ ℂ
divmulz.3 𝐶 ∈ ℂ
divmuldiv.4 𝐷 ∈ ℂ
divmuldiv.5 𝐵 ≠ 0
divmuldiv.6 𝐷 ≠ 0
Assertion
Ref Expression
divadddivi ((𝐴 / 𝐵) + (𝐶 / 𝐷)) = (((𝐴 · 𝐷) + (𝐶 · 𝐵)) / (𝐵 · 𝐷))

Proof of Theorem divadddivi
StepHypRef Expression
1 divclz.1 . 2 𝐴 ∈ ℂ
2 divmulz.3 . 2 𝐶 ∈ ℂ
3 divclz.2 . . 3 𝐵 ∈ ℂ
4 divmuldiv.5 . . 3 𝐵 ≠ 0
53, 4pm3.2i 473 . 2 (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)
6 divmuldiv.4 . . 3 𝐷 ∈ ℂ
7 divmuldiv.6 . . 3 𝐷 ≠ 0
86, 7pm3.2i 473 . 2 (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0)
9 divadddiv 11347 . 2 (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))) → ((𝐴 / 𝐵) + (𝐶 / 𝐷)) = (((𝐴 · 𝐷) + (𝐶 · 𝐵)) / (𝐵 · 𝐷)))
101, 2, 5, 8, 9mp4an 691 1 ((𝐴 / 𝐵) + (𝐶 / 𝐷)) = (((𝐴 · 𝐷) + (𝐶 · 𝐵)) / (𝐵 · 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wa 398   = wceq 1531  wcel 2108  wne 3014  (class class class)co 7148  cc 10527  0cc0 10529   + caddc 10532   · cmul 10534   / cdiv 11289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290
This theorem is referenced by:  stoweidlem13  42288
  Copyright terms: Public domain W3C validator