MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwxpndom Structured version   Visualization version   GIF version

Theorem pwxpndom 9886
Description: The powerset of a Dedekind-infinite set does not inject into its Cartesian product with itself. (Contributed by Mario Carneiro, 31-May-2015.)
Assertion
Ref Expression
pwxpndom (ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ (𝐴 × 𝐴))

Proof of Theorem pwxpndom
StepHypRef Expression
1 pwxpndom2 9885 . 2 (ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ (𝐴 ⊔ (𝐴 × 𝐴)))
2 reldom 8312 . . . . . . 7 Rel ≼
32brrelex2i 5459 . . . . . 6 (ω ≼ 𝐴𝐴 ∈ V)
43, 3xpexd 7291 . . . . 5 (ω ≼ 𝐴 → (𝐴 × 𝐴) ∈ V)
5 djudoml 9408 . . . . 5 (((𝐴 × 𝐴) ∈ V ∧ 𝐴 ∈ V) → (𝐴 × 𝐴) ≼ ((𝐴 × 𝐴) ⊔ 𝐴))
64, 3, 5syl2anc 576 . . . 4 (ω ≼ 𝐴 → (𝐴 × 𝐴) ≼ ((𝐴 × 𝐴) ⊔ 𝐴))
7 djucomen 9401 . . . . 5 (((𝐴 × 𝐴) ∈ V ∧ 𝐴 ∈ V) → ((𝐴 × 𝐴) ⊔ 𝐴) ≈ (𝐴 ⊔ (𝐴 × 𝐴)))
84, 3, 7syl2anc 576 . . . 4 (ω ≼ 𝐴 → ((𝐴 × 𝐴) ⊔ 𝐴) ≈ (𝐴 ⊔ (𝐴 × 𝐴)))
9 domentr 8365 . . . 4 (((𝐴 × 𝐴) ≼ ((𝐴 × 𝐴) ⊔ 𝐴) ∧ ((𝐴 × 𝐴) ⊔ 𝐴) ≈ (𝐴 ⊔ (𝐴 × 𝐴))) → (𝐴 × 𝐴) ≼ (𝐴 ⊔ (𝐴 × 𝐴)))
106, 8, 9syl2anc 576 . . 3 (ω ≼ 𝐴 → (𝐴 × 𝐴) ≼ (𝐴 ⊔ (𝐴 × 𝐴)))
11 domtr 8359 . . . 4 ((𝒫 𝐴 ≼ (𝐴 × 𝐴) ∧ (𝐴 × 𝐴) ≼ (𝐴 ⊔ (𝐴 × 𝐴))) → 𝒫 𝐴 ≼ (𝐴 ⊔ (𝐴 × 𝐴)))
1211expcom 406 . . 3 ((𝐴 × 𝐴) ≼ (𝐴 ⊔ (𝐴 × 𝐴)) → (𝒫 𝐴 ≼ (𝐴 × 𝐴) → 𝒫 𝐴 ≼ (𝐴 ⊔ (𝐴 × 𝐴))))
1310, 12syl 17 . 2 (ω ≼ 𝐴 → (𝒫 𝐴 ≼ (𝐴 × 𝐴) → 𝒫 𝐴 ≼ (𝐴 ⊔ (𝐴 × 𝐴))))
141, 13mtod 190 1 (ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ (𝐴 × 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2050  Vcvv 3415  𝒫 cpw 4422   class class class wbr 4929   × cxp 5405  ωcom 7396  cen 8303  cdom 8304  cdju 9121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-inf2 8898
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-fal 1520  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3682  df-csb 3787  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-pss 3845  df-nul 4179  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-int 4750  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-se 5367  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-isom 6197  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-om 7397  df-1st 7501  df-2nd 7502  df-supp 7634  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-seqom 7887  df-1o 7905  df-2o 7906  df-oadd 7909  df-omul 7910  df-oexp 7911  df-er 8089  df-map 8208  df-en 8307  df-dom 8308  df-sdom 8309  df-fin 8310  df-fsupp 8629  df-oi 8769  df-har 8817  df-cnf 8919  df-dju 9124  df-card 9162
This theorem is referenced by:  gchxpidm  9889
  Copyright terms: Public domain W3C validator