| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwxpndom | Structured version Visualization version GIF version | ||
| Description: The powerset of a Dedekind-infinite set does not inject into its Cartesian product with itself. (Contributed by Mario Carneiro, 31-May-2015.) |
| Ref | Expression |
|---|---|
| pwxpndom | ⊢ (ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ (𝐴 × 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwxpndom2 10578 | . 2 ⊢ (ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ (𝐴 ⊔ (𝐴 × 𝐴))) | |
| 2 | reldom 8885 | . . . . . . 7 ⊢ Rel ≼ | |
| 3 | 2 | brrelex2i 5680 | . . . . . 6 ⊢ (ω ≼ 𝐴 → 𝐴 ∈ V) |
| 4 | 3, 3 | xpexd 7691 | . . . . 5 ⊢ (ω ≼ 𝐴 → (𝐴 × 𝐴) ∈ V) |
| 5 | djudoml 10098 | . . . . 5 ⊢ (((𝐴 × 𝐴) ∈ V ∧ 𝐴 ∈ V) → (𝐴 × 𝐴) ≼ ((𝐴 × 𝐴) ⊔ 𝐴)) | |
| 6 | 4, 3, 5 | syl2anc 584 | . . . 4 ⊢ (ω ≼ 𝐴 → (𝐴 × 𝐴) ≼ ((𝐴 × 𝐴) ⊔ 𝐴)) |
| 7 | djucomen 10091 | . . . . 5 ⊢ (((𝐴 × 𝐴) ∈ V ∧ 𝐴 ∈ V) → ((𝐴 × 𝐴) ⊔ 𝐴) ≈ (𝐴 ⊔ (𝐴 × 𝐴))) | |
| 8 | 4, 3, 7 | syl2anc 584 | . . . 4 ⊢ (ω ≼ 𝐴 → ((𝐴 × 𝐴) ⊔ 𝐴) ≈ (𝐴 ⊔ (𝐴 × 𝐴))) |
| 9 | domentr 8945 | . . . 4 ⊢ (((𝐴 × 𝐴) ≼ ((𝐴 × 𝐴) ⊔ 𝐴) ∧ ((𝐴 × 𝐴) ⊔ 𝐴) ≈ (𝐴 ⊔ (𝐴 × 𝐴))) → (𝐴 × 𝐴) ≼ (𝐴 ⊔ (𝐴 × 𝐴))) | |
| 10 | 6, 8, 9 | syl2anc 584 | . . 3 ⊢ (ω ≼ 𝐴 → (𝐴 × 𝐴) ≼ (𝐴 ⊔ (𝐴 × 𝐴))) |
| 11 | domtr 8939 | . . . 4 ⊢ ((𝒫 𝐴 ≼ (𝐴 × 𝐴) ∧ (𝐴 × 𝐴) ≼ (𝐴 ⊔ (𝐴 × 𝐴))) → 𝒫 𝐴 ≼ (𝐴 ⊔ (𝐴 × 𝐴))) | |
| 12 | 11 | expcom 413 | . . 3 ⊢ ((𝐴 × 𝐴) ≼ (𝐴 ⊔ (𝐴 × 𝐴)) → (𝒫 𝐴 ≼ (𝐴 × 𝐴) → 𝒫 𝐴 ≼ (𝐴 ⊔ (𝐴 × 𝐴)))) |
| 13 | 10, 12 | syl 17 | . 2 ⊢ (ω ≼ 𝐴 → (𝒫 𝐴 ≼ (𝐴 × 𝐴) → 𝒫 𝐴 ≼ (𝐴 ⊔ (𝐴 × 𝐴)))) |
| 14 | 1, 13 | mtod 198 | 1 ⊢ (ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ (𝐴 × 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2109 Vcvv 3438 𝒫 cpw 4553 class class class wbr 5095 × cxp 5621 ωcom 7806 ≈ cen 8876 ≼ cdom 8877 ⊔ cdju 9813 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-seqom 8377 df-1o 8395 df-2o 8396 df-oadd 8399 df-omul 8400 df-oexp 8401 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-oi 9421 df-har 9468 df-cnf 9577 df-dju 9816 df-card 9854 |
| This theorem is referenced by: gchxpidm 10582 |
| Copyright terms: Public domain | W3C validator |