![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwxpndom | Structured version Visualization version GIF version |
Description: The powerset of a Dedekind-infinite set does not inject into its Cartesian product with itself. (Contributed by Mario Carneiro, 31-May-2015.) |
Ref | Expression |
---|---|
pwxpndom | ⊢ (ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ (𝐴 × 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwxpndom2 10659 | . 2 ⊢ (ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ (𝐴 ⊔ (𝐴 × 𝐴))) | |
2 | reldom 8944 | . . . . . . 7 ⊢ Rel ≼ | |
3 | 2 | brrelex2i 5733 | . . . . . 6 ⊢ (ω ≼ 𝐴 → 𝐴 ∈ V) |
4 | 3, 3 | xpexd 7737 | . . . . 5 ⊢ (ω ≼ 𝐴 → (𝐴 × 𝐴) ∈ V) |
5 | djudoml 10178 | . . . . 5 ⊢ (((𝐴 × 𝐴) ∈ V ∧ 𝐴 ∈ V) → (𝐴 × 𝐴) ≼ ((𝐴 × 𝐴) ⊔ 𝐴)) | |
6 | 4, 3, 5 | syl2anc 584 | . . . 4 ⊢ (ω ≼ 𝐴 → (𝐴 × 𝐴) ≼ ((𝐴 × 𝐴) ⊔ 𝐴)) |
7 | djucomen 10171 | . . . . 5 ⊢ (((𝐴 × 𝐴) ∈ V ∧ 𝐴 ∈ V) → ((𝐴 × 𝐴) ⊔ 𝐴) ≈ (𝐴 ⊔ (𝐴 × 𝐴))) | |
8 | 4, 3, 7 | syl2anc 584 | . . . 4 ⊢ (ω ≼ 𝐴 → ((𝐴 × 𝐴) ⊔ 𝐴) ≈ (𝐴 ⊔ (𝐴 × 𝐴))) |
9 | domentr 9008 | . . . 4 ⊢ (((𝐴 × 𝐴) ≼ ((𝐴 × 𝐴) ⊔ 𝐴) ∧ ((𝐴 × 𝐴) ⊔ 𝐴) ≈ (𝐴 ⊔ (𝐴 × 𝐴))) → (𝐴 × 𝐴) ≼ (𝐴 ⊔ (𝐴 × 𝐴))) | |
10 | 6, 8, 9 | syl2anc 584 | . . 3 ⊢ (ω ≼ 𝐴 → (𝐴 × 𝐴) ≼ (𝐴 ⊔ (𝐴 × 𝐴))) |
11 | domtr 9002 | . . . 4 ⊢ ((𝒫 𝐴 ≼ (𝐴 × 𝐴) ∧ (𝐴 × 𝐴) ≼ (𝐴 ⊔ (𝐴 × 𝐴))) → 𝒫 𝐴 ≼ (𝐴 ⊔ (𝐴 × 𝐴))) | |
12 | 11 | expcom 414 | . . 3 ⊢ ((𝐴 × 𝐴) ≼ (𝐴 ⊔ (𝐴 × 𝐴)) → (𝒫 𝐴 ≼ (𝐴 × 𝐴) → 𝒫 𝐴 ≼ (𝐴 ⊔ (𝐴 × 𝐴)))) |
13 | 10, 12 | syl 17 | . 2 ⊢ (ω ≼ 𝐴 → (𝒫 𝐴 ≼ (𝐴 × 𝐴) → 𝒫 𝐴 ≼ (𝐴 ⊔ (𝐴 × 𝐴)))) |
14 | 1, 13 | mtod 197 | 1 ⊢ (ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ (𝐴 × 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2106 Vcvv 3474 𝒫 cpw 4602 class class class wbr 5148 × cxp 5674 ωcom 7854 ≈ cen 8935 ≼ cdom 8936 ⊔ cdju 9892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-inf2 9635 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-supp 8146 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-seqom 8447 df-1o 8465 df-2o 8466 df-oadd 8469 df-omul 8470 df-oexp 8471 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-fsupp 9361 df-oi 9504 df-har 9551 df-cnf 9656 df-dju 9895 df-card 9933 |
This theorem is referenced by: gchxpidm 10663 |
Copyright terms: Public domain | W3C validator |