MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwxpndom Structured version   Visualization version   GIF version

Theorem pwxpndom 10619
Description: The powerset of a Dedekind-infinite set does not inject into its Cartesian product with itself. (Contributed by Mario Carneiro, 31-May-2015.)
Assertion
Ref Expression
pwxpndom (ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ (𝐴 × 𝐴))

Proof of Theorem pwxpndom
StepHypRef Expression
1 pwxpndom2 10618 . 2 (ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ (𝐴 ⊔ (𝐴 × 𝐴)))
2 reldom 8924 . . . . . . 7 Rel ≼
32brrelex2i 5695 . . . . . 6 (ω ≼ 𝐴𝐴 ∈ V)
43, 3xpexd 7727 . . . . 5 (ω ≼ 𝐴 → (𝐴 × 𝐴) ∈ V)
5 djudoml 10138 . . . . 5 (((𝐴 × 𝐴) ∈ V ∧ 𝐴 ∈ V) → (𝐴 × 𝐴) ≼ ((𝐴 × 𝐴) ⊔ 𝐴))
64, 3, 5syl2anc 584 . . . 4 (ω ≼ 𝐴 → (𝐴 × 𝐴) ≼ ((𝐴 × 𝐴) ⊔ 𝐴))
7 djucomen 10131 . . . . 5 (((𝐴 × 𝐴) ∈ V ∧ 𝐴 ∈ V) → ((𝐴 × 𝐴) ⊔ 𝐴) ≈ (𝐴 ⊔ (𝐴 × 𝐴)))
84, 3, 7syl2anc 584 . . . 4 (ω ≼ 𝐴 → ((𝐴 × 𝐴) ⊔ 𝐴) ≈ (𝐴 ⊔ (𝐴 × 𝐴)))
9 domentr 8984 . . . 4 (((𝐴 × 𝐴) ≼ ((𝐴 × 𝐴) ⊔ 𝐴) ∧ ((𝐴 × 𝐴) ⊔ 𝐴) ≈ (𝐴 ⊔ (𝐴 × 𝐴))) → (𝐴 × 𝐴) ≼ (𝐴 ⊔ (𝐴 × 𝐴)))
106, 8, 9syl2anc 584 . . 3 (ω ≼ 𝐴 → (𝐴 × 𝐴) ≼ (𝐴 ⊔ (𝐴 × 𝐴)))
11 domtr 8978 . . . 4 ((𝒫 𝐴 ≼ (𝐴 × 𝐴) ∧ (𝐴 × 𝐴) ≼ (𝐴 ⊔ (𝐴 × 𝐴))) → 𝒫 𝐴 ≼ (𝐴 ⊔ (𝐴 × 𝐴)))
1211expcom 413 . . 3 ((𝐴 × 𝐴) ≼ (𝐴 ⊔ (𝐴 × 𝐴)) → (𝒫 𝐴 ≼ (𝐴 × 𝐴) → 𝒫 𝐴 ≼ (𝐴 ⊔ (𝐴 × 𝐴))))
1310, 12syl 17 . 2 (ω ≼ 𝐴 → (𝒫 𝐴 ≼ (𝐴 × 𝐴) → 𝒫 𝐴 ≼ (𝐴 ⊔ (𝐴 × 𝐴))))
141, 13mtod 198 1 (ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ (𝐴 × 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2109  Vcvv 3447  𝒫 cpw 4563   class class class wbr 5107   × cxp 5636  ωcom 7842  cen 8915  cdom 8916  cdju 9851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-seqom 8416  df-1o 8434  df-2o 8435  df-oadd 8438  df-omul 8439  df-oexp 8440  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-oi 9463  df-har 9510  df-cnf 9615  df-dju 9854  df-card 9892
This theorem is referenced by:  gchxpidm  10622
  Copyright terms: Public domain W3C validator