MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infdju Structured version   Visualization version   GIF version

Theorem infdju 10109
Description: The sum of two cardinal numbers is their maximum, if one of them is infinite. Proposition 10.41 of [TakeutiZaring] p. 95. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
infdju ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴𝐵) ≈ (𝐴𝐵))

Proof of Theorem infdju
StepHypRef Expression
1 unnum 10099 . . . . . . 7 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴𝐵) ∈ dom card)
213adant3 1132 . . . . . 6 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴𝐵) ∈ dom card)
3 ssun2 4128 . . . . . 6 𝐵 ⊆ (𝐴𝐵)
4 ssdomg 8933 . . . . . 6 ((𝐴𝐵) ∈ dom card → (𝐵 ⊆ (𝐴𝐵) → 𝐵 ≼ (𝐴𝐵)))
52, 3, 4mpisyl 21 . . . . 5 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → 𝐵 ≼ (𝐴𝐵))
6 simp1 1136 . . . . 5 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → 𝐴 ∈ dom card)
7 djudom2 10086 . . . . 5 ((𝐵 ≼ (𝐴𝐵) ∧ 𝐴 ∈ dom card) → (𝐴𝐵) ≼ (𝐴 ⊔ (𝐴𝐵)))
85, 6, 7syl2anc 584 . . . 4 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴𝐵) ≼ (𝐴 ⊔ (𝐴𝐵)))
9 djucomen 10080 . . . . 5 ((𝐴 ∈ dom card ∧ (𝐴𝐵) ∈ dom card) → (𝐴 ⊔ (𝐴𝐵)) ≈ ((𝐴𝐵) ⊔ 𝐴))
106, 2, 9syl2anc 584 . . . 4 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴 ⊔ (𝐴𝐵)) ≈ ((𝐴𝐵) ⊔ 𝐴))
11 domentr 8946 . . . 4 (((𝐴𝐵) ≼ (𝐴 ⊔ (𝐴𝐵)) ∧ (𝐴 ⊔ (𝐴𝐵)) ≈ ((𝐴𝐵) ⊔ 𝐴)) → (𝐴𝐵) ≼ ((𝐴𝐵) ⊔ 𝐴))
128, 10, 11syl2anc 584 . . 3 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴𝐵) ≼ ((𝐴𝐵) ⊔ 𝐴))
13 simp3 1138 . . . . 5 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → ω ≼ 𝐴)
14 ssun1 4127 . . . . . 6 𝐴 ⊆ (𝐴𝐵)
15 ssdomg 8933 . . . . . 6 ((𝐴𝐵) ∈ dom card → (𝐴 ⊆ (𝐴𝐵) → 𝐴 ≼ (𝐴𝐵)))
162, 14, 15mpisyl 21 . . . . 5 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → 𝐴 ≼ (𝐴𝐵))
17 domtr 8940 . . . . 5 ((ω ≼ 𝐴𝐴 ≼ (𝐴𝐵)) → ω ≼ (𝐴𝐵))
1813, 16, 17syl2anc 584 . . . 4 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → ω ≼ (𝐴𝐵))
19 infdjuabs 10107 . . . 4 (((𝐴𝐵) ∈ dom card ∧ ω ≼ (𝐴𝐵) ∧ 𝐴 ≼ (𝐴𝐵)) → ((𝐴𝐵) ⊔ 𝐴) ≈ (𝐴𝐵))
202, 18, 16, 19syl3anc 1373 . . 3 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → ((𝐴𝐵) ⊔ 𝐴) ≈ (𝐴𝐵))
21 domentr 8946 . . 3 (((𝐴𝐵) ≼ ((𝐴𝐵) ⊔ 𝐴) ∧ ((𝐴𝐵) ⊔ 𝐴) ≈ (𝐴𝐵)) → (𝐴𝐵) ≼ (𝐴𝐵))
2212, 20, 21syl2anc 584 . 2 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴𝐵) ≼ (𝐴𝐵))
23 undjudom 10070 . . 3 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴𝐵) ≼ (𝐴𝐵))
24233adant3 1132 . 2 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴𝐵) ≼ (𝐴𝐵))
25 sbth 9021 . 2 (((𝐴𝐵) ≼ (𝐴𝐵) ∧ (𝐴𝐵) ≼ (𝐴𝐵)) → (𝐴𝐵) ≈ (𝐴𝐵))
2622, 24, 25syl2anc 584 1 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴𝐵) ≈ (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086  wcel 2113  cun 3896  wss 3898   class class class wbr 5095  dom cdm 5621  ωcom 7805  cen 8876  cdom 8877  cdju 9802  cardccrd 9839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9542
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-oadd 8398  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-oi 9407  df-dju 9805  df-card 9843
This theorem is referenced by:  alephadd  10479
  Copyright terms: Public domain W3C validator