MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infdju Structured version   Visualization version   GIF version

Theorem infdju 9847
Description: The sum of two cardinal numbers is their maximum, if one of them is infinite. Proposition 10.41 of [TakeutiZaring] p. 95. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
infdju ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴𝐵) ≈ (𝐴𝐵))

Proof of Theorem infdju
StepHypRef Expression
1 unnum 9835 . . . . . . 7 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴𝐵) ∈ dom card)
213adant3 1134 . . . . . 6 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴𝐵) ∈ dom card)
3 ssun2 4102 . . . . . 6 𝐵 ⊆ (𝐴𝐵)
4 ssdomg 8697 . . . . . 6 ((𝐴𝐵) ∈ dom card → (𝐵 ⊆ (𝐴𝐵) → 𝐵 ≼ (𝐴𝐵)))
52, 3, 4mpisyl 21 . . . . 5 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → 𝐵 ≼ (𝐴𝐵))
6 simp1 1138 . . . . 5 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → 𝐴 ∈ dom card)
7 djudom2 9822 . . . . 5 ((𝐵 ≼ (𝐴𝐵) ∧ 𝐴 ∈ dom card) → (𝐴𝐵) ≼ (𝐴 ⊔ (𝐴𝐵)))
85, 6, 7syl2anc 587 . . . 4 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴𝐵) ≼ (𝐴 ⊔ (𝐴𝐵)))
9 djucomen 9816 . . . . 5 ((𝐴 ∈ dom card ∧ (𝐴𝐵) ∈ dom card) → (𝐴 ⊔ (𝐴𝐵)) ≈ ((𝐴𝐵) ⊔ 𝐴))
106, 2, 9syl2anc 587 . . . 4 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴 ⊔ (𝐴𝐵)) ≈ ((𝐴𝐵) ⊔ 𝐴))
11 domentr 8710 . . . 4 (((𝐴𝐵) ≼ (𝐴 ⊔ (𝐴𝐵)) ∧ (𝐴 ⊔ (𝐴𝐵)) ≈ ((𝐴𝐵) ⊔ 𝐴)) → (𝐴𝐵) ≼ ((𝐴𝐵) ⊔ 𝐴))
128, 10, 11syl2anc 587 . . 3 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴𝐵) ≼ ((𝐴𝐵) ⊔ 𝐴))
13 simp3 1140 . . . . 5 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → ω ≼ 𝐴)
14 ssun1 4101 . . . . . 6 𝐴 ⊆ (𝐴𝐵)
15 ssdomg 8697 . . . . . 6 ((𝐴𝐵) ∈ dom card → (𝐴 ⊆ (𝐴𝐵) → 𝐴 ≼ (𝐴𝐵)))
162, 14, 15mpisyl 21 . . . . 5 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → 𝐴 ≼ (𝐴𝐵))
17 domtr 8704 . . . . 5 ((ω ≼ 𝐴𝐴 ≼ (𝐴𝐵)) → ω ≼ (𝐴𝐵))
1813, 16, 17syl2anc 587 . . . 4 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → ω ≼ (𝐴𝐵))
19 infdjuabs 9845 . . . 4 (((𝐴𝐵) ∈ dom card ∧ ω ≼ (𝐴𝐵) ∧ 𝐴 ≼ (𝐴𝐵)) → ((𝐴𝐵) ⊔ 𝐴) ≈ (𝐴𝐵))
202, 18, 16, 19syl3anc 1373 . . 3 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → ((𝐴𝐵) ⊔ 𝐴) ≈ (𝐴𝐵))
21 domentr 8710 . . 3 (((𝐴𝐵) ≼ ((𝐴𝐵) ⊔ 𝐴) ∧ ((𝐴𝐵) ⊔ 𝐴) ≈ (𝐴𝐵)) → (𝐴𝐵) ≼ (𝐴𝐵))
2212, 20, 21syl2anc 587 . 2 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴𝐵) ≼ (𝐴𝐵))
23 undjudom 9806 . . 3 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴𝐵) ≼ (𝐴𝐵))
24233adant3 1134 . 2 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴𝐵) ≼ (𝐴𝐵))
25 sbth 8789 . 2 (((𝐴𝐵) ≼ (𝐴𝐵) ∧ (𝐴𝐵) ≼ (𝐴𝐵)) → (𝐴𝐵) ≈ (𝐴𝐵))
2622, 24, 25syl2anc 587 1 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴𝐵) ≈ (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1089  wcel 2111  cun 3879  wss 3881   class class class wbr 5068  dom cdm 5566  ωcom 7663  cen 8644  cdom 8645  cdju 9539  cardccrd 9576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-rep 5194  ax-sep 5207  ax-nul 5214  ax-pow 5273  ax-pr 5337  ax-un 7542  ax-inf2 9281
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-ral 3067  df-rex 3068  df-reu 3069  df-rmo 3070  df-rab 3071  df-v 3423  df-sbc 3710  df-csb 3827  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4253  df-if 4455  df-pw 4530  df-sn 4557  df-pr 4559  df-tp 4561  df-op 4563  df-uni 4835  df-int 4875  df-iun 4921  df-br 5069  df-opab 5131  df-mpt 5151  df-tr 5177  df-id 5470  df-eprel 5475  df-po 5483  df-so 5484  df-fr 5524  df-se 5525  df-we 5526  df-xp 5572  df-rel 5573  df-cnv 5574  df-co 5575  df-dm 5576  df-rn 5577  df-res 5578  df-ima 5579  df-pred 6176  df-ord 6234  df-on 6235  df-lim 6236  df-suc 6237  df-iota 6356  df-fun 6400  df-fn 6401  df-f 6402  df-f1 6403  df-fo 6404  df-f1o 6405  df-fv 6406  df-isom 6407  df-riota 7189  df-ov 7235  df-oprab 7236  df-mpo 7237  df-om 7664  df-1st 7780  df-2nd 7781  df-wrecs 8068  df-recs 8129  df-rdg 8167  df-1o 8223  df-2o 8224  df-oadd 8227  df-er 8412  df-en 8648  df-dom 8649  df-sdom 8650  df-fin 8651  df-oi 9151  df-dju 9542  df-card 9580
This theorem is referenced by:  alephadd  10216
  Copyright terms: Public domain W3C validator