Proof of Theorem infdju
| Step | Hyp | Ref
| Expression |
| 1 | | unnum 10237 |
. . . . . . 7
⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴 ∪ 𝐵) ∈ dom card) |
| 2 | 1 | 3adant3 1133 |
. . . . . 6
⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω
≼ 𝐴) → (𝐴 ∪ 𝐵) ∈ dom card) |
| 3 | | ssun2 4179 |
. . . . . 6
⊢ 𝐵 ⊆ (𝐴 ∪ 𝐵) |
| 4 | | ssdomg 9040 |
. . . . . 6
⊢ ((𝐴 ∪ 𝐵) ∈ dom card → (𝐵 ⊆ (𝐴 ∪ 𝐵) → 𝐵 ≼ (𝐴 ∪ 𝐵))) |
| 5 | 2, 3, 4 | mpisyl 21 |
. . . . 5
⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω
≼ 𝐴) → 𝐵 ≼ (𝐴 ∪ 𝐵)) |
| 6 | | simp1 1137 |
. . . . 5
⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω
≼ 𝐴) → 𝐴 ∈ dom
card) |
| 7 | | djudom2 10224 |
. . . . 5
⊢ ((𝐵 ≼ (𝐴 ∪ 𝐵) ∧ 𝐴 ∈ dom card) → (𝐴 ⊔ 𝐵) ≼ (𝐴 ⊔ (𝐴 ∪ 𝐵))) |
| 8 | 5, 6, 7 | syl2anc 584 |
. . . 4
⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω
≼ 𝐴) → (𝐴 ⊔ 𝐵) ≼ (𝐴 ⊔ (𝐴 ∪ 𝐵))) |
| 9 | | djucomen 10218 |
. . . . 5
⊢ ((𝐴 ∈ dom card ∧ (𝐴 ∪ 𝐵) ∈ dom card) → (𝐴 ⊔ (𝐴 ∪ 𝐵)) ≈ ((𝐴 ∪ 𝐵) ⊔ 𝐴)) |
| 10 | 6, 2, 9 | syl2anc 584 |
. . . 4
⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω
≼ 𝐴) → (𝐴 ⊔ (𝐴 ∪ 𝐵)) ≈ ((𝐴 ∪ 𝐵) ⊔ 𝐴)) |
| 11 | | domentr 9053 |
. . . 4
⊢ (((𝐴 ⊔ 𝐵) ≼ (𝐴 ⊔ (𝐴 ∪ 𝐵)) ∧ (𝐴 ⊔ (𝐴 ∪ 𝐵)) ≈ ((𝐴 ∪ 𝐵) ⊔ 𝐴)) → (𝐴 ⊔ 𝐵) ≼ ((𝐴 ∪ 𝐵) ⊔ 𝐴)) |
| 12 | 8, 10, 11 | syl2anc 584 |
. . 3
⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω
≼ 𝐴) → (𝐴 ⊔ 𝐵) ≼ ((𝐴 ∪ 𝐵) ⊔ 𝐴)) |
| 13 | | simp3 1139 |
. . . . 5
⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω
≼ 𝐴) → ω
≼ 𝐴) |
| 14 | | ssun1 4178 |
. . . . . 6
⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) |
| 15 | | ssdomg 9040 |
. . . . . 6
⊢ ((𝐴 ∪ 𝐵) ∈ dom card → (𝐴 ⊆ (𝐴 ∪ 𝐵) → 𝐴 ≼ (𝐴 ∪ 𝐵))) |
| 16 | 2, 14, 15 | mpisyl 21 |
. . . . 5
⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω
≼ 𝐴) → 𝐴 ≼ (𝐴 ∪ 𝐵)) |
| 17 | | domtr 9047 |
. . . . 5
⊢ ((ω
≼ 𝐴 ∧ 𝐴 ≼ (𝐴 ∪ 𝐵)) → ω ≼ (𝐴 ∪ 𝐵)) |
| 18 | 13, 16, 17 | syl2anc 584 |
. . . 4
⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω
≼ 𝐴) → ω
≼ (𝐴 ∪ 𝐵)) |
| 19 | | infdjuabs 10245 |
. . . 4
⊢ (((𝐴 ∪ 𝐵) ∈ dom card ∧ ω ≼
(𝐴 ∪ 𝐵) ∧ 𝐴 ≼ (𝐴 ∪ 𝐵)) → ((𝐴 ∪ 𝐵) ⊔ 𝐴) ≈ (𝐴 ∪ 𝐵)) |
| 20 | 2, 18, 16, 19 | syl3anc 1373 |
. . 3
⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω
≼ 𝐴) → ((𝐴 ∪ 𝐵) ⊔ 𝐴) ≈ (𝐴 ∪ 𝐵)) |
| 21 | | domentr 9053 |
. . 3
⊢ (((𝐴 ⊔ 𝐵) ≼ ((𝐴 ∪ 𝐵) ⊔ 𝐴) ∧ ((𝐴 ∪ 𝐵) ⊔ 𝐴) ≈ (𝐴 ∪ 𝐵)) → (𝐴 ⊔ 𝐵) ≼ (𝐴 ∪ 𝐵)) |
| 22 | 12, 20, 21 | syl2anc 584 |
. 2
⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω
≼ 𝐴) → (𝐴 ⊔ 𝐵) ≼ (𝐴 ∪ 𝐵)) |
| 23 | | undjudom 10208 |
. . 3
⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴 ∪ 𝐵) ≼ (𝐴 ⊔ 𝐵)) |
| 24 | 23 | 3adant3 1133 |
. 2
⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω
≼ 𝐴) → (𝐴 ∪ 𝐵) ≼ (𝐴 ⊔ 𝐵)) |
| 25 | | sbth 9133 |
. 2
⊢ (((𝐴 ⊔ 𝐵) ≼ (𝐴 ∪ 𝐵) ∧ (𝐴 ∪ 𝐵) ≼ (𝐴 ⊔ 𝐵)) → (𝐴 ⊔ 𝐵) ≈ (𝐴 ∪ 𝐵)) |
| 26 | 22, 24, 25 | syl2anc 584 |
1
⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω
≼ 𝐴) → (𝐴 ⊔ 𝐵) ≈ (𝐴 ∪ 𝐵)) |