MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infdju Structured version   Visualization version   GIF version

Theorem infdju 10219
Description: The sum of two cardinal numbers is their maximum, if one of them is infinite. Proposition 10.41 of [TakeutiZaring] p. 95. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
infdju ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴𝐵) ≈ (𝐴𝐵))

Proof of Theorem infdju
StepHypRef Expression
1 unnum 10209 . . . . . . 7 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴𝐵) ∈ dom card)
213adant3 1132 . . . . . 6 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴𝐵) ∈ dom card)
3 ssun2 4154 . . . . . 6 𝐵 ⊆ (𝐴𝐵)
4 ssdomg 9012 . . . . . 6 ((𝐴𝐵) ∈ dom card → (𝐵 ⊆ (𝐴𝐵) → 𝐵 ≼ (𝐴𝐵)))
52, 3, 4mpisyl 21 . . . . 5 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → 𝐵 ≼ (𝐴𝐵))
6 simp1 1136 . . . . 5 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → 𝐴 ∈ dom card)
7 djudom2 10196 . . . . 5 ((𝐵 ≼ (𝐴𝐵) ∧ 𝐴 ∈ dom card) → (𝐴𝐵) ≼ (𝐴 ⊔ (𝐴𝐵)))
85, 6, 7syl2anc 584 . . . 4 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴𝐵) ≼ (𝐴 ⊔ (𝐴𝐵)))
9 djucomen 10190 . . . . 5 ((𝐴 ∈ dom card ∧ (𝐴𝐵) ∈ dom card) → (𝐴 ⊔ (𝐴𝐵)) ≈ ((𝐴𝐵) ⊔ 𝐴))
106, 2, 9syl2anc 584 . . . 4 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴 ⊔ (𝐴𝐵)) ≈ ((𝐴𝐵) ⊔ 𝐴))
11 domentr 9025 . . . 4 (((𝐴𝐵) ≼ (𝐴 ⊔ (𝐴𝐵)) ∧ (𝐴 ⊔ (𝐴𝐵)) ≈ ((𝐴𝐵) ⊔ 𝐴)) → (𝐴𝐵) ≼ ((𝐴𝐵) ⊔ 𝐴))
128, 10, 11syl2anc 584 . . 3 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴𝐵) ≼ ((𝐴𝐵) ⊔ 𝐴))
13 simp3 1138 . . . . 5 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → ω ≼ 𝐴)
14 ssun1 4153 . . . . . 6 𝐴 ⊆ (𝐴𝐵)
15 ssdomg 9012 . . . . . 6 ((𝐴𝐵) ∈ dom card → (𝐴 ⊆ (𝐴𝐵) → 𝐴 ≼ (𝐴𝐵)))
162, 14, 15mpisyl 21 . . . . 5 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → 𝐴 ≼ (𝐴𝐵))
17 domtr 9019 . . . . 5 ((ω ≼ 𝐴𝐴 ≼ (𝐴𝐵)) → ω ≼ (𝐴𝐵))
1813, 16, 17syl2anc 584 . . . 4 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → ω ≼ (𝐴𝐵))
19 infdjuabs 10217 . . . 4 (((𝐴𝐵) ∈ dom card ∧ ω ≼ (𝐴𝐵) ∧ 𝐴 ≼ (𝐴𝐵)) → ((𝐴𝐵) ⊔ 𝐴) ≈ (𝐴𝐵))
202, 18, 16, 19syl3anc 1373 . . 3 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → ((𝐴𝐵) ⊔ 𝐴) ≈ (𝐴𝐵))
21 domentr 9025 . . 3 (((𝐴𝐵) ≼ ((𝐴𝐵) ⊔ 𝐴) ∧ ((𝐴𝐵) ⊔ 𝐴) ≈ (𝐴𝐵)) → (𝐴𝐵) ≼ (𝐴𝐵))
2212, 20, 21syl2anc 584 . 2 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴𝐵) ≼ (𝐴𝐵))
23 undjudom 10180 . . 3 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴𝐵) ≼ (𝐴𝐵))
24233adant3 1132 . 2 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴𝐵) ≼ (𝐴𝐵))
25 sbth 9105 . 2 (((𝐴𝐵) ≼ (𝐴𝐵) ∧ (𝐴𝐵) ≼ (𝐴𝐵)) → (𝐴𝐵) ≈ (𝐴𝐵))
2622, 24, 25syl2anc 584 1 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴𝐵) ≈ (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086  wcel 2108  cun 3924  wss 3926   class class class wbr 5119  dom cdm 5654  ωcom 7859  cen 8954  cdom 8955  cdju 9910  cardccrd 9947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-inf2 9653
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-oadd 8482  df-er 8717  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-oi 9522  df-dju 9913  df-card 9951
This theorem is referenced by:  alephadd  10589
  Copyright terms: Public domain W3C validator