MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infdju Structured version   Visualization version   GIF version

Theorem infdju 9623
Description: The sum of two cardinal numbers is their maximum, if one of them is infinite. Proposition 10.41 of [TakeutiZaring] p. 95. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
infdju ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴𝐵) ≈ (𝐴𝐵))

Proof of Theorem infdju
StepHypRef Expression
1 unnum 9615 . . . . . . 7 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴𝐵) ∈ dom card)
213adant3 1127 . . . . . 6 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴𝐵) ∈ dom card)
3 ssun2 4142 . . . . . 6 𝐵 ⊆ (𝐴𝐵)
4 ssdomg 8548 . . . . . 6 ((𝐴𝐵) ∈ dom card → (𝐵 ⊆ (𝐴𝐵) → 𝐵 ≼ (𝐴𝐵)))
52, 3, 4mpisyl 21 . . . . 5 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → 𝐵 ≼ (𝐴𝐵))
6 simp1 1131 . . . . 5 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → 𝐴 ∈ dom card)
7 djudom2 9602 . . . . 5 ((𝐵 ≼ (𝐴𝐵) ∧ 𝐴 ∈ dom card) → (𝐴𝐵) ≼ (𝐴 ⊔ (𝐴𝐵)))
85, 6, 7syl2anc 586 . . . 4 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴𝐵) ≼ (𝐴 ⊔ (𝐴𝐵)))
9 djucomen 9596 . . . . 5 ((𝐴 ∈ dom card ∧ (𝐴𝐵) ∈ dom card) → (𝐴 ⊔ (𝐴𝐵)) ≈ ((𝐴𝐵) ⊔ 𝐴))
106, 2, 9syl2anc 586 . . . 4 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴 ⊔ (𝐴𝐵)) ≈ ((𝐴𝐵) ⊔ 𝐴))
11 domentr 8561 . . . 4 (((𝐴𝐵) ≼ (𝐴 ⊔ (𝐴𝐵)) ∧ (𝐴 ⊔ (𝐴𝐵)) ≈ ((𝐴𝐵) ⊔ 𝐴)) → (𝐴𝐵) ≼ ((𝐴𝐵) ⊔ 𝐴))
128, 10, 11syl2anc 586 . . 3 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴𝐵) ≼ ((𝐴𝐵) ⊔ 𝐴))
13 simp3 1133 . . . . 5 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → ω ≼ 𝐴)
14 ssun1 4141 . . . . . 6 𝐴 ⊆ (𝐴𝐵)
15 ssdomg 8548 . . . . . 6 ((𝐴𝐵) ∈ dom card → (𝐴 ⊆ (𝐴𝐵) → 𝐴 ≼ (𝐴𝐵)))
162, 14, 15mpisyl 21 . . . . 5 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → 𝐴 ≼ (𝐴𝐵))
17 domtr 8555 . . . . 5 ((ω ≼ 𝐴𝐴 ≼ (𝐴𝐵)) → ω ≼ (𝐴𝐵))
1813, 16, 17syl2anc 586 . . . 4 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → ω ≼ (𝐴𝐵))
19 infdjuabs 9621 . . . 4 (((𝐴𝐵) ∈ dom card ∧ ω ≼ (𝐴𝐵) ∧ 𝐴 ≼ (𝐴𝐵)) → ((𝐴𝐵) ⊔ 𝐴) ≈ (𝐴𝐵))
202, 18, 16, 19syl3anc 1366 . . 3 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → ((𝐴𝐵) ⊔ 𝐴) ≈ (𝐴𝐵))
21 domentr 8561 . . 3 (((𝐴𝐵) ≼ ((𝐴𝐵) ⊔ 𝐴) ∧ ((𝐴𝐵) ⊔ 𝐴) ≈ (𝐴𝐵)) → (𝐴𝐵) ≼ (𝐴𝐵))
2212, 20, 21syl2anc 586 . 2 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴𝐵) ≼ (𝐴𝐵))
23 undjudom 9586 . . 3 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴𝐵) ≼ (𝐴𝐵))
24233adant3 1127 . 2 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴𝐵) ≼ (𝐴𝐵))
25 sbth 8630 . 2 (((𝐴𝐵) ≼ (𝐴𝐵) ∧ (𝐴𝐵) ≼ (𝐴𝐵)) → (𝐴𝐵) ≈ (𝐴𝐵))
2622, 24, 25syl2anc 586 1 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴𝐵) ≈ (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1082  wcel 2113  cun 3927  wss 3929   class class class wbr 5059  dom cdm 5548  ωcom 7573  cen 8499  cdom 8500  cdju 9320  cardccrd 9357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454  ax-inf2 9097
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-ral 3142  df-rex 3143  df-reu 3144  df-rmo 3145  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-pss 3947  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7574  df-1st 7682  df-2nd 7683  df-wrecs 7940  df-recs 8001  df-rdg 8039  df-1o 8095  df-2o 8096  df-oadd 8099  df-er 8282  df-en 8503  df-dom 8504  df-sdom 8505  df-fin 8506  df-oi 8967  df-dju 9323  df-card 9361
This theorem is referenced by:  alephadd  9992
  Copyright terms: Public domain W3C validator