Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eliccre Structured version   Visualization version   GIF version

Theorem eliccre 43675
Description: A member of a closed interval of reals is real. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
eliccre ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ ℝ)

Proof of Theorem eliccre
StepHypRef Expression
1 elicc2 13321 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵)))
21biimp3a 1469 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵))
32simp1d 1142 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087  wcel 2106   class class class wbr 5103  (class class class)co 7353  cr 11046  cle 11186  [,]cicc 13259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7668  ax-cnex 11103  ax-resscn 11104  ax-pre-lttri 11121  ax-pre-lttrn 11122
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-br 5104  df-opab 5166  df-mpt 5187  df-id 5529  df-po 5543  df-so 5544  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6445  df-fun 6495  df-fn 6496  df-f 6497  df-f1 6498  df-fo 6499  df-f1o 6500  df-fv 6501  df-ov 7356  df-oprab 7357  df-mpo 7358  df-er 8644  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11187  df-mnf 11188  df-xr 11189  df-ltxr 11190  df-le 11191  df-icc 13263
This theorem is referenced by:  iccshift  43688  iccsuble  43689  cncfiooiccre  44068  itgioocnicc  44150  iblcncfioo  44151  itgspltprt  44152  itgiccshift  44153  itgperiod  44154  fourierdlem43  44323  fourierdlem44  44324  fourierdlem73  44352  fourierdlem81  44360  fourierdlem82  44361  fourierdlem83  44362  fourierdlem84  44363  fourierdlem92  44371  fourierdlem93  44372  fourierdlem101  44380  fourierdlem103  44382  fourierdlem104  44383  fourierdlem107  44386  fourierdlem111  44390
  Copyright terms: Public domain W3C validator