Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eliccre Structured version   Visualization version   GIF version

Theorem eliccre 42008
Description: A member of a closed interval of reals is real. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
eliccre ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ ℝ)

Proof of Theorem eliccre
StepHypRef Expression
1 elicc2 12797 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵)))
21biimp3a 1466 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵))
32simp1d 1139 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084  wcel 2115   class class class wbr 5053  (class class class)co 7146  cr 10530  cle 10670  [,]cicc 12736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7452  ax-cnex 10587  ax-resscn 10588  ax-pre-lttri 10605  ax-pre-lttrn 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4826  df-br 5054  df-opab 5116  df-mpt 5134  df-id 5448  df-po 5462  df-so 5463  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-ov 7149  df-oprab 7150  df-mpo 7151  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-icc 12740
This theorem is referenced by:  iccshift  42021  iccsuble  42022  cncfiooiccre  42403  itgioocnicc  42485  iblcncfioo  42486  itgspltprt  42487  itgiccshift  42488  itgperiod  42489  fourierdlem43  42658  fourierdlem44  42659  fourierdlem73  42687  fourierdlem81  42695  fourierdlem82  42696  fourierdlem83  42697  fourierdlem84  42698  fourierdlem92  42706  fourierdlem93  42707  fourierdlem101  42715  fourierdlem103  42717  fourierdlem104  42718  fourierdlem107  42721  fourierdlem111  42725
  Copyright terms: Public domain W3C validator