Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fnrndomg | Structured version Visualization version GIF version |
Description: The range of a function is dominated by its domain. (Contributed by NM, 1-Sep-2004.) |
Ref | Expression |
---|---|
fnrndomg | ⊢ (𝐴 ∈ 𝐵 → (𝐹 Fn 𝐴 → ran 𝐹 ≼ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffn4 6583 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴–onto→ran 𝐹) | |
2 | fodomg 9975 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐹:𝐴–onto→ran 𝐹 → ran 𝐹 ≼ 𝐴)) | |
3 | 1, 2 | syl5bi 245 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝐹 Fn 𝐴 → ran 𝐹 ≼ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2112 class class class wbr 5033 ran crn 5526 Fn wfn 6331 –onto→wfo 6334 ≼ cdom 8526 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-ac2 9916 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-int 4840 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-se 5485 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-isom 6345 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-1st 7694 df-2nd 7695 df-wrecs 7958 df-recs 8019 df-er 8300 df-map 8419 df-en 8529 df-dom 8530 df-card 9394 df-acn 9397 df-ac 9569 |
This theorem is referenced by: fnct 9990 unirnfdomd 10020 konigthlem 10021 abrexdomjm 30367 ffsrn 30581 abrexdom 35441 indexdom 35445 subsaliuncl 43357 omeiunle 43515 smflimlem6 43768 |
Copyright terms: Public domain | W3C validator |