MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnrndomg Structured version   Visualization version   GIF version

Theorem fnrndomg 10531
Description: The range of a function is dominated by its domain. (Contributed by NM, 1-Sep-2004.)
Assertion
Ref Expression
fnrndomg (𝐴 ∈ 𝐡 β†’ (𝐹 Fn 𝐴 β†’ ran 𝐹 β‰Ό 𝐴))

Proof of Theorem fnrndomg
StepHypRef Expression
1 dffn4 6812 . 2 (𝐹 Fn 𝐴 ↔ 𝐹:𝐴–ontoβ†’ran 𝐹)
2 fodomg 10517 . 2 (𝐴 ∈ 𝐡 β†’ (𝐹:𝐴–ontoβ†’ran 𝐹 β†’ ran 𝐹 β‰Ό 𝐴))
31, 2biimtrid 241 1 (𝐴 ∈ 𝐡 β†’ (𝐹 Fn 𝐴 β†’ ran 𝐹 β‰Ό 𝐴))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∈ wcel 2107   class class class wbr 5149  ran crn 5678   Fn wfn 6539  β€“ontoβ†’wfo 6542   β‰Ό cdom 8937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-ac2 10458
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-er 8703  df-map 8822  df-en 8940  df-dom 8941  df-card 9934  df-acn 9937  df-ac 10111
This theorem is referenced by:  fnct  10532  unirnfdomd  10562  konigthlem  10563  abrexdomjm  31744  ffsrn  31954  abrexdom  36598  indexdom  36602  subsaliuncl  45074  omeiunle  45233  smflimlem6  45492
  Copyright terms: Public domain W3C validator