| Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fineqvr1ombregs | Structured version Visualization version GIF version | ||
| Description: All sets are finite iff all sets are hereditarily finite. (Contributed by BTernaryTau, 30-Dec-2025.) |
| Ref | Expression |
|---|---|
| fineqvr1ombregs | ⊢ (Fin = V ↔ ∪ (𝑅1 “ ω) = V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fineqvomon 35155 | . . . . 5 ⊢ (Fin = V → ω = On) | |
| 2 | 1 | imaeq2d 6013 | . . . 4 ⊢ (Fin = V → (𝑅1 “ ω) = (𝑅1 “ On)) |
| 3 | 2 | unieqd 4871 | . . 3 ⊢ (Fin = V → ∪ (𝑅1 “ ω) = ∪ (𝑅1 “ On)) |
| 4 | unir1regs 35152 | . . 3 ⊢ ∪ (𝑅1 “ On) = V | |
| 5 | 3, 4 | eqtrdi 2784 | . 2 ⊢ (Fin = V → ∪ (𝑅1 “ ω) = V) |
| 6 | r1omfi 35137 | . . . 4 ⊢ ∪ (𝑅1 “ ω) ⊆ Fin | |
| 7 | sseq1 3956 | . . . 4 ⊢ (∪ (𝑅1 “ ω) = V → (∪ (𝑅1 “ ω) ⊆ Fin ↔ V ⊆ Fin)) | |
| 8 | 6, 7 | mpbii 233 | . . 3 ⊢ (∪ (𝑅1 “ ω) = V → V ⊆ Fin) |
| 9 | vss 4395 | . . 3 ⊢ (V ⊆ Fin ↔ Fin = V) | |
| 10 | 8, 9 | sylib 218 | . 2 ⊢ (∪ (𝑅1 “ ω) = V → Fin = V) |
| 11 | 5, 10 | impbii 209 | 1 ⊢ (Fin = V ↔ ∪ (𝑅1 “ ω) = V) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 Vcvv 3437 ⊆ wss 3898 ∪ cuni 4858 “ cima 5622 Oncon0 6311 ωcom 7802 Fincfn 8875 𝑅1cr1 9662 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-regs 35145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-r1 9664 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |