MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdccat2 Structured version   Visualization version   GIF version

Theorem swrdccat2 14687
Description: Recover the right half of a concatenated word. (Contributed by Mario Carneiro, 27-Sep-2015.)
Assertion
Ref Expression
swrdccat2 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩) = 𝑇)

Proof of Theorem swrdccat2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 ccatcl 14592 . . . 4 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (𝑆 ++ 𝑇) ∈ Word 𝐵)
2 swrdcl 14663 . . . 4 ((𝑆 ++ 𝑇) ∈ Word 𝐵 → ((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩) ∈ Word 𝐵)
3 wrdfn 14546 . . . 4 (((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩) ∈ Word 𝐵 → ((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩) Fn (0..^(♯‘((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩))))
41, 2, 33syl 18 . . 3 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩) Fn (0..^(♯‘((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩))))
5 lencl 14551 . . . . . . . . . 10 (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ ℕ0)
6 nn0uz 12894 . . . . . . . . . 10 0 = (ℤ‘0)
75, 6eleqtrdi 2844 . . . . . . . . 9 (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ (ℤ‘0))
87adantr 480 . . . . . . . 8 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (♯‘𝑆) ∈ (ℤ‘0))
95nn0zd 12614 . . . . . . . . . 10 (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ ℤ)
109uzidd 12868 . . . . . . . . 9 (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ (ℤ‘(♯‘𝑆)))
11 lencl 14551 . . . . . . . . 9 (𝑇 ∈ Word 𝐵 → (♯‘𝑇) ∈ ℕ0)
12 uzaddcl 12920 . . . . . . . . 9 (((♯‘𝑆) ∈ (ℤ‘(♯‘𝑆)) ∧ (♯‘𝑇) ∈ ℕ0) → ((♯‘𝑆) + (♯‘𝑇)) ∈ (ℤ‘(♯‘𝑆)))
1310, 11, 12syl2an 596 . . . . . . . 8 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((♯‘𝑆) + (♯‘𝑇)) ∈ (ℤ‘(♯‘𝑆)))
14 elfzuzb 13535 . . . . . . . 8 ((♯‘𝑆) ∈ (0...((♯‘𝑆) + (♯‘𝑇))) ↔ ((♯‘𝑆) ∈ (ℤ‘0) ∧ ((♯‘𝑆) + (♯‘𝑇)) ∈ (ℤ‘(♯‘𝑆))))
158, 13, 14sylanbrc 583 . . . . . . 7 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (♯‘𝑆) ∈ (0...((♯‘𝑆) + (♯‘𝑇))))
16 nn0addcl 12536 . . . . . . . . . . 11 (((♯‘𝑆) ∈ ℕ0 ∧ (♯‘𝑇) ∈ ℕ0) → ((♯‘𝑆) + (♯‘𝑇)) ∈ ℕ0)
175, 11, 16syl2an 596 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((♯‘𝑆) + (♯‘𝑇)) ∈ ℕ0)
1817, 6eleqtrdi 2844 . . . . . . . . 9 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((♯‘𝑆) + (♯‘𝑇)) ∈ (ℤ‘0))
1917nn0zd 12614 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((♯‘𝑆) + (♯‘𝑇)) ∈ ℤ)
2019uzidd 12868 . . . . . . . . 9 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((♯‘𝑆) + (♯‘𝑇)) ∈ (ℤ‘((♯‘𝑆) + (♯‘𝑇))))
21 elfzuzb 13535 . . . . . . . . 9 (((♯‘𝑆) + (♯‘𝑇)) ∈ (0...((♯‘𝑆) + (♯‘𝑇))) ↔ (((♯‘𝑆) + (♯‘𝑇)) ∈ (ℤ‘0) ∧ ((♯‘𝑆) + (♯‘𝑇)) ∈ (ℤ‘((♯‘𝑆) + (♯‘𝑇)))))
2218, 20, 21sylanbrc 583 . . . . . . . 8 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((♯‘𝑆) + (♯‘𝑇)) ∈ (0...((♯‘𝑆) + (♯‘𝑇))))
23 ccatlen 14593 . . . . . . . . 9 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (♯‘(𝑆 ++ 𝑇)) = ((♯‘𝑆) + (♯‘𝑇)))
2423oveq2d 7421 . . . . . . . 8 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (0...(♯‘(𝑆 ++ 𝑇))) = (0...((♯‘𝑆) + (♯‘𝑇))))
2522, 24eleqtrrd 2837 . . . . . . 7 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((♯‘𝑆) + (♯‘𝑇)) ∈ (0...(♯‘(𝑆 ++ 𝑇))))
26 swrdlen 14665 . . . . . . 7 (((𝑆 ++ 𝑇) ∈ Word 𝐵 ∧ (♯‘𝑆) ∈ (0...((♯‘𝑆) + (♯‘𝑇))) ∧ ((♯‘𝑆) + (♯‘𝑇)) ∈ (0...(♯‘(𝑆 ++ 𝑇)))) → (♯‘((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩)) = (((♯‘𝑆) + (♯‘𝑇)) − (♯‘𝑆)))
271, 15, 25, 26syl3anc 1373 . . . . . 6 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (♯‘((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩)) = (((♯‘𝑆) + (♯‘𝑇)) − (♯‘𝑆)))
285nn0cnd 12564 . . . . . . 7 (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ ℂ)
2911nn0cnd 12564 . . . . . . 7 (𝑇 ∈ Word 𝐵 → (♯‘𝑇) ∈ ℂ)
30 pncan2 11489 . . . . . . 7 (((♯‘𝑆) ∈ ℂ ∧ (♯‘𝑇) ∈ ℂ) → (((♯‘𝑆) + (♯‘𝑇)) − (♯‘𝑆)) = (♯‘𝑇))
3128, 29, 30syl2an 596 . . . . . 6 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (((♯‘𝑆) + (♯‘𝑇)) − (♯‘𝑆)) = (♯‘𝑇))
3227, 31eqtrd 2770 . . . . 5 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (♯‘((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩)) = (♯‘𝑇))
3332oveq2d 7421 . . . 4 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (0..^(♯‘((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩))) = (0..^(♯‘𝑇)))
3433fneq2d 6632 . . 3 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩) Fn (0..^(♯‘((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩))) ↔ ((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩) Fn (0..^(♯‘𝑇))))
354, 34mpbid 232 . 2 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩) Fn (0..^(♯‘𝑇)))
36 wrdfn 14546 . . 3 (𝑇 ∈ Word 𝐵𝑇 Fn (0..^(♯‘𝑇)))
3736adantl 481 . 2 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → 𝑇 Fn (0..^(♯‘𝑇)))
381, 15, 253jca 1128 . . . 4 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) ∈ Word 𝐵 ∧ (♯‘𝑆) ∈ (0...((♯‘𝑆) + (♯‘𝑇))) ∧ ((♯‘𝑆) + (♯‘𝑇)) ∈ (0...(♯‘(𝑆 ++ 𝑇)))))
3931oveq2d 7421 . . . . . 6 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (0..^(((♯‘𝑆) + (♯‘𝑇)) − (♯‘𝑆))) = (0..^(♯‘𝑇)))
4039eleq2d 2820 . . . . 5 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (𝑘 ∈ (0..^(((♯‘𝑆) + (♯‘𝑇)) − (♯‘𝑆))) ↔ 𝑘 ∈ (0..^(♯‘𝑇))))
4140biimpar 477 . . . 4 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑘 ∈ (0..^(♯‘𝑇))) → 𝑘 ∈ (0..^(((♯‘𝑆) + (♯‘𝑇)) − (♯‘𝑆))))
42 swrdfv 14666 . . . 4 ((((𝑆 ++ 𝑇) ∈ Word 𝐵 ∧ (♯‘𝑆) ∈ (0...((♯‘𝑆) + (♯‘𝑇))) ∧ ((♯‘𝑆) + (♯‘𝑇)) ∈ (0...(♯‘(𝑆 ++ 𝑇)))) ∧ 𝑘 ∈ (0..^(((♯‘𝑆) + (♯‘𝑇)) − (♯‘𝑆)))) → (((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩)‘𝑘) = ((𝑆 ++ 𝑇)‘(𝑘 + (♯‘𝑆))))
4338, 41, 42syl2an2r 685 . . 3 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑘 ∈ (0..^(♯‘𝑇))) → (((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩)‘𝑘) = ((𝑆 ++ 𝑇)‘(𝑘 + (♯‘𝑆))))
44 ccatval3 14597 . . . 4 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑘 ∈ (0..^(♯‘𝑇))) → ((𝑆 ++ 𝑇)‘(𝑘 + (♯‘𝑆))) = (𝑇𝑘))
45443expa 1118 . . 3 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑘 ∈ (0..^(♯‘𝑇))) → ((𝑆 ++ 𝑇)‘(𝑘 + (♯‘𝑆))) = (𝑇𝑘))
4643, 45eqtrd 2770 . 2 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑘 ∈ (0..^(♯‘𝑇))) → (((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩)‘𝑘) = (𝑇𝑘))
4735, 37, 46eqfnfvd 7024 1 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩) = 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  cop 4607   Fn wfn 6526  cfv 6531  (class class class)co 7405  cc 11127  0cc0 11129   + caddc 11132  cmin 11466  0cn0 12501  cuz 12852  ...cfz 13524  ..^cfzo 13671  chash 14348  Word cword 14531   ++ cconcat 14588   substr csubstr 14658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-fzo 13672  df-hash 14349  df-word 14532  df-concat 14589  df-substr 14659
This theorem is referenced by:  ccatopth  14734  gsumwrd2dccatlem  33060
  Copyright terms: Public domain W3C validator