MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdccat2 Structured version   Visualization version   GIF version

Theorem swrdccat2 14610
Description: Recover the right half of a concatenated word. (Contributed by Mario Carneiro, 27-Sep-2015.)
Assertion
Ref Expression
swrdccat2 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩) = 𝑇)

Proof of Theorem swrdccat2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 ccatcl 14515 . . . 4 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (𝑆 ++ 𝑇) ∈ Word 𝐵)
2 swrdcl 14586 . . . 4 ((𝑆 ++ 𝑇) ∈ Word 𝐵 → ((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩) ∈ Word 𝐵)
3 wrdfn 14469 . . . 4 (((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩) ∈ Word 𝐵 → ((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩) Fn (0..^(♯‘((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩))))
41, 2, 33syl 18 . . 3 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩) Fn (0..^(♯‘((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩))))
5 lencl 14474 . . . . . . . . . 10 (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ ℕ0)
6 nn0uz 12811 . . . . . . . . . 10 0 = (ℤ‘0)
75, 6eleqtrdi 2838 . . . . . . . . 9 (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ (ℤ‘0))
87adantr 480 . . . . . . . 8 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (♯‘𝑆) ∈ (ℤ‘0))
95nn0zd 12531 . . . . . . . . . 10 (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ ℤ)
109uzidd 12785 . . . . . . . . 9 (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ (ℤ‘(♯‘𝑆)))
11 lencl 14474 . . . . . . . . 9 (𝑇 ∈ Word 𝐵 → (♯‘𝑇) ∈ ℕ0)
12 uzaddcl 12839 . . . . . . . . 9 (((♯‘𝑆) ∈ (ℤ‘(♯‘𝑆)) ∧ (♯‘𝑇) ∈ ℕ0) → ((♯‘𝑆) + (♯‘𝑇)) ∈ (ℤ‘(♯‘𝑆)))
1310, 11, 12syl2an 596 . . . . . . . 8 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((♯‘𝑆) + (♯‘𝑇)) ∈ (ℤ‘(♯‘𝑆)))
14 elfzuzb 13455 . . . . . . . 8 ((♯‘𝑆) ∈ (0...((♯‘𝑆) + (♯‘𝑇))) ↔ ((♯‘𝑆) ∈ (ℤ‘0) ∧ ((♯‘𝑆) + (♯‘𝑇)) ∈ (ℤ‘(♯‘𝑆))))
158, 13, 14sylanbrc 583 . . . . . . 7 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (♯‘𝑆) ∈ (0...((♯‘𝑆) + (♯‘𝑇))))
16 nn0addcl 12453 . . . . . . . . . . 11 (((♯‘𝑆) ∈ ℕ0 ∧ (♯‘𝑇) ∈ ℕ0) → ((♯‘𝑆) + (♯‘𝑇)) ∈ ℕ0)
175, 11, 16syl2an 596 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((♯‘𝑆) + (♯‘𝑇)) ∈ ℕ0)
1817, 6eleqtrdi 2838 . . . . . . . . 9 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((♯‘𝑆) + (♯‘𝑇)) ∈ (ℤ‘0))
1917nn0zd 12531 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((♯‘𝑆) + (♯‘𝑇)) ∈ ℤ)
2019uzidd 12785 . . . . . . . . 9 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((♯‘𝑆) + (♯‘𝑇)) ∈ (ℤ‘((♯‘𝑆) + (♯‘𝑇))))
21 elfzuzb 13455 . . . . . . . . 9 (((♯‘𝑆) + (♯‘𝑇)) ∈ (0...((♯‘𝑆) + (♯‘𝑇))) ↔ (((♯‘𝑆) + (♯‘𝑇)) ∈ (ℤ‘0) ∧ ((♯‘𝑆) + (♯‘𝑇)) ∈ (ℤ‘((♯‘𝑆) + (♯‘𝑇)))))
2218, 20, 21sylanbrc 583 . . . . . . . 8 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((♯‘𝑆) + (♯‘𝑇)) ∈ (0...((♯‘𝑆) + (♯‘𝑇))))
23 ccatlen 14516 . . . . . . . . 9 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (♯‘(𝑆 ++ 𝑇)) = ((♯‘𝑆) + (♯‘𝑇)))
2423oveq2d 7385 . . . . . . . 8 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (0...(♯‘(𝑆 ++ 𝑇))) = (0...((♯‘𝑆) + (♯‘𝑇))))
2522, 24eleqtrrd 2831 . . . . . . 7 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((♯‘𝑆) + (♯‘𝑇)) ∈ (0...(♯‘(𝑆 ++ 𝑇))))
26 swrdlen 14588 . . . . . . 7 (((𝑆 ++ 𝑇) ∈ Word 𝐵 ∧ (♯‘𝑆) ∈ (0...((♯‘𝑆) + (♯‘𝑇))) ∧ ((♯‘𝑆) + (♯‘𝑇)) ∈ (0...(♯‘(𝑆 ++ 𝑇)))) → (♯‘((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩)) = (((♯‘𝑆) + (♯‘𝑇)) − (♯‘𝑆)))
271, 15, 25, 26syl3anc 1373 . . . . . 6 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (♯‘((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩)) = (((♯‘𝑆) + (♯‘𝑇)) − (♯‘𝑆)))
285nn0cnd 12481 . . . . . . 7 (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ ℂ)
2911nn0cnd 12481 . . . . . . 7 (𝑇 ∈ Word 𝐵 → (♯‘𝑇) ∈ ℂ)
30 pncan2 11404 . . . . . . 7 (((♯‘𝑆) ∈ ℂ ∧ (♯‘𝑇) ∈ ℂ) → (((♯‘𝑆) + (♯‘𝑇)) − (♯‘𝑆)) = (♯‘𝑇))
3128, 29, 30syl2an 596 . . . . . 6 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (((♯‘𝑆) + (♯‘𝑇)) − (♯‘𝑆)) = (♯‘𝑇))
3227, 31eqtrd 2764 . . . . 5 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (♯‘((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩)) = (♯‘𝑇))
3332oveq2d 7385 . . . 4 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (0..^(♯‘((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩))) = (0..^(♯‘𝑇)))
3433fneq2d 6594 . . 3 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩) Fn (0..^(♯‘((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩))) ↔ ((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩) Fn (0..^(♯‘𝑇))))
354, 34mpbid 232 . 2 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩) Fn (0..^(♯‘𝑇)))
36 wrdfn 14469 . . 3 (𝑇 ∈ Word 𝐵𝑇 Fn (0..^(♯‘𝑇)))
3736adantl 481 . 2 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → 𝑇 Fn (0..^(♯‘𝑇)))
381, 15, 253jca 1128 . . . 4 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) ∈ Word 𝐵 ∧ (♯‘𝑆) ∈ (0...((♯‘𝑆) + (♯‘𝑇))) ∧ ((♯‘𝑆) + (♯‘𝑇)) ∈ (0...(♯‘(𝑆 ++ 𝑇)))))
3931oveq2d 7385 . . . . . 6 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (0..^(((♯‘𝑆) + (♯‘𝑇)) − (♯‘𝑆))) = (0..^(♯‘𝑇)))
4039eleq2d 2814 . . . . 5 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (𝑘 ∈ (0..^(((♯‘𝑆) + (♯‘𝑇)) − (♯‘𝑆))) ↔ 𝑘 ∈ (0..^(♯‘𝑇))))
4140biimpar 477 . . . 4 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑘 ∈ (0..^(♯‘𝑇))) → 𝑘 ∈ (0..^(((♯‘𝑆) + (♯‘𝑇)) − (♯‘𝑆))))
42 swrdfv 14589 . . . 4 ((((𝑆 ++ 𝑇) ∈ Word 𝐵 ∧ (♯‘𝑆) ∈ (0...((♯‘𝑆) + (♯‘𝑇))) ∧ ((♯‘𝑆) + (♯‘𝑇)) ∈ (0...(♯‘(𝑆 ++ 𝑇)))) ∧ 𝑘 ∈ (0..^(((♯‘𝑆) + (♯‘𝑇)) − (♯‘𝑆)))) → (((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩)‘𝑘) = ((𝑆 ++ 𝑇)‘(𝑘 + (♯‘𝑆))))
4338, 41, 42syl2an2r 685 . . 3 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑘 ∈ (0..^(♯‘𝑇))) → (((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩)‘𝑘) = ((𝑆 ++ 𝑇)‘(𝑘 + (♯‘𝑆))))
44 ccatval3 14520 . . . 4 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑘 ∈ (0..^(♯‘𝑇))) → ((𝑆 ++ 𝑇)‘(𝑘 + (♯‘𝑆))) = (𝑇𝑘))
45443expa 1118 . . 3 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑘 ∈ (0..^(♯‘𝑇))) → ((𝑆 ++ 𝑇)‘(𝑘 + (♯‘𝑆))) = (𝑇𝑘))
4643, 45eqtrd 2764 . 2 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑘 ∈ (0..^(♯‘𝑇))) → (((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩)‘𝑘) = (𝑇𝑘))
4735, 37, 46eqfnfvd 6988 1 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩) = 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cop 4591   Fn wfn 6494  cfv 6499  (class class class)co 7369  cc 11042  0cc0 11044   + caddc 11047  cmin 11381  0cn0 12418  cuz 12769  ...cfz 13444  ..^cfzo 13591  chash 14271  Word cword 14454   ++ cconcat 14511   substr csubstr 14581
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-fzo 13592  df-hash 14272  df-word 14455  df-concat 14512  df-substr 14582
This theorem is referenced by:  ccatopth  14657  gsumwrd2dccatlem  32979
  Copyright terms: Public domain W3C validator