MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdccat2 Structured version   Visualization version   GIF version

Theorem swrdccat2 14717
Description: Recover the right half of a concatenated word. (Contributed by Mario Carneiro, 27-Sep-2015.)
Assertion
Ref Expression
swrdccat2 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩) = 𝑇)

Proof of Theorem swrdccat2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 ccatcl 14622 . . . 4 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (𝑆 ++ 𝑇) ∈ Word 𝐵)
2 swrdcl 14693 . . . 4 ((𝑆 ++ 𝑇) ∈ Word 𝐵 → ((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩) ∈ Word 𝐵)
3 wrdfn 14576 . . . 4 (((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩) ∈ Word 𝐵 → ((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩) Fn (0..^(♯‘((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩))))
41, 2, 33syl 18 . . 3 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩) Fn (0..^(♯‘((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩))))
5 lencl 14581 . . . . . . . . . 10 (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ ℕ0)
6 nn0uz 12945 . . . . . . . . . 10 0 = (ℤ‘0)
75, 6eleqtrdi 2854 . . . . . . . . 9 (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ (ℤ‘0))
87adantr 480 . . . . . . . 8 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (♯‘𝑆) ∈ (ℤ‘0))
95nn0zd 12665 . . . . . . . . . 10 (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ ℤ)
109uzidd 12919 . . . . . . . . 9 (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ (ℤ‘(♯‘𝑆)))
11 lencl 14581 . . . . . . . . 9 (𝑇 ∈ Word 𝐵 → (♯‘𝑇) ∈ ℕ0)
12 uzaddcl 12969 . . . . . . . . 9 (((♯‘𝑆) ∈ (ℤ‘(♯‘𝑆)) ∧ (♯‘𝑇) ∈ ℕ0) → ((♯‘𝑆) + (♯‘𝑇)) ∈ (ℤ‘(♯‘𝑆)))
1310, 11, 12syl2an 595 . . . . . . . 8 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((♯‘𝑆) + (♯‘𝑇)) ∈ (ℤ‘(♯‘𝑆)))
14 elfzuzb 13578 . . . . . . . 8 ((♯‘𝑆) ∈ (0...((♯‘𝑆) + (♯‘𝑇))) ↔ ((♯‘𝑆) ∈ (ℤ‘0) ∧ ((♯‘𝑆) + (♯‘𝑇)) ∈ (ℤ‘(♯‘𝑆))))
158, 13, 14sylanbrc 582 . . . . . . 7 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (♯‘𝑆) ∈ (0...((♯‘𝑆) + (♯‘𝑇))))
16 nn0addcl 12588 . . . . . . . . . . 11 (((♯‘𝑆) ∈ ℕ0 ∧ (♯‘𝑇) ∈ ℕ0) → ((♯‘𝑆) + (♯‘𝑇)) ∈ ℕ0)
175, 11, 16syl2an 595 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((♯‘𝑆) + (♯‘𝑇)) ∈ ℕ0)
1817, 6eleqtrdi 2854 . . . . . . . . 9 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((♯‘𝑆) + (♯‘𝑇)) ∈ (ℤ‘0))
1917nn0zd 12665 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((♯‘𝑆) + (♯‘𝑇)) ∈ ℤ)
2019uzidd 12919 . . . . . . . . 9 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((♯‘𝑆) + (♯‘𝑇)) ∈ (ℤ‘((♯‘𝑆) + (♯‘𝑇))))
21 elfzuzb 13578 . . . . . . . . 9 (((♯‘𝑆) + (♯‘𝑇)) ∈ (0...((♯‘𝑆) + (♯‘𝑇))) ↔ (((♯‘𝑆) + (♯‘𝑇)) ∈ (ℤ‘0) ∧ ((♯‘𝑆) + (♯‘𝑇)) ∈ (ℤ‘((♯‘𝑆) + (♯‘𝑇)))))
2218, 20, 21sylanbrc 582 . . . . . . . 8 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((♯‘𝑆) + (♯‘𝑇)) ∈ (0...((♯‘𝑆) + (♯‘𝑇))))
23 ccatlen 14623 . . . . . . . . 9 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (♯‘(𝑆 ++ 𝑇)) = ((♯‘𝑆) + (♯‘𝑇)))
2423oveq2d 7464 . . . . . . . 8 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (0...(♯‘(𝑆 ++ 𝑇))) = (0...((♯‘𝑆) + (♯‘𝑇))))
2522, 24eleqtrrd 2847 . . . . . . 7 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((♯‘𝑆) + (♯‘𝑇)) ∈ (0...(♯‘(𝑆 ++ 𝑇))))
26 swrdlen 14695 . . . . . . 7 (((𝑆 ++ 𝑇) ∈ Word 𝐵 ∧ (♯‘𝑆) ∈ (0...((♯‘𝑆) + (♯‘𝑇))) ∧ ((♯‘𝑆) + (♯‘𝑇)) ∈ (0...(♯‘(𝑆 ++ 𝑇)))) → (♯‘((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩)) = (((♯‘𝑆) + (♯‘𝑇)) − (♯‘𝑆)))
271, 15, 25, 26syl3anc 1371 . . . . . 6 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (♯‘((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩)) = (((♯‘𝑆) + (♯‘𝑇)) − (♯‘𝑆)))
285nn0cnd 12615 . . . . . . 7 (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ ℂ)
2911nn0cnd 12615 . . . . . . 7 (𝑇 ∈ Word 𝐵 → (♯‘𝑇) ∈ ℂ)
30 pncan2 11543 . . . . . . 7 (((♯‘𝑆) ∈ ℂ ∧ (♯‘𝑇) ∈ ℂ) → (((♯‘𝑆) + (♯‘𝑇)) − (♯‘𝑆)) = (♯‘𝑇))
3128, 29, 30syl2an 595 . . . . . 6 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (((♯‘𝑆) + (♯‘𝑇)) − (♯‘𝑆)) = (♯‘𝑇))
3227, 31eqtrd 2780 . . . . 5 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (♯‘((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩)) = (♯‘𝑇))
3332oveq2d 7464 . . . 4 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (0..^(♯‘((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩))) = (0..^(♯‘𝑇)))
3433fneq2d 6673 . . 3 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩) Fn (0..^(♯‘((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩))) ↔ ((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩) Fn (0..^(♯‘𝑇))))
354, 34mpbid 232 . 2 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩) Fn (0..^(♯‘𝑇)))
36 wrdfn 14576 . . 3 (𝑇 ∈ Word 𝐵𝑇 Fn (0..^(♯‘𝑇)))
3736adantl 481 . 2 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → 𝑇 Fn (0..^(♯‘𝑇)))
381, 15, 253jca 1128 . . . 4 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) ∈ Word 𝐵 ∧ (♯‘𝑆) ∈ (0...((♯‘𝑆) + (♯‘𝑇))) ∧ ((♯‘𝑆) + (♯‘𝑇)) ∈ (0...(♯‘(𝑆 ++ 𝑇)))))
3931oveq2d 7464 . . . . . 6 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (0..^(((♯‘𝑆) + (♯‘𝑇)) − (♯‘𝑆))) = (0..^(♯‘𝑇)))
4039eleq2d 2830 . . . . 5 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (𝑘 ∈ (0..^(((♯‘𝑆) + (♯‘𝑇)) − (♯‘𝑆))) ↔ 𝑘 ∈ (0..^(♯‘𝑇))))
4140biimpar 477 . . . 4 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑘 ∈ (0..^(♯‘𝑇))) → 𝑘 ∈ (0..^(((♯‘𝑆) + (♯‘𝑇)) − (♯‘𝑆))))
42 swrdfv 14696 . . . 4 ((((𝑆 ++ 𝑇) ∈ Word 𝐵 ∧ (♯‘𝑆) ∈ (0...((♯‘𝑆) + (♯‘𝑇))) ∧ ((♯‘𝑆) + (♯‘𝑇)) ∈ (0...(♯‘(𝑆 ++ 𝑇)))) ∧ 𝑘 ∈ (0..^(((♯‘𝑆) + (♯‘𝑇)) − (♯‘𝑆)))) → (((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩)‘𝑘) = ((𝑆 ++ 𝑇)‘(𝑘 + (♯‘𝑆))))
4338, 41, 42syl2an2r 684 . . 3 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑘 ∈ (0..^(♯‘𝑇))) → (((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩)‘𝑘) = ((𝑆 ++ 𝑇)‘(𝑘 + (♯‘𝑆))))
44 ccatval3 14627 . . . 4 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑘 ∈ (0..^(♯‘𝑇))) → ((𝑆 ++ 𝑇)‘(𝑘 + (♯‘𝑆))) = (𝑇𝑘))
45443expa 1118 . . 3 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑘 ∈ (0..^(♯‘𝑇))) → ((𝑆 ++ 𝑇)‘(𝑘 + (♯‘𝑆))) = (𝑇𝑘))
4643, 45eqtrd 2780 . 2 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑘 ∈ (0..^(♯‘𝑇))) → (((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩)‘𝑘) = (𝑇𝑘))
4735, 37, 46eqfnfvd 7067 1 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩) = 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  cop 4654   Fn wfn 6568  cfv 6573  (class class class)co 7448  cc 11182  0cc0 11184   + caddc 11187  cmin 11520  0cn0 12553  cuz 12903  ...cfz 13567  ..^cfzo 13711  chash 14379  Word cword 14562   ++ cconcat 14618   substr csubstr 14688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-hash 14380  df-word 14563  df-concat 14619  df-substr 14689
This theorem is referenced by:  ccatopth  14764
  Copyright terms: Public domain W3C validator