MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdccat2 Structured version   Visualization version   GIF version

Theorem swrdccat2 14626
Description: Recover the right half of a concatenated word. (Contributed by Mario Carneiro, 27-Sep-2015.)
Assertion
Ref Expression
swrdccat2 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩) = 𝑇)

Proof of Theorem swrdccat2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 ccatcl 14531 . . . 4 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (𝑆 ++ 𝑇) ∈ Word 𝐵)
2 swrdcl 14602 . . . 4 ((𝑆 ++ 𝑇) ∈ Word 𝐵 → ((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩) ∈ Word 𝐵)
3 wrdfn 14485 . . . 4 (((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩) ∈ Word 𝐵 → ((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩) Fn (0..^(♯‘((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩))))
41, 2, 33syl 18 . . 3 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩) Fn (0..^(♯‘((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩))))
5 lencl 14490 . . . . . . . . . 10 (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ ℕ0)
6 nn0uz 12871 . . . . . . . . . 10 0 = (ℤ‘0)
75, 6eleqtrdi 2842 . . . . . . . . 9 (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ (ℤ‘0))
87adantr 480 . . . . . . . 8 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (♯‘𝑆) ∈ (ℤ‘0))
95nn0zd 12591 . . . . . . . . . 10 (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ ℤ)
109uzidd 12845 . . . . . . . . 9 (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ (ℤ‘(♯‘𝑆)))
11 lencl 14490 . . . . . . . . 9 (𝑇 ∈ Word 𝐵 → (♯‘𝑇) ∈ ℕ0)
12 uzaddcl 12895 . . . . . . . . 9 (((♯‘𝑆) ∈ (ℤ‘(♯‘𝑆)) ∧ (♯‘𝑇) ∈ ℕ0) → ((♯‘𝑆) + (♯‘𝑇)) ∈ (ℤ‘(♯‘𝑆)))
1310, 11, 12syl2an 595 . . . . . . . 8 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((♯‘𝑆) + (♯‘𝑇)) ∈ (ℤ‘(♯‘𝑆)))
14 elfzuzb 13502 . . . . . . . 8 ((♯‘𝑆) ∈ (0...((♯‘𝑆) + (♯‘𝑇))) ↔ ((♯‘𝑆) ∈ (ℤ‘0) ∧ ((♯‘𝑆) + (♯‘𝑇)) ∈ (ℤ‘(♯‘𝑆))))
158, 13, 14sylanbrc 582 . . . . . . 7 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (♯‘𝑆) ∈ (0...((♯‘𝑆) + (♯‘𝑇))))
16 nn0addcl 12514 . . . . . . . . . . 11 (((♯‘𝑆) ∈ ℕ0 ∧ (♯‘𝑇) ∈ ℕ0) → ((♯‘𝑆) + (♯‘𝑇)) ∈ ℕ0)
175, 11, 16syl2an 595 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((♯‘𝑆) + (♯‘𝑇)) ∈ ℕ0)
1817, 6eleqtrdi 2842 . . . . . . . . 9 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((♯‘𝑆) + (♯‘𝑇)) ∈ (ℤ‘0))
1917nn0zd 12591 . . . . . . . . . 10 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((♯‘𝑆) + (♯‘𝑇)) ∈ ℤ)
2019uzidd 12845 . . . . . . . . 9 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((♯‘𝑆) + (♯‘𝑇)) ∈ (ℤ‘((♯‘𝑆) + (♯‘𝑇))))
21 elfzuzb 13502 . . . . . . . . 9 (((♯‘𝑆) + (♯‘𝑇)) ∈ (0...((♯‘𝑆) + (♯‘𝑇))) ↔ (((♯‘𝑆) + (♯‘𝑇)) ∈ (ℤ‘0) ∧ ((♯‘𝑆) + (♯‘𝑇)) ∈ (ℤ‘((♯‘𝑆) + (♯‘𝑇)))))
2218, 20, 21sylanbrc 582 . . . . . . . 8 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((♯‘𝑆) + (♯‘𝑇)) ∈ (0...((♯‘𝑆) + (♯‘𝑇))))
23 ccatlen 14532 . . . . . . . . 9 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (♯‘(𝑆 ++ 𝑇)) = ((♯‘𝑆) + (♯‘𝑇)))
2423oveq2d 7428 . . . . . . . 8 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (0...(♯‘(𝑆 ++ 𝑇))) = (0...((♯‘𝑆) + (♯‘𝑇))))
2522, 24eleqtrrd 2835 . . . . . . 7 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((♯‘𝑆) + (♯‘𝑇)) ∈ (0...(♯‘(𝑆 ++ 𝑇))))
26 swrdlen 14604 . . . . . . 7 (((𝑆 ++ 𝑇) ∈ Word 𝐵 ∧ (♯‘𝑆) ∈ (0...((♯‘𝑆) + (♯‘𝑇))) ∧ ((♯‘𝑆) + (♯‘𝑇)) ∈ (0...(♯‘(𝑆 ++ 𝑇)))) → (♯‘((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩)) = (((♯‘𝑆) + (♯‘𝑇)) − (♯‘𝑆)))
271, 15, 25, 26syl3anc 1370 . . . . . 6 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (♯‘((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩)) = (((♯‘𝑆) + (♯‘𝑇)) − (♯‘𝑆)))
285nn0cnd 12541 . . . . . . 7 (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ ℂ)
2911nn0cnd 12541 . . . . . . 7 (𝑇 ∈ Word 𝐵 → (♯‘𝑇) ∈ ℂ)
30 pncan2 11474 . . . . . . 7 (((♯‘𝑆) ∈ ℂ ∧ (♯‘𝑇) ∈ ℂ) → (((♯‘𝑆) + (♯‘𝑇)) − (♯‘𝑆)) = (♯‘𝑇))
3128, 29, 30syl2an 595 . . . . . 6 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (((♯‘𝑆) + (♯‘𝑇)) − (♯‘𝑆)) = (♯‘𝑇))
3227, 31eqtrd 2771 . . . . 5 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (♯‘((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩)) = (♯‘𝑇))
3332oveq2d 7428 . . . 4 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (0..^(♯‘((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩))) = (0..^(♯‘𝑇)))
3433fneq2d 6643 . . 3 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩) Fn (0..^(♯‘((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩))) ↔ ((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩) Fn (0..^(♯‘𝑇))))
354, 34mpbid 231 . 2 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩) Fn (0..^(♯‘𝑇)))
36 wrdfn 14485 . . 3 (𝑇 ∈ Word 𝐵𝑇 Fn (0..^(♯‘𝑇)))
3736adantl 481 . 2 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → 𝑇 Fn (0..^(♯‘𝑇)))
381, 15, 253jca 1127 . . . 4 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) ∈ Word 𝐵 ∧ (♯‘𝑆) ∈ (0...((♯‘𝑆) + (♯‘𝑇))) ∧ ((♯‘𝑆) + (♯‘𝑇)) ∈ (0...(♯‘(𝑆 ++ 𝑇)))))
3931oveq2d 7428 . . . . . 6 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (0..^(((♯‘𝑆) + (♯‘𝑇)) − (♯‘𝑆))) = (0..^(♯‘𝑇)))
4039eleq2d 2818 . . . . 5 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (𝑘 ∈ (0..^(((♯‘𝑆) + (♯‘𝑇)) − (♯‘𝑆))) ↔ 𝑘 ∈ (0..^(♯‘𝑇))))
4140biimpar 477 . . . 4 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑘 ∈ (0..^(♯‘𝑇))) → 𝑘 ∈ (0..^(((♯‘𝑆) + (♯‘𝑇)) − (♯‘𝑆))))
42 swrdfv 14605 . . . 4 ((((𝑆 ++ 𝑇) ∈ Word 𝐵 ∧ (♯‘𝑆) ∈ (0...((♯‘𝑆) + (♯‘𝑇))) ∧ ((♯‘𝑆) + (♯‘𝑇)) ∈ (0...(♯‘(𝑆 ++ 𝑇)))) ∧ 𝑘 ∈ (0..^(((♯‘𝑆) + (♯‘𝑇)) − (♯‘𝑆)))) → (((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩)‘𝑘) = ((𝑆 ++ 𝑇)‘(𝑘 + (♯‘𝑆))))
4338, 41, 42syl2an2r 682 . . 3 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑘 ∈ (0..^(♯‘𝑇))) → (((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩)‘𝑘) = ((𝑆 ++ 𝑇)‘(𝑘 + (♯‘𝑆))))
44 ccatval3 14536 . . . 4 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑘 ∈ (0..^(♯‘𝑇))) → ((𝑆 ++ 𝑇)‘(𝑘 + (♯‘𝑆))) = (𝑇𝑘))
45443expa 1117 . . 3 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑘 ∈ (0..^(♯‘𝑇))) → ((𝑆 ++ 𝑇)‘(𝑘 + (♯‘𝑆))) = (𝑇𝑘))
4643, 45eqtrd 2771 . 2 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑘 ∈ (0..^(♯‘𝑇))) → (((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩)‘𝑘) = (𝑇𝑘))
4735, 37, 46eqfnfvd 7035 1 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) substr ⟨(♯‘𝑆), ((♯‘𝑆) + (♯‘𝑇))⟩) = 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2105  cop 4634   Fn wfn 6538  cfv 6543  (class class class)co 7412  cc 11114  0cc0 11116   + caddc 11119  cmin 11451  0cn0 12479  cuz 12829  ...cfz 13491  ..^cfzo 13634  chash 14297  Word cword 14471   ++ cconcat 14527   substr csubstr 14597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-er 8709  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-card 9940  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-nn 12220  df-n0 12480  df-z 12566  df-uz 12830  df-fz 13492  df-fzo 13635  df-hash 14298  df-word 14472  df-concat 14528  df-substr 14598
This theorem is referenced by:  ccatopth  14673
  Copyright terms: Public domain W3C validator