MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsdsfn2 Structured version   Visualization version   GIF version

Theorem xpsdsfn2 23070
Description: Closure of the metric in a binary structure product. (Contributed by Mario Carneiro, 20-Aug-2015.)
Hypotheses
Ref Expression
xpsds.t 𝑇 = (𝑅 ×s 𝑆)
xpsds.x 𝑋 = (Base‘𝑅)
xpsds.y 𝑌 = (Base‘𝑆)
xpsds.1 (𝜑𝑅𝑉)
xpsds.2 (𝜑𝑆𝑊)
xpsds.p 𝑃 = (dist‘𝑇)
Assertion
Ref Expression
xpsdsfn2 (𝜑𝑃 Fn ((Base‘𝑇) × (Base‘𝑇)))

Proof of Theorem xpsdsfn2
StepHypRef Expression
1 xpsds.t . . 3 𝑇 = (𝑅 ×s 𝑆)
2 xpsds.x . . 3 𝑋 = (Base‘𝑅)
3 xpsds.y . . 3 𝑌 = (Base‘𝑆)
4 xpsds.1 . . 3 (𝜑𝑅𝑉)
5 xpsds.2 . . 3 (𝜑𝑆𝑊)
6 xpsds.p . . 3 𝑃 = (dist‘𝑇)
71, 2, 3, 4, 5, 6xpsdsfn 23069 . 2 (𝜑𝑃 Fn ((𝑋 × 𝑌) × (𝑋 × 𝑌)))
81, 2, 3, 4, 5xpsbas 16893 . . . 4 (𝜑 → (𝑋 × 𝑌) = (Base‘𝑇))
98sqxpeqd 5554 . . 3 (𝜑 → ((𝑋 × 𝑌) × (𝑋 × 𝑌)) = ((Base‘𝑇) × (Base‘𝑇)))
109fneq2d 6426 . 2 (𝜑 → (𝑃 Fn ((𝑋 × 𝑌) × (𝑋 × 𝑌)) ↔ 𝑃 Fn ((Base‘𝑇) × (Base‘𝑇))))
117, 10mpbid 235 1 (𝜑𝑃 Fn ((Base‘𝑇) × (Base‘𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2112   × cxp 5520   Fn wfn 6328  cfv 6333  (class class class)co 7148  Basecbs 16531  distcds 16622   ×s cxps 16827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7457  ax-cnex 10621  ax-resscn 10622  ax-1cn 10623  ax-icn 10624  ax-addcl 10625  ax-addrcl 10626  ax-mulcl 10627  ax-mulrcl 10628  ax-mulcom 10629  ax-addass 10630  ax-mulass 10631  ax-distr 10632  ax-i2m1 10633  ax-1ne0 10634  ax-1rid 10635  ax-rnegex 10636  ax-rrecex 10637  ax-cnre 10638  ax-pre-lttri 10639  ax-pre-lttrn 10640  ax-pre-ltadd 10641  ax-pre-mulgt0 10642
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4419  df-pw 4494  df-sn 4521  df-pr 4523  df-tp 4525  df-op 4527  df-uni 4797  df-int 4837  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5428  df-eprel 5433  df-po 5441  df-so 5442  df-fr 5481  df-we 5483  df-xp 5528  df-rel 5529  df-cnv 5530  df-co 5531  df-dm 5532  df-rn 5533  df-res 5534  df-ima 5535  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6292  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7578  df-1st 7691  df-2nd 7692  df-wrecs 7955  df-recs 8016  df-rdg 8054  df-1o 8110  df-2o 8111  df-oadd 8114  df-er 8297  df-map 8416  df-ixp 8478  df-en 8526  df-dom 8527  df-sdom 8528  df-fin 8529  df-sup 8929  df-inf 8930  df-pnf 10705  df-mnf 10706  df-xr 10707  df-ltxr 10708  df-le 10709  df-sub 10900  df-neg 10901  df-nn 11665  df-2 11727  df-3 11728  df-4 11729  df-5 11730  df-6 11731  df-7 11732  df-8 11733  df-9 11734  df-n0 11925  df-z 12011  df-dec 12128  df-uz 12273  df-fz 12930  df-struct 16533  df-ndx 16534  df-slot 16535  df-base 16537  df-plusg 16626  df-mulr 16627  df-sca 16629  df-vsca 16630  df-ip 16631  df-tset 16632  df-ple 16633  df-ds 16635  df-hom 16637  df-cco 16638  df-prds 16769  df-imas 16829  df-xps 16831
This theorem is referenced by:  tmsxps  23228  tmsxpsmopn  23229
  Copyright terms: Public domain W3C validator