|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > wrd2pr2op | Structured version Visualization version GIF version | ||
| Description: A word of length two represented as unordered pair of ordered pairs. (Contributed by AV, 20-Oct-2018.) (Proof shortened by AV, 26-Jan-2021.) | 
| Ref | Expression | 
|---|---|
| wrd2pr2op | ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 2) → 𝑊 = {〈0, (𝑊‘0)〉, 〈1, (𝑊‘1)〉}) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | wrdfn 14567 | . . . 4 ⊢ (𝑊 ∈ Word 𝑉 → 𝑊 Fn (0..^(♯‘𝑊))) | |
| 2 | 1 | adantr 480 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 2) → 𝑊 Fn (0..^(♯‘𝑊))) | 
| 3 | oveq2 7440 | . . . . . 6 ⊢ ((♯‘𝑊) = 2 → (0..^(♯‘𝑊)) = (0..^2)) | |
| 4 | fzo0to2pr 13790 | . . . . . 6 ⊢ (0..^2) = {0, 1} | |
| 5 | 3, 4 | eqtr2di 2793 | . . . . 5 ⊢ ((♯‘𝑊) = 2 → {0, 1} = (0..^(♯‘𝑊))) | 
| 6 | 5 | adantl 481 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 2) → {0, 1} = (0..^(♯‘𝑊))) | 
| 7 | 6 | fneq2d 6661 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 2) → (𝑊 Fn {0, 1} ↔ 𝑊 Fn (0..^(♯‘𝑊)))) | 
| 8 | 2, 7 | mpbird 257 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 2) → 𝑊 Fn {0, 1}) | 
| 9 | c0ex 11256 | . . 3 ⊢ 0 ∈ V | |
| 10 | 1ex 11258 | . . 3 ⊢ 1 ∈ V | |
| 11 | 9, 10 | fnprb 7229 | . 2 ⊢ (𝑊 Fn {0, 1} ↔ 𝑊 = {〈0, (𝑊‘0)〉, 〈1, (𝑊‘1)〉}) | 
| 12 | 8, 11 | sylib 218 | 1 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 2) → 𝑊 = {〈0, (𝑊‘0)〉, 〈1, (𝑊‘1)〉}) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {cpr 4627 〈cop 4631 Fn wfn 6555 ‘cfv 6560 (class class class)co 7432 0cc0 11156 1c1 11157 2c2 12322 ..^cfzo 13695 ♯chash 14370 Word cword 14553 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-card 9980 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-n0 12529 df-z 12616 df-uz 12880 df-fz 13549 df-fzo 13696 df-hash 14371 df-word 14554 | 
| This theorem is referenced by: wrdlen2 14984 wrdlen2s2 14985 | 
| Copyright terms: Public domain | W3C validator |