Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem14 Structured version   Visualization version   GIF version

Theorem fourierdlem14 46130
Description: Given the partition 𝑉, 𝑄 is the partition shifted to the left by 𝑋. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem14.1 (𝜑𝐴 ∈ ℝ)
fourierdlem14.2 (𝜑𝐵 ∈ ℝ)
fourierdlem14.x (𝜑𝑋 ∈ ℝ)
fourierdlem14.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴 + 𝑋) ∧ (𝑝𝑚) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem14.o 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem14.m (𝜑𝑀 ∈ ℕ)
fourierdlem14.v (𝜑𝑉 ∈ (𝑃𝑀))
fourierdlem14.q 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
Assertion
Ref Expression
fourierdlem14 (𝜑𝑄 ∈ (𝑂𝑀))
Distinct variable groups:   𝐴,𝑚,𝑝   𝐵,𝑚,𝑝   𝑖,𝑀,𝑚,𝑝   𝑄,𝑖,𝑝   𝑖,𝑉,𝑝   𝑖,𝑋,𝑚,𝑝   𝜑,𝑖
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝐴(𝑖)   𝐵(𝑖)   𝑃(𝑖,𝑚,𝑝)   𝑄(𝑚)   𝑂(𝑖,𝑚,𝑝)   𝑉(𝑚)

Proof of Theorem fourierdlem14
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem14.v . . . . . . . . . 10 (𝜑𝑉 ∈ (𝑃𝑀))
2 fourierdlem14.m . . . . . . . . . . 11 (𝜑𝑀 ∈ ℕ)
3 fourierdlem14.p . . . . . . . . . . . 12 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴 + 𝑋) ∧ (𝑝𝑚) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
43fourierdlem2 46118 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (𝑉 ∈ (𝑃𝑀) ↔ (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (𝐴 + 𝑋) ∧ (𝑉𝑀) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1))))))
52, 4syl 17 . . . . . . . . . 10 (𝜑 → (𝑉 ∈ (𝑃𝑀) ↔ (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (𝐴 + 𝑋) ∧ (𝑉𝑀) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1))))))
61, 5mpbid 232 . . . . . . . . 9 (𝜑 → (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (𝐴 + 𝑋) ∧ (𝑉𝑀) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1)))))
76simpld 494 . . . . . . . 8 (𝜑𝑉 ∈ (ℝ ↑m (0...𝑀)))
8 elmapi 8868 . . . . . . . 8 (𝑉 ∈ (ℝ ↑m (0...𝑀)) → 𝑉:(0...𝑀)⟶ℝ)
97, 8syl 17 . . . . . . 7 (𝜑𝑉:(0...𝑀)⟶ℝ)
109ffvelcdmda 7079 . . . . . 6 ((𝜑𝑖 ∈ (0...𝑀)) → (𝑉𝑖) ∈ ℝ)
11 fourierdlem14.x . . . . . . 7 (𝜑𝑋 ∈ ℝ)
1211adantr 480 . . . . . 6 ((𝜑𝑖 ∈ (0...𝑀)) → 𝑋 ∈ ℝ)
1310, 12resubcld 11670 . . . . 5 ((𝜑𝑖 ∈ (0...𝑀)) → ((𝑉𝑖) − 𝑋) ∈ ℝ)
14 fourierdlem14.q . . . . 5 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
1513, 14fmptd 7109 . . . 4 (𝜑𝑄:(0...𝑀)⟶ℝ)
16 reex 11225 . . . . . 6 ℝ ∈ V
1716a1i 11 . . . . 5 (𝜑 → ℝ ∈ V)
18 ovex 7443 . . . . . 6 (0...𝑀) ∈ V
1918a1i 11 . . . . 5 (𝜑 → (0...𝑀) ∈ V)
2017, 19elmapd 8859 . . . 4 (𝜑 → (𝑄 ∈ (ℝ ↑m (0...𝑀)) ↔ 𝑄:(0...𝑀)⟶ℝ))
2115, 20mpbird 257 . . 3 (𝜑𝑄 ∈ (ℝ ↑m (0...𝑀)))
2214a1i 11 . . . . . 6 (𝜑𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋)))
23 fveq2 6881 . . . . . . . 8 (𝑖 = 0 → (𝑉𝑖) = (𝑉‘0))
2423oveq1d 7425 . . . . . . 7 (𝑖 = 0 → ((𝑉𝑖) − 𝑋) = ((𝑉‘0) − 𝑋))
2524adantl 481 . . . . . 6 ((𝜑𝑖 = 0) → ((𝑉𝑖) − 𝑋) = ((𝑉‘0) − 𝑋))
26 0zd 12605 . . . . . . 7 (𝜑 → 0 ∈ ℤ)
272nnzd 12620 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
28 0le0 12346 . . . . . . . 8 0 ≤ 0
2928a1i 11 . . . . . . 7 (𝜑 → 0 ≤ 0)
30 0red 11243 . . . . . . . 8 (𝜑 → 0 ∈ ℝ)
312nnred 12260 . . . . . . . 8 (𝜑𝑀 ∈ ℝ)
322nngt0d 12294 . . . . . . . 8 (𝜑 → 0 < 𝑀)
3330, 31, 32ltled 11388 . . . . . . 7 (𝜑 → 0 ≤ 𝑀)
3426, 27, 26, 29, 33elfzd 13537 . . . . . 6 (𝜑 → 0 ∈ (0...𝑀))
359, 34ffvelcdmd 7080 . . . . . . 7 (𝜑 → (𝑉‘0) ∈ ℝ)
3635, 11resubcld 11670 . . . . . 6 (𝜑 → ((𝑉‘0) − 𝑋) ∈ ℝ)
3722, 25, 34, 36fvmptd 6998 . . . . 5 (𝜑 → (𝑄‘0) = ((𝑉‘0) − 𝑋))
386simprd 495 . . . . . . . 8 (𝜑 → (((𝑉‘0) = (𝐴 + 𝑋) ∧ (𝑉𝑀) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1))))
3938simpld 494 . . . . . . 7 (𝜑 → ((𝑉‘0) = (𝐴 + 𝑋) ∧ (𝑉𝑀) = (𝐵 + 𝑋)))
4039simpld 494 . . . . . 6 (𝜑 → (𝑉‘0) = (𝐴 + 𝑋))
4140oveq1d 7425 . . . . 5 (𝜑 → ((𝑉‘0) − 𝑋) = ((𝐴 + 𝑋) − 𝑋))
42 fourierdlem14.1 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
4342recnd 11268 . . . . . 6 (𝜑𝐴 ∈ ℂ)
4411recnd 11268 . . . . . 6 (𝜑𝑋 ∈ ℂ)
4543, 44pncand 11600 . . . . 5 (𝜑 → ((𝐴 + 𝑋) − 𝑋) = 𝐴)
4637, 41, 453eqtrd 2775 . . . 4 (𝜑 → (𝑄‘0) = 𝐴)
47 fveq2 6881 . . . . . . . 8 (𝑖 = 𝑀 → (𝑉𝑖) = (𝑉𝑀))
4847oveq1d 7425 . . . . . . 7 (𝑖 = 𝑀 → ((𝑉𝑖) − 𝑋) = ((𝑉𝑀) − 𝑋))
4948adantl 481 . . . . . 6 ((𝜑𝑖 = 𝑀) → ((𝑉𝑖) − 𝑋) = ((𝑉𝑀) − 𝑋))
5031leidd 11808 . . . . . . 7 (𝜑𝑀𝑀)
5126, 27, 27, 33, 50elfzd 13537 . . . . . 6 (𝜑𝑀 ∈ (0...𝑀))
529, 51ffvelcdmd 7080 . . . . . . 7 (𝜑 → (𝑉𝑀) ∈ ℝ)
5352, 11resubcld 11670 . . . . . 6 (𝜑 → ((𝑉𝑀) − 𝑋) ∈ ℝ)
5422, 49, 51, 53fvmptd 6998 . . . . 5 (𝜑 → (𝑄𝑀) = ((𝑉𝑀) − 𝑋))
5539simprd 495 . . . . . 6 (𝜑 → (𝑉𝑀) = (𝐵 + 𝑋))
5655oveq1d 7425 . . . . 5 (𝜑 → ((𝑉𝑀) − 𝑋) = ((𝐵 + 𝑋) − 𝑋))
57 fourierdlem14.2 . . . . . . 7 (𝜑𝐵 ∈ ℝ)
5857recnd 11268 . . . . . 6 (𝜑𝐵 ∈ ℂ)
5958, 44pncand 11600 . . . . 5 (𝜑 → ((𝐵 + 𝑋) − 𝑋) = 𝐵)
6054, 56, 593eqtrd 2775 . . . 4 (𝜑 → (𝑄𝑀) = 𝐵)
6146, 60jca 511 . . 3 (𝜑 → ((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵))
62 elfzofz 13697 . . . . . . 7 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
6362, 10sylan2 593 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉𝑖) ∈ ℝ)
649adantr 480 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑉:(0...𝑀)⟶ℝ)
65 fzofzp1 13785 . . . . . . . 8 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
6665adantl 481 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀))
6764, 66ffvelcdmd 7080 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉‘(𝑖 + 1)) ∈ ℝ)
6811adantr 480 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑋 ∈ ℝ)
6938simprd 495 . . . . . . 7 (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1)))
7069r19.21bi 3238 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉𝑖) < (𝑉‘(𝑖 + 1)))
7163, 67, 68, 70ltsub1dd 11854 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑉𝑖) − 𝑋) < ((𝑉‘(𝑖 + 1)) − 𝑋))
7262adantl 481 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀))
7362, 13sylan2 593 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑉𝑖) − 𝑋) ∈ ℝ)
7414fvmpt2 7002 . . . . . 6 ((𝑖 ∈ (0...𝑀) ∧ ((𝑉𝑖) − 𝑋) ∈ ℝ) → (𝑄𝑖) = ((𝑉𝑖) − 𝑋))
7572, 73, 74syl2anc 584 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) = ((𝑉𝑖) − 𝑋))
76 fveq2 6881 . . . . . . . . . 10 (𝑖 = 𝑗 → (𝑉𝑖) = (𝑉𝑗))
7776oveq1d 7425 . . . . . . . . 9 (𝑖 = 𝑗 → ((𝑉𝑖) − 𝑋) = ((𝑉𝑗) − 𝑋))
7877cbvmptv 5230 . . . . . . . 8 (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋)) = (𝑗 ∈ (0...𝑀) ↦ ((𝑉𝑗) − 𝑋))
7914, 78eqtri 2759 . . . . . . 7 𝑄 = (𝑗 ∈ (0...𝑀) ↦ ((𝑉𝑗) − 𝑋))
8079a1i 11 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄 = (𝑗 ∈ (0...𝑀) ↦ ((𝑉𝑗) − 𝑋)))
81 fveq2 6881 . . . . . . . 8 (𝑗 = (𝑖 + 1) → (𝑉𝑗) = (𝑉‘(𝑖 + 1)))
8281oveq1d 7425 . . . . . . 7 (𝑗 = (𝑖 + 1) → ((𝑉𝑗) − 𝑋) = ((𝑉‘(𝑖 + 1)) − 𝑋))
8382adantl 481 . . . . . 6 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 = (𝑖 + 1)) → ((𝑉𝑗) − 𝑋) = ((𝑉‘(𝑖 + 1)) − 𝑋))
8467, 68resubcld 11670 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑉‘(𝑖 + 1)) − 𝑋) ∈ ℝ)
8580, 83, 66, 84fvmptd 6998 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) = ((𝑉‘(𝑖 + 1)) − 𝑋))
8671, 75, 853brtr4d 5156 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
8786ralrimiva 3133 . . 3 (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))
8821, 61, 87jca32 515 . 2 (𝜑 → (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
89 fourierdlem14.o . . . 4 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
9089fourierdlem2 46118 . . 3 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑂𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
912, 90syl 17 . 2 (𝜑 → (𝑄 ∈ (𝑂𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
9288, 91mpbird 257 1 (𝜑𝑄 ∈ (𝑂𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3052  {crab 3420  Vcvv 3464   class class class wbr 5124  cmpt 5206  wf 6532  cfv 6536  (class class class)co 7410  m cmap 8845  cr 11133  0cc0 11134  1c1 11135   + caddc 11137   < clt 11274  cle 11275  cmin 11471  cn 12245  ...cfz 13529  ..^cfzo 13676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-fzo 13677
This theorem is referenced by:  fourierdlem74  46189  fourierdlem75  46190  fourierdlem84  46199  fourierdlem85  46200  fourierdlem88  46203  fourierdlem103  46218  fourierdlem104  46219
  Copyright terms: Public domain W3C validator