Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem14 Structured version   Visualization version   GIF version

Theorem fourierdlem14 43631
Description: Given the partition 𝑉, 𝑄 is the partition shifted to the left by 𝑋. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem14.1 (𝜑𝐴 ∈ ℝ)
fourierdlem14.2 (𝜑𝐵 ∈ ℝ)
fourierdlem14.x (𝜑𝑋 ∈ ℝ)
fourierdlem14.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴 + 𝑋) ∧ (𝑝𝑚) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem14.o 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem14.m (𝜑𝑀 ∈ ℕ)
fourierdlem14.v (𝜑𝑉 ∈ (𝑃𝑀))
fourierdlem14.q 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
Assertion
Ref Expression
fourierdlem14 (𝜑𝑄 ∈ (𝑂𝑀))
Distinct variable groups:   𝐴,𝑚,𝑝   𝐵,𝑚,𝑝   𝑖,𝑀,𝑚,𝑝   𝑄,𝑖,𝑝   𝑖,𝑉,𝑝   𝑖,𝑋,𝑚,𝑝   𝜑,𝑖
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝐴(𝑖)   𝐵(𝑖)   𝑃(𝑖,𝑚,𝑝)   𝑄(𝑚)   𝑂(𝑖,𝑚,𝑝)   𝑉(𝑚)

Proof of Theorem fourierdlem14
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem14.v . . . . . . . . . 10 (𝜑𝑉 ∈ (𝑃𝑀))
2 fourierdlem14.m . . . . . . . . . . 11 (𝜑𝑀 ∈ ℕ)
3 fourierdlem14.p . . . . . . . . . . . 12 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴 + 𝑋) ∧ (𝑝𝑚) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
43fourierdlem2 43619 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (𝑉 ∈ (𝑃𝑀) ↔ (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (𝐴 + 𝑋) ∧ (𝑉𝑀) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1))))))
52, 4syl 17 . . . . . . . . . 10 (𝜑 → (𝑉 ∈ (𝑃𝑀) ↔ (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (𝐴 + 𝑋) ∧ (𝑉𝑀) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1))))))
61, 5mpbid 231 . . . . . . . . 9 (𝜑 → (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (𝐴 + 𝑋) ∧ (𝑉𝑀) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1)))))
76simpld 495 . . . . . . . 8 (𝜑𝑉 ∈ (ℝ ↑m (0...𝑀)))
8 elmapi 8618 . . . . . . . 8 (𝑉 ∈ (ℝ ↑m (0...𝑀)) → 𝑉:(0...𝑀)⟶ℝ)
97, 8syl 17 . . . . . . 7 (𝜑𝑉:(0...𝑀)⟶ℝ)
109ffvelrnda 6956 . . . . . 6 ((𝜑𝑖 ∈ (0...𝑀)) → (𝑉𝑖) ∈ ℝ)
11 fourierdlem14.x . . . . . . 7 (𝜑𝑋 ∈ ℝ)
1211adantr 481 . . . . . 6 ((𝜑𝑖 ∈ (0...𝑀)) → 𝑋 ∈ ℝ)
1310, 12resubcld 11401 . . . . 5 ((𝜑𝑖 ∈ (0...𝑀)) → ((𝑉𝑖) − 𝑋) ∈ ℝ)
14 fourierdlem14.q . . . . 5 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
1513, 14fmptd 6983 . . . 4 (𝜑𝑄:(0...𝑀)⟶ℝ)
16 reex 10961 . . . . . 6 ℝ ∈ V
1716a1i 11 . . . . 5 (𝜑 → ℝ ∈ V)
18 ovex 7302 . . . . . 6 (0...𝑀) ∈ V
1918a1i 11 . . . . 5 (𝜑 → (0...𝑀) ∈ V)
2017, 19elmapd 8610 . . . 4 (𝜑 → (𝑄 ∈ (ℝ ↑m (0...𝑀)) ↔ 𝑄:(0...𝑀)⟶ℝ))
2115, 20mpbird 256 . . 3 (𝜑𝑄 ∈ (ℝ ↑m (0...𝑀)))
2214a1i 11 . . . . . 6 (𝜑𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋)))
23 fveq2 6769 . . . . . . . 8 (𝑖 = 0 → (𝑉𝑖) = (𝑉‘0))
2423oveq1d 7284 . . . . . . 7 (𝑖 = 0 → ((𝑉𝑖) − 𝑋) = ((𝑉‘0) − 𝑋))
2524adantl 482 . . . . . 6 ((𝜑𝑖 = 0) → ((𝑉𝑖) − 𝑋) = ((𝑉‘0) − 𝑋))
26 0zd 12329 . . . . . . 7 (𝜑 → 0 ∈ ℤ)
272nnzd 12422 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
28 0le0 12072 . . . . . . . 8 0 ≤ 0
2928a1i 11 . . . . . . 7 (𝜑 → 0 ≤ 0)
30 0red 10977 . . . . . . . 8 (𝜑 → 0 ∈ ℝ)
312nnred 11986 . . . . . . . 8 (𝜑𝑀 ∈ ℝ)
322nngt0d 12020 . . . . . . . 8 (𝜑 → 0 < 𝑀)
3330, 31, 32ltled 11121 . . . . . . 7 (𝜑 → 0 ≤ 𝑀)
3426, 27, 26, 29, 33elfzd 13244 . . . . . 6 (𝜑 → 0 ∈ (0...𝑀))
359, 34ffvelrnd 6957 . . . . . . 7 (𝜑 → (𝑉‘0) ∈ ℝ)
3635, 11resubcld 11401 . . . . . 6 (𝜑 → ((𝑉‘0) − 𝑋) ∈ ℝ)
3722, 25, 34, 36fvmptd 6877 . . . . 5 (𝜑 → (𝑄‘0) = ((𝑉‘0) − 𝑋))
386simprd 496 . . . . . . . 8 (𝜑 → (((𝑉‘0) = (𝐴 + 𝑋) ∧ (𝑉𝑀) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1))))
3938simpld 495 . . . . . . 7 (𝜑 → ((𝑉‘0) = (𝐴 + 𝑋) ∧ (𝑉𝑀) = (𝐵 + 𝑋)))
4039simpld 495 . . . . . 6 (𝜑 → (𝑉‘0) = (𝐴 + 𝑋))
4140oveq1d 7284 . . . . 5 (𝜑 → ((𝑉‘0) − 𝑋) = ((𝐴 + 𝑋) − 𝑋))
42 fourierdlem14.1 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
4342recnd 11002 . . . . . 6 (𝜑𝐴 ∈ ℂ)
4411recnd 11002 . . . . . 6 (𝜑𝑋 ∈ ℂ)
4543, 44pncand 11331 . . . . 5 (𝜑 → ((𝐴 + 𝑋) − 𝑋) = 𝐴)
4637, 41, 453eqtrd 2784 . . . 4 (𝜑 → (𝑄‘0) = 𝐴)
47 fveq2 6769 . . . . . . . 8 (𝑖 = 𝑀 → (𝑉𝑖) = (𝑉𝑀))
4847oveq1d 7284 . . . . . . 7 (𝑖 = 𝑀 → ((𝑉𝑖) − 𝑋) = ((𝑉𝑀) − 𝑋))
4948adantl 482 . . . . . 6 ((𝜑𝑖 = 𝑀) → ((𝑉𝑖) − 𝑋) = ((𝑉𝑀) − 𝑋))
5031leidd 11539 . . . . . . 7 (𝜑𝑀𝑀)
5126, 27, 27, 33, 50elfzd 13244 . . . . . 6 (𝜑𝑀 ∈ (0...𝑀))
529, 51ffvelrnd 6957 . . . . . . 7 (𝜑 → (𝑉𝑀) ∈ ℝ)
5352, 11resubcld 11401 . . . . . 6 (𝜑 → ((𝑉𝑀) − 𝑋) ∈ ℝ)
5422, 49, 51, 53fvmptd 6877 . . . . 5 (𝜑 → (𝑄𝑀) = ((𝑉𝑀) − 𝑋))
5539simprd 496 . . . . . 6 (𝜑 → (𝑉𝑀) = (𝐵 + 𝑋))
5655oveq1d 7284 . . . . 5 (𝜑 → ((𝑉𝑀) − 𝑋) = ((𝐵 + 𝑋) − 𝑋))
57 fourierdlem14.2 . . . . . . 7 (𝜑𝐵 ∈ ℝ)
5857recnd 11002 . . . . . 6 (𝜑𝐵 ∈ ℂ)
5958, 44pncand 11331 . . . . 5 (𝜑 → ((𝐵 + 𝑋) − 𝑋) = 𝐵)
6054, 56, 593eqtrd 2784 . . . 4 (𝜑 → (𝑄𝑀) = 𝐵)
6146, 60jca 512 . . 3 (𝜑 → ((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵))
62 elfzofz 13399 . . . . . . 7 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
6362, 10sylan2 593 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉𝑖) ∈ ℝ)
649adantr 481 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑉:(0...𝑀)⟶ℝ)
65 fzofzp1 13480 . . . . . . . 8 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
6665adantl 482 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀))
6764, 66ffvelrnd 6957 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉‘(𝑖 + 1)) ∈ ℝ)
6811adantr 481 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑋 ∈ ℝ)
6938simprd 496 . . . . . . 7 (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1)))
7069r19.21bi 3135 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉𝑖) < (𝑉‘(𝑖 + 1)))
7163, 67, 68, 70ltsub1dd 11585 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑉𝑖) − 𝑋) < ((𝑉‘(𝑖 + 1)) − 𝑋))
7262adantl 482 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀))
7362, 13sylan2 593 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑉𝑖) − 𝑋) ∈ ℝ)
7414fvmpt2 6881 . . . . . 6 ((𝑖 ∈ (0...𝑀) ∧ ((𝑉𝑖) − 𝑋) ∈ ℝ) → (𝑄𝑖) = ((𝑉𝑖) − 𝑋))
7572, 73, 74syl2anc 584 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) = ((𝑉𝑖) − 𝑋))
76 fveq2 6769 . . . . . . . . . 10 (𝑖 = 𝑗 → (𝑉𝑖) = (𝑉𝑗))
7776oveq1d 7284 . . . . . . . . 9 (𝑖 = 𝑗 → ((𝑉𝑖) − 𝑋) = ((𝑉𝑗) − 𝑋))
7877cbvmptv 5192 . . . . . . . 8 (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋)) = (𝑗 ∈ (0...𝑀) ↦ ((𝑉𝑗) − 𝑋))
7914, 78eqtri 2768 . . . . . . 7 𝑄 = (𝑗 ∈ (0...𝑀) ↦ ((𝑉𝑗) − 𝑋))
8079a1i 11 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄 = (𝑗 ∈ (0...𝑀) ↦ ((𝑉𝑗) − 𝑋)))
81 fveq2 6769 . . . . . . . 8 (𝑗 = (𝑖 + 1) → (𝑉𝑗) = (𝑉‘(𝑖 + 1)))
8281oveq1d 7284 . . . . . . 7 (𝑗 = (𝑖 + 1) → ((𝑉𝑗) − 𝑋) = ((𝑉‘(𝑖 + 1)) − 𝑋))
8382adantl 482 . . . . . 6 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 = (𝑖 + 1)) → ((𝑉𝑗) − 𝑋) = ((𝑉‘(𝑖 + 1)) − 𝑋))
8467, 68resubcld 11401 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑉‘(𝑖 + 1)) − 𝑋) ∈ ℝ)
8580, 83, 66, 84fvmptd 6877 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) = ((𝑉‘(𝑖 + 1)) − 𝑋))
8671, 75, 853brtr4d 5111 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
8786ralrimiva 3110 . . 3 (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))
8821, 61, 87jca32 516 . 2 (𝜑 → (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
89 fourierdlem14.o . . . 4 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
9089fourierdlem2 43619 . . 3 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑂𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
912, 90syl 17 . 2 (𝜑 → (𝑄 ∈ (𝑂𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
9288, 91mpbird 256 1 (𝜑𝑄 ∈ (𝑂𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1542  wcel 2110  wral 3066  {crab 3070  Vcvv 3431   class class class wbr 5079  cmpt 5162  wf 6427  cfv 6431  (class class class)co 7269  m cmap 8596  cr 10869  0cc0 10870  1c1 10871   + caddc 10873   < clt 11008  cle 11009  cmin 11203  cn 11971  ...cfz 13236  ..^cfzo 13379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580  ax-cnex 10926  ax-resscn 10927  ax-1cn 10928  ax-icn 10929  ax-addcl 10930  ax-addrcl 10931  ax-mulcl 10932  ax-mulrcl 10933  ax-mulcom 10934  ax-addass 10935  ax-mulass 10936  ax-distr 10937  ax-i2m1 10938  ax-1ne0 10939  ax-1rid 10940  ax-rnegex 10941  ax-rrecex 10942  ax-cnre 10943  ax-pre-lttri 10944  ax-pre-lttrn 10945  ax-pre-ltadd 10946  ax-pre-mulgt0 10947
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6200  df-ord 6267  df-on 6268  df-lim 6269  df-suc 6270  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-riota 7226  df-ov 7272  df-oprab 7273  df-mpo 7274  df-om 7705  df-1st 7822  df-2nd 7823  df-frecs 8086  df-wrecs 8117  df-recs 8191  df-rdg 8230  df-er 8479  df-map 8598  df-en 8715  df-dom 8716  df-sdom 8717  df-pnf 11010  df-mnf 11011  df-xr 11012  df-ltxr 11013  df-le 11014  df-sub 11205  df-neg 11206  df-nn 11972  df-n0 12232  df-z 12318  df-uz 12580  df-fz 13237  df-fzo 13380
This theorem is referenced by:  fourierdlem74  43690  fourierdlem75  43691  fourierdlem84  43700  fourierdlem85  43701  fourierdlem88  43704  fourierdlem103  43719  fourierdlem104  43720
  Copyright terms: Public domain W3C validator