Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem14 Structured version   Visualization version   GIF version

Theorem fourierdlem14 46042
Description: Given the partition 𝑉, 𝑄 is the partition shifted to the left by 𝑋. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem14.1 (𝜑𝐴 ∈ ℝ)
fourierdlem14.2 (𝜑𝐵 ∈ ℝ)
fourierdlem14.x (𝜑𝑋 ∈ ℝ)
fourierdlem14.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴 + 𝑋) ∧ (𝑝𝑚) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem14.o 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem14.m (𝜑𝑀 ∈ ℕ)
fourierdlem14.v (𝜑𝑉 ∈ (𝑃𝑀))
fourierdlem14.q 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
Assertion
Ref Expression
fourierdlem14 (𝜑𝑄 ∈ (𝑂𝑀))
Distinct variable groups:   𝐴,𝑚,𝑝   𝐵,𝑚,𝑝   𝑖,𝑀,𝑚,𝑝   𝑄,𝑖,𝑝   𝑖,𝑉,𝑝   𝑖,𝑋,𝑚,𝑝   𝜑,𝑖
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝐴(𝑖)   𝐵(𝑖)   𝑃(𝑖,𝑚,𝑝)   𝑄(𝑚)   𝑂(𝑖,𝑚,𝑝)   𝑉(𝑚)

Proof of Theorem fourierdlem14
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem14.v . . . . . . . . . 10 (𝜑𝑉 ∈ (𝑃𝑀))
2 fourierdlem14.m . . . . . . . . . . 11 (𝜑𝑀 ∈ ℕ)
3 fourierdlem14.p . . . . . . . . . . . 12 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴 + 𝑋) ∧ (𝑝𝑚) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
43fourierdlem2 46030 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (𝑉 ∈ (𝑃𝑀) ↔ (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (𝐴 + 𝑋) ∧ (𝑉𝑀) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1))))))
52, 4syl 17 . . . . . . . . . 10 (𝜑 → (𝑉 ∈ (𝑃𝑀) ↔ (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (𝐴 + 𝑋) ∧ (𝑉𝑀) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1))))))
61, 5mpbid 232 . . . . . . . . 9 (𝜑 → (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (𝐴 + 𝑋) ∧ (𝑉𝑀) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1)))))
76simpld 494 . . . . . . . 8 (𝜑𝑉 ∈ (ℝ ↑m (0...𝑀)))
8 elmapi 8907 . . . . . . . 8 (𝑉 ∈ (ℝ ↑m (0...𝑀)) → 𝑉:(0...𝑀)⟶ℝ)
97, 8syl 17 . . . . . . 7 (𝜑𝑉:(0...𝑀)⟶ℝ)
109ffvelcdmda 7118 . . . . . 6 ((𝜑𝑖 ∈ (0...𝑀)) → (𝑉𝑖) ∈ ℝ)
11 fourierdlem14.x . . . . . . 7 (𝜑𝑋 ∈ ℝ)
1211adantr 480 . . . . . 6 ((𝜑𝑖 ∈ (0...𝑀)) → 𝑋 ∈ ℝ)
1310, 12resubcld 11718 . . . . 5 ((𝜑𝑖 ∈ (0...𝑀)) → ((𝑉𝑖) − 𝑋) ∈ ℝ)
14 fourierdlem14.q . . . . 5 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
1513, 14fmptd 7148 . . . 4 (𝜑𝑄:(0...𝑀)⟶ℝ)
16 reex 11275 . . . . . 6 ℝ ∈ V
1716a1i 11 . . . . 5 (𝜑 → ℝ ∈ V)
18 ovex 7481 . . . . . 6 (0...𝑀) ∈ V
1918a1i 11 . . . . 5 (𝜑 → (0...𝑀) ∈ V)
2017, 19elmapd 8898 . . . 4 (𝜑 → (𝑄 ∈ (ℝ ↑m (0...𝑀)) ↔ 𝑄:(0...𝑀)⟶ℝ))
2115, 20mpbird 257 . . 3 (𝜑𝑄 ∈ (ℝ ↑m (0...𝑀)))
2214a1i 11 . . . . . 6 (𝜑𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋)))
23 fveq2 6920 . . . . . . . 8 (𝑖 = 0 → (𝑉𝑖) = (𝑉‘0))
2423oveq1d 7463 . . . . . . 7 (𝑖 = 0 → ((𝑉𝑖) − 𝑋) = ((𝑉‘0) − 𝑋))
2524adantl 481 . . . . . 6 ((𝜑𝑖 = 0) → ((𝑉𝑖) − 𝑋) = ((𝑉‘0) − 𝑋))
26 0zd 12651 . . . . . . 7 (𝜑 → 0 ∈ ℤ)
272nnzd 12666 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
28 0le0 12394 . . . . . . . 8 0 ≤ 0
2928a1i 11 . . . . . . 7 (𝜑 → 0 ≤ 0)
30 0red 11293 . . . . . . . 8 (𝜑 → 0 ∈ ℝ)
312nnred 12308 . . . . . . . 8 (𝜑𝑀 ∈ ℝ)
322nngt0d 12342 . . . . . . . 8 (𝜑 → 0 < 𝑀)
3330, 31, 32ltled 11438 . . . . . . 7 (𝜑 → 0 ≤ 𝑀)
3426, 27, 26, 29, 33elfzd 13575 . . . . . 6 (𝜑 → 0 ∈ (0...𝑀))
359, 34ffvelcdmd 7119 . . . . . . 7 (𝜑 → (𝑉‘0) ∈ ℝ)
3635, 11resubcld 11718 . . . . . 6 (𝜑 → ((𝑉‘0) − 𝑋) ∈ ℝ)
3722, 25, 34, 36fvmptd 7036 . . . . 5 (𝜑 → (𝑄‘0) = ((𝑉‘0) − 𝑋))
386simprd 495 . . . . . . . 8 (𝜑 → (((𝑉‘0) = (𝐴 + 𝑋) ∧ (𝑉𝑀) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1))))
3938simpld 494 . . . . . . 7 (𝜑 → ((𝑉‘0) = (𝐴 + 𝑋) ∧ (𝑉𝑀) = (𝐵 + 𝑋)))
4039simpld 494 . . . . . 6 (𝜑 → (𝑉‘0) = (𝐴 + 𝑋))
4140oveq1d 7463 . . . . 5 (𝜑 → ((𝑉‘0) − 𝑋) = ((𝐴 + 𝑋) − 𝑋))
42 fourierdlem14.1 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
4342recnd 11318 . . . . . 6 (𝜑𝐴 ∈ ℂ)
4411recnd 11318 . . . . . 6 (𝜑𝑋 ∈ ℂ)
4543, 44pncand 11648 . . . . 5 (𝜑 → ((𝐴 + 𝑋) − 𝑋) = 𝐴)
4637, 41, 453eqtrd 2784 . . . 4 (𝜑 → (𝑄‘0) = 𝐴)
47 fveq2 6920 . . . . . . . 8 (𝑖 = 𝑀 → (𝑉𝑖) = (𝑉𝑀))
4847oveq1d 7463 . . . . . . 7 (𝑖 = 𝑀 → ((𝑉𝑖) − 𝑋) = ((𝑉𝑀) − 𝑋))
4948adantl 481 . . . . . 6 ((𝜑𝑖 = 𝑀) → ((𝑉𝑖) − 𝑋) = ((𝑉𝑀) − 𝑋))
5031leidd 11856 . . . . . . 7 (𝜑𝑀𝑀)
5126, 27, 27, 33, 50elfzd 13575 . . . . . 6 (𝜑𝑀 ∈ (0...𝑀))
529, 51ffvelcdmd 7119 . . . . . . 7 (𝜑 → (𝑉𝑀) ∈ ℝ)
5352, 11resubcld 11718 . . . . . 6 (𝜑 → ((𝑉𝑀) − 𝑋) ∈ ℝ)
5422, 49, 51, 53fvmptd 7036 . . . . 5 (𝜑 → (𝑄𝑀) = ((𝑉𝑀) − 𝑋))
5539simprd 495 . . . . . 6 (𝜑 → (𝑉𝑀) = (𝐵 + 𝑋))
5655oveq1d 7463 . . . . 5 (𝜑 → ((𝑉𝑀) − 𝑋) = ((𝐵 + 𝑋) − 𝑋))
57 fourierdlem14.2 . . . . . . 7 (𝜑𝐵 ∈ ℝ)
5857recnd 11318 . . . . . 6 (𝜑𝐵 ∈ ℂ)
5958, 44pncand 11648 . . . . 5 (𝜑 → ((𝐵 + 𝑋) − 𝑋) = 𝐵)
6054, 56, 593eqtrd 2784 . . . 4 (𝜑 → (𝑄𝑀) = 𝐵)
6146, 60jca 511 . . 3 (𝜑 → ((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵))
62 elfzofz 13732 . . . . . . 7 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
6362, 10sylan2 592 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉𝑖) ∈ ℝ)
649adantr 480 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑉:(0...𝑀)⟶ℝ)
65 fzofzp1 13814 . . . . . . . 8 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
6665adantl 481 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀))
6764, 66ffvelcdmd 7119 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉‘(𝑖 + 1)) ∈ ℝ)
6811adantr 480 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑋 ∈ ℝ)
6938simprd 495 . . . . . . 7 (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1)))
7069r19.21bi 3257 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑉𝑖) < (𝑉‘(𝑖 + 1)))
7163, 67, 68, 70ltsub1dd 11902 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑉𝑖) − 𝑋) < ((𝑉‘(𝑖 + 1)) − 𝑋))
7262adantl 481 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀))
7362, 13sylan2 592 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑉𝑖) − 𝑋) ∈ ℝ)
7414fvmpt2 7040 . . . . . 6 ((𝑖 ∈ (0...𝑀) ∧ ((𝑉𝑖) − 𝑋) ∈ ℝ) → (𝑄𝑖) = ((𝑉𝑖) − 𝑋))
7572, 73, 74syl2anc 583 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) = ((𝑉𝑖) − 𝑋))
76 fveq2 6920 . . . . . . . . . 10 (𝑖 = 𝑗 → (𝑉𝑖) = (𝑉𝑗))
7776oveq1d 7463 . . . . . . . . 9 (𝑖 = 𝑗 → ((𝑉𝑖) − 𝑋) = ((𝑉𝑗) − 𝑋))
7877cbvmptv 5279 . . . . . . . 8 (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋)) = (𝑗 ∈ (0...𝑀) ↦ ((𝑉𝑗) − 𝑋))
7914, 78eqtri 2768 . . . . . . 7 𝑄 = (𝑗 ∈ (0...𝑀) ↦ ((𝑉𝑗) − 𝑋))
8079a1i 11 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄 = (𝑗 ∈ (0...𝑀) ↦ ((𝑉𝑗) − 𝑋)))
81 fveq2 6920 . . . . . . . 8 (𝑗 = (𝑖 + 1) → (𝑉𝑗) = (𝑉‘(𝑖 + 1)))
8281oveq1d 7463 . . . . . . 7 (𝑗 = (𝑖 + 1) → ((𝑉𝑗) − 𝑋) = ((𝑉‘(𝑖 + 1)) − 𝑋))
8382adantl 481 . . . . . 6 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 = (𝑖 + 1)) → ((𝑉𝑗) − 𝑋) = ((𝑉‘(𝑖 + 1)) − 𝑋))
8467, 68resubcld 11718 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑉‘(𝑖 + 1)) − 𝑋) ∈ ℝ)
8580, 83, 66, 84fvmptd 7036 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) = ((𝑉‘(𝑖 + 1)) − 𝑋))
8671, 75, 853brtr4d 5198 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
8786ralrimiva 3152 . . 3 (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))
8821, 61, 87jca32 515 . 2 (𝜑 → (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
89 fourierdlem14.o . . . 4 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
9089fourierdlem2 46030 . . 3 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑂𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
912, 90syl 17 . 2 (𝜑 → (𝑄 ∈ (𝑂𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
9288, 91mpbird 257 1 (𝜑𝑄 ∈ (𝑂𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  {crab 3443  Vcvv 3488   class class class wbr 5166  cmpt 5249  wf 6569  cfv 6573  (class class class)co 7448  m cmap 8884  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   < clt 11324  cle 11325  cmin 11520  cn 12293  ...cfz 13567  ..^cfzo 13711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712
This theorem is referenced by:  fourierdlem74  46101  fourierdlem75  46102  fourierdlem84  46111  fourierdlem85  46112  fourierdlem88  46115  fourierdlem103  46130  fourierdlem104  46131
  Copyright terms: Public domain W3C validator