Step | Hyp | Ref
| Expression |
1 | | fourierdlem14.v |
. . . . . . . . . 10
β’ (π β π β (πβπ)) |
2 | | fourierdlem14.m |
. . . . . . . . . . 11
β’ (π β π β β) |
3 | | fourierdlem14.p |
. . . . . . . . . . . 12
β’ π = (π β β β¦ {π β (β βm
(0...π)) β£ (((πβ0) = (π΄ + π) β§ (πβπ) = (π΅ + π)) β§ βπ β (0..^π)(πβπ) < (πβ(π + 1)))}) |
4 | 3 | fourierdlem2 44811 |
. . . . . . . . . . 11
β’ (π β β β (π β (πβπ) β (π β (β βm
(0...π)) β§ (((πβ0) = (π΄ + π) β§ (πβπ) = (π΅ + π)) β§ βπ β (0..^π)(πβπ) < (πβ(π + 1)))))) |
5 | 2, 4 | syl 17 |
. . . . . . . . . 10
β’ (π β (π β (πβπ) β (π β (β βm
(0...π)) β§ (((πβ0) = (π΄ + π) β§ (πβπ) = (π΅ + π)) β§ βπ β (0..^π)(πβπ) < (πβ(π + 1)))))) |
6 | 1, 5 | mpbid 231 |
. . . . . . . . 9
β’ (π β (π β (β βm
(0...π)) β§ (((πβ0) = (π΄ + π) β§ (πβπ) = (π΅ + π)) β§ βπ β (0..^π)(πβπ) < (πβ(π + 1))))) |
7 | 6 | simpld 495 |
. . . . . . . 8
β’ (π β π β (β βm
(0...π))) |
8 | | elmapi 8839 |
. . . . . . . 8
β’ (π β (β
βm (0...π))
β π:(0...π)βΆβ) |
9 | 7, 8 | syl 17 |
. . . . . . 7
β’ (π β π:(0...π)βΆβ) |
10 | 9 | ffvelcdmda 7083 |
. . . . . 6
β’ ((π β§ π β (0...π)) β (πβπ) β β) |
11 | | fourierdlem14.x |
. . . . . . 7
β’ (π β π β β) |
12 | 11 | adantr 481 |
. . . . . 6
β’ ((π β§ π β (0...π)) β π β β) |
13 | 10, 12 | resubcld 11638 |
. . . . 5
β’ ((π β§ π β (0...π)) β ((πβπ) β π) β β) |
14 | | fourierdlem14.q |
. . . . 5
β’ π = (π β (0...π) β¦ ((πβπ) β π)) |
15 | 13, 14 | fmptd 7110 |
. . . 4
β’ (π β π:(0...π)βΆβ) |
16 | | reex 11197 |
. . . . . 6
β’ β
β V |
17 | 16 | a1i 11 |
. . . . 5
β’ (π β β β
V) |
18 | | ovex 7438 |
. . . . . 6
β’
(0...π) β
V |
19 | 18 | a1i 11 |
. . . . 5
β’ (π β (0...π) β V) |
20 | 17, 19 | elmapd 8830 |
. . . 4
β’ (π β (π β (β βm
(0...π)) β π:(0...π)βΆβ)) |
21 | 15, 20 | mpbird 256 |
. . 3
β’ (π β π β (β βm
(0...π))) |
22 | 14 | a1i 11 |
. . . . . 6
β’ (π β π = (π β (0...π) β¦ ((πβπ) β π))) |
23 | | fveq2 6888 |
. . . . . . . 8
β’ (π = 0 β (πβπ) = (πβ0)) |
24 | 23 | oveq1d 7420 |
. . . . . . 7
β’ (π = 0 β ((πβπ) β π) = ((πβ0) β π)) |
25 | 24 | adantl 482 |
. . . . . 6
β’ ((π β§ π = 0) β ((πβπ) β π) = ((πβ0) β π)) |
26 | | 0zd 12566 |
. . . . . . 7
β’ (π β 0 β
β€) |
27 | 2 | nnzd 12581 |
. . . . . . 7
β’ (π β π β β€) |
28 | | 0le0 12309 |
. . . . . . . 8
β’ 0 β€
0 |
29 | 28 | a1i 11 |
. . . . . . 7
β’ (π β 0 β€ 0) |
30 | | 0red 11213 |
. . . . . . . 8
β’ (π β 0 β
β) |
31 | 2 | nnred 12223 |
. . . . . . . 8
β’ (π β π β β) |
32 | 2 | nngt0d 12257 |
. . . . . . . 8
β’ (π β 0 < π) |
33 | 30, 31, 32 | ltled 11358 |
. . . . . . 7
β’ (π β 0 β€ π) |
34 | 26, 27, 26, 29, 33 | elfzd 13488 |
. . . . . 6
β’ (π β 0 β (0...π)) |
35 | 9, 34 | ffvelcdmd 7084 |
. . . . . . 7
β’ (π β (πβ0) β β) |
36 | 35, 11 | resubcld 11638 |
. . . . . 6
β’ (π β ((πβ0) β π) β β) |
37 | 22, 25, 34, 36 | fvmptd 7002 |
. . . . 5
β’ (π β (πβ0) = ((πβ0) β π)) |
38 | 6 | simprd 496 |
. . . . . . . 8
β’ (π β (((πβ0) = (π΄ + π) β§ (πβπ) = (π΅ + π)) β§ βπ β (0..^π)(πβπ) < (πβ(π + 1)))) |
39 | 38 | simpld 495 |
. . . . . . 7
β’ (π β ((πβ0) = (π΄ + π) β§ (πβπ) = (π΅ + π))) |
40 | 39 | simpld 495 |
. . . . . 6
β’ (π β (πβ0) = (π΄ + π)) |
41 | 40 | oveq1d 7420 |
. . . . 5
β’ (π β ((πβ0) β π) = ((π΄ + π) β π)) |
42 | | fourierdlem14.1 |
. . . . . . 7
β’ (π β π΄ β β) |
43 | 42 | recnd 11238 |
. . . . . 6
β’ (π β π΄ β β) |
44 | 11 | recnd 11238 |
. . . . . 6
β’ (π β π β β) |
45 | 43, 44 | pncand 11568 |
. . . . 5
β’ (π β ((π΄ + π) β π) = π΄) |
46 | 37, 41, 45 | 3eqtrd 2776 |
. . . 4
β’ (π β (πβ0) = π΄) |
47 | | fveq2 6888 |
. . . . . . . 8
β’ (π = π β (πβπ) = (πβπ)) |
48 | 47 | oveq1d 7420 |
. . . . . . 7
β’ (π = π β ((πβπ) β π) = ((πβπ) β π)) |
49 | 48 | adantl 482 |
. . . . . 6
β’ ((π β§ π = π) β ((πβπ) β π) = ((πβπ) β π)) |
50 | 31 | leidd 11776 |
. . . . . . 7
β’ (π β π β€ π) |
51 | 26, 27, 27, 33, 50 | elfzd 13488 |
. . . . . 6
β’ (π β π β (0...π)) |
52 | 9, 51 | ffvelcdmd 7084 |
. . . . . . 7
β’ (π β (πβπ) β β) |
53 | 52, 11 | resubcld 11638 |
. . . . . 6
β’ (π β ((πβπ) β π) β β) |
54 | 22, 49, 51, 53 | fvmptd 7002 |
. . . . 5
β’ (π β (πβπ) = ((πβπ) β π)) |
55 | 39 | simprd 496 |
. . . . . 6
β’ (π β (πβπ) = (π΅ + π)) |
56 | 55 | oveq1d 7420 |
. . . . 5
β’ (π β ((πβπ) β π) = ((π΅ + π) β π)) |
57 | | fourierdlem14.2 |
. . . . . . 7
β’ (π β π΅ β β) |
58 | 57 | recnd 11238 |
. . . . . 6
β’ (π β π΅ β β) |
59 | 58, 44 | pncand 11568 |
. . . . 5
β’ (π β ((π΅ + π) β π) = π΅) |
60 | 54, 56, 59 | 3eqtrd 2776 |
. . . 4
β’ (π β (πβπ) = π΅) |
61 | 46, 60 | jca 512 |
. . 3
β’ (π β ((πβ0) = π΄ β§ (πβπ) = π΅)) |
62 | | elfzofz 13644 |
. . . . . . 7
β’ (π β (0..^π) β π β (0...π)) |
63 | 62, 10 | sylan2 593 |
. . . . . 6
β’ ((π β§ π β (0..^π)) β (πβπ) β β) |
64 | 9 | adantr 481 |
. . . . . . 7
β’ ((π β§ π β (0..^π)) β π:(0...π)βΆβ) |
65 | | fzofzp1 13725 |
. . . . . . . 8
β’ (π β (0..^π) β (π + 1) β (0...π)) |
66 | 65 | adantl 482 |
. . . . . . 7
β’ ((π β§ π β (0..^π)) β (π + 1) β (0...π)) |
67 | 64, 66 | ffvelcdmd 7084 |
. . . . . 6
β’ ((π β§ π β (0..^π)) β (πβ(π + 1)) β β) |
68 | 11 | adantr 481 |
. . . . . 6
β’ ((π β§ π β (0..^π)) β π β β) |
69 | 38 | simprd 496 |
. . . . . . 7
β’ (π β βπ β (0..^π)(πβπ) < (πβ(π + 1))) |
70 | 69 | r19.21bi 3248 |
. . . . . 6
β’ ((π β§ π β (0..^π)) β (πβπ) < (πβ(π + 1))) |
71 | 63, 67, 68, 70 | ltsub1dd 11822 |
. . . . 5
β’ ((π β§ π β (0..^π)) β ((πβπ) β π) < ((πβ(π + 1)) β π)) |
72 | 62 | adantl 482 |
. . . . . 6
β’ ((π β§ π β (0..^π)) β π β (0...π)) |
73 | 62, 13 | sylan2 593 |
. . . . . 6
β’ ((π β§ π β (0..^π)) β ((πβπ) β π) β β) |
74 | 14 | fvmpt2 7006 |
. . . . . 6
β’ ((π β (0...π) β§ ((πβπ) β π) β β) β (πβπ) = ((πβπ) β π)) |
75 | 72, 73, 74 | syl2anc 584 |
. . . . 5
β’ ((π β§ π β (0..^π)) β (πβπ) = ((πβπ) β π)) |
76 | | fveq2 6888 |
. . . . . . . . . 10
β’ (π = π β (πβπ) = (πβπ)) |
77 | 76 | oveq1d 7420 |
. . . . . . . . 9
β’ (π = π β ((πβπ) β π) = ((πβπ) β π)) |
78 | 77 | cbvmptv 5260 |
. . . . . . . 8
β’ (π β (0...π) β¦ ((πβπ) β π)) = (π β (0...π) β¦ ((πβπ) β π)) |
79 | 14, 78 | eqtri 2760 |
. . . . . . 7
β’ π = (π β (0...π) β¦ ((πβπ) β π)) |
80 | 79 | a1i 11 |
. . . . . 6
β’ ((π β§ π β (0..^π)) β π = (π β (0...π) β¦ ((πβπ) β π))) |
81 | | fveq2 6888 |
. . . . . . . 8
β’ (π = (π + 1) β (πβπ) = (πβ(π + 1))) |
82 | 81 | oveq1d 7420 |
. . . . . . 7
β’ (π = (π + 1) β ((πβπ) β π) = ((πβ(π + 1)) β π)) |
83 | 82 | adantl 482 |
. . . . . 6
β’ (((π β§ π β (0..^π)) β§ π = (π + 1)) β ((πβπ) β π) = ((πβ(π + 1)) β π)) |
84 | 67, 68 | resubcld 11638 |
. . . . . 6
β’ ((π β§ π β (0..^π)) β ((πβ(π + 1)) β π) β β) |
85 | 80, 83, 66, 84 | fvmptd 7002 |
. . . . 5
β’ ((π β§ π β (0..^π)) β (πβ(π + 1)) = ((πβ(π + 1)) β π)) |
86 | 71, 75, 85 | 3brtr4d 5179 |
. . . 4
β’ ((π β§ π β (0..^π)) β (πβπ) < (πβ(π + 1))) |
87 | 86 | ralrimiva 3146 |
. . 3
β’ (π β βπ β (0..^π)(πβπ) < (πβ(π + 1))) |
88 | 21, 61, 87 | jca32 516 |
. 2
β’ (π β (π β (β βm
(0...π)) β§ (((πβ0) = π΄ β§ (πβπ) = π΅) β§ βπ β (0..^π)(πβπ) < (πβ(π + 1))))) |
89 | | fourierdlem14.o |
. . . 4
β’ π = (π β β β¦ {π β (β βm
(0...π)) β£ (((πβ0) = π΄ β§ (πβπ) = π΅) β§ βπ β (0..^π)(πβπ) < (πβ(π + 1)))}) |
90 | 89 | fourierdlem2 44811 |
. . 3
β’ (π β β β (π β (πβπ) β (π β (β βm
(0...π)) β§ (((πβ0) = π΄ β§ (πβπ) = π΅) β§ βπ β (0..^π)(πβπ) < (πβ(π + 1)))))) |
91 | 2, 90 | syl 17 |
. 2
β’ (π β (π β (πβπ) β (π β (β βm
(0...π)) β§ (((πβ0) = π΄ β§ (πβπ) = π΅) β§ βπ β (0..^π)(πβπ) < (πβ(π + 1)))))) |
92 | 88, 91 | mpbird 256 |
1
β’ (π β π β (πβπ)) |