Proof of Theorem fourierdlem85
Step | Hyp | Ref
| Expression |
1 | | fourierdlem85.a |
. . 3
⊢ 𝐴 = ((if((𝑉‘𝑖) = 𝑋, 𝐸, ((𝑅 − if((𝑉‘𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄‘𝑖))) · (𝐾‘(𝑄‘𝑖))) · (𝑆‘(𝑄‘𝑖))) |
2 | | eqid 2738 |
. . . 4
⊢ (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑈‘𝑠)) = (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑈‘𝑠)) |
3 | | eqid 2738 |
. . . 4
⊢ (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑆‘𝑠)) = (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑆‘𝑠)) |
4 | | eqid 2738 |
. . . 4
⊢ (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝑈‘𝑠) · (𝑆‘𝑠))) = (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝑈‘𝑠) · (𝑆‘𝑠))) |
5 | | pire 25615 |
. . . . . . . . . . 11
⊢ π
∈ ℝ |
6 | 5 | renegcli 11282 |
. . . . . . . . . 10
⊢ -π
∈ ℝ |
7 | 6 | rexri 11033 |
. . . . . . . . 9
⊢ -π
∈ ℝ* |
8 | 7 | a1i 11 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → -π ∈
ℝ*) |
9 | 5 | rexri 11033 |
. . . . . . . . 9
⊢ π
∈ ℝ* |
10 | 9 | a1i 11 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → π ∈
ℝ*) |
11 | | fourierdlem85.o |
. . . . . . . . . . 11
⊢ 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m
(0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝‘𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
12 | | fourierdlem85.m |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈ ℕ) |
13 | 5 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → π ∈
ℝ) |
14 | 13 | renegcld 11402 |
. . . . . . . . . . . 12
⊢ (𝜑 → -π ∈
ℝ) |
15 | | fourierdlem85.v |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑉 ∈ (𝑃‘𝑀)) |
16 | | fourierdlem85.p |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m
(0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝‘𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
17 | 16 | fourierdlem2 43650 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑀 ∈ ℕ → (𝑉 ∈ (𝑃‘𝑀) ↔ (𝑉 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉‘𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉‘𝑖) < (𝑉‘(𝑖 + 1)))))) |
18 | 12, 17 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑉 ∈ (𝑃‘𝑀) ↔ (𝑉 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉‘𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉‘𝑖) < (𝑉‘(𝑖 + 1)))))) |
19 | 15, 18 | mpbid 231 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑉 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉‘𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉‘𝑖) < (𝑉‘(𝑖 + 1))))) |
20 | 19 | simpld 495 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑉 ∈ (ℝ ↑m
(0...𝑀))) |
21 | | elmapi 8637 |
. . . . . . . . . . . . . 14
⊢ (𝑉 ∈ (ℝ
↑m (0...𝑀))
→ 𝑉:(0...𝑀)⟶ℝ) |
22 | | frn 6607 |
. . . . . . . . . . . . . 14
⊢ (𝑉:(0...𝑀)⟶ℝ → ran 𝑉 ⊆
ℝ) |
23 | 20, 21, 22 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ran 𝑉 ⊆ ℝ) |
24 | | fourierdlem85.x |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑋 ∈ ran 𝑉) |
25 | 23, 24 | sseldd 3922 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑋 ∈ ℝ) |
26 | | fourierdlem85.q |
. . . . . . . . . . . 12
⊢ 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉‘𝑖) − 𝑋)) |
27 | 14, 13, 25, 16, 11, 12, 15, 26 | fourierdlem14 43662 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑄 ∈ (𝑂‘𝑀)) |
28 | 11, 12, 27 | fourierdlem15 43663 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑄:(0...𝑀)⟶(-π[,]π)) |
29 | 28 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶(-π[,]π)) |
30 | 29 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑄:(0...𝑀)⟶(-π[,]π)) |
31 | | simplr 766 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑖 ∈ (0..^𝑀)) |
32 | 8, 10, 30, 31 | fourierdlem8 43656 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ⊆
(-π[,]π)) |
33 | | ioossicc 13165 |
. . . . . . . . 9
⊢ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) |
34 | 33 | sseli 3917 |
. . . . . . . 8
⊢ (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) → 𝑠 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) |
35 | 34 | adantl 482 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) |
36 | 32, 35 | sseldd 3922 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 ∈ (-π[,]π)) |
37 | | fourierdlem85.f |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
38 | | ioossre 13140 |
. . . . . . . . . . . . . 14
⊢ (𝑋(,)+∞) ⊆
ℝ |
39 | 38 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑋(,)+∞) ⊆
ℝ) |
40 | 37, 39 | fssresd 6641 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐹 ↾ (𝑋(,)+∞)):(𝑋(,)+∞)⟶ℝ) |
41 | | ax-resscn 10928 |
. . . . . . . . . . . . 13
⊢ ℝ
⊆ ℂ |
42 | 39, 41 | sstrdi 3933 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑋(,)+∞) ⊆
ℂ) |
43 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
44 | | pnfxr 11029 |
. . . . . . . . . . . . . 14
⊢ +∞
∈ ℝ* |
45 | 44 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → +∞ ∈
ℝ*) |
46 | 25 | ltpnfd 12857 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑋 < +∞) |
47 | 43, 45, 25, 46 | lptioo1cn 43187 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑋 ∈
((limPt‘(TopOpen‘ℂfld))‘(𝑋(,)+∞))) |
48 | | fourierdlem85.y |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑌 ∈ ((𝐹 ↾ (𝑋(,)+∞)) limℂ 𝑋)) |
49 | 40, 42, 47, 48 | limcrecl 43170 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑌 ∈ ℝ) |
50 | | fourierdlem85.w |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑊 ∈ ℝ) |
51 | | fourierdlem85.h |
. . . . . . . . . . 11
⊢ 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))) |
52 | 37, 25, 49, 50, 51 | fourierdlem9 43657 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐻:(-π[,]π)⟶ℝ) |
53 | 41 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → ℝ ⊆
ℂ) |
54 | 52, 53 | fssd 6618 |
. . . . . . . . 9
⊢ (𝜑 → 𝐻:(-π[,]π)⟶ℂ) |
55 | 54 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝐻:(-π[,]π)⟶ℂ) |
56 | 55, 36 | ffvelrnd 6962 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐻‘𝑠) ∈ ℂ) |
57 | | fourierdlem85.k |
. . . . . . . . . . 11
⊢ 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) |
58 | 57 | fourierdlem43 43691 |
. . . . . . . . . 10
⊢ 𝐾:(-π[,]π)⟶ℝ |
59 | 58 | a1i 11 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝐾:(-π[,]π)⟶ℝ) |
60 | 59, 36 | ffvelrnd 6962 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐾‘𝑠) ∈ ℝ) |
61 | 60 | recnd 11003 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐾‘𝑠) ∈ ℂ) |
62 | 56, 61 | mulcld 10995 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝐻‘𝑠) · (𝐾‘𝑠)) ∈ ℂ) |
63 | | fourierdlem85.u |
. . . . . . 7
⊢ 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻‘𝑠) · (𝐾‘𝑠))) |
64 | 63 | fvmpt2 6886 |
. . . . . 6
⊢ ((𝑠 ∈ (-π[,]π) ∧
((𝐻‘𝑠) · (𝐾‘𝑠)) ∈ ℂ) → (𝑈‘𝑠) = ((𝐻‘𝑠) · (𝐾‘𝑠))) |
65 | 36, 62, 64 | syl2anc 584 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑈‘𝑠) = ((𝐻‘𝑠) · (𝐾‘𝑠))) |
66 | 65, 62 | eqeltrd 2839 |
. . . 4
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑈‘𝑠) ∈ ℂ) |
67 | | fourierdlem85.n |
. . . . . . . . . 10
⊢ (𝜑 → 𝑁 ∈ ℝ) |
68 | | fourierdlem85.s |
. . . . . . . . . 10
⊢ 𝑆 = (𝑠 ∈ (-π[,]π) ↦
(sin‘((𝑁 + (1 / 2))
· 𝑠))) |
69 | 67, 68 | fourierdlem18 43666 |
. . . . . . . . 9
⊢ (𝜑 → 𝑆 ∈ ((-π[,]π)–cn→ℝ)) |
70 | | cncff 24056 |
. . . . . . . . 9
⊢ (𝑆 ∈
((-π[,]π)–cn→ℝ)
→ 𝑆:(-π[,]π)⟶ℝ) |
71 | 69, 70 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑆:(-π[,]π)⟶ℝ) |
72 | 71 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑆:(-π[,]π)⟶ℝ) |
73 | 72 | adantr 481 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑆:(-π[,]π)⟶ℝ) |
74 | 73, 36 | ffvelrnd 6962 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑆‘𝑠) ∈ ℝ) |
75 | 74 | recnd 11003 |
. . . 4
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑆‘𝑠) ∈ ℂ) |
76 | | eqid 2738 |
. . . . . 6
⊢ (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐻‘𝑠)) = (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐻‘𝑠)) |
77 | | eqid 2738 |
. . . . . 6
⊢ (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐾‘𝑠)) = (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐾‘𝑠)) |
78 | | eqid 2738 |
. . . . . 6
⊢ (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐻‘𝑠) · (𝐾‘𝑠))) = (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐻‘𝑠) · (𝐾‘𝑠))) |
79 | | fourierdlem85.r |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))) limℂ (𝑉‘𝑖))) |
80 | | fourierdlem85.i |
. . . . . . . 8
⊢ 𝐼 = (ℝ D 𝐹) |
81 | | fourierdlem85.ifn |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐼 ↾ ((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉‘𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℂ) |
82 | | fourierdlem85.e |
. . . . . . . 8
⊢ (𝜑 → 𝐸 ∈ ((𝐼 ↾ (𝑋(,)+∞)) limℂ 𝑋)) |
83 | | eqid 2738 |
. . . . . . . 8
⊢ if((𝑉‘𝑖) = 𝑋, 𝐸, ((𝑅 − if((𝑉‘𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄‘𝑖))) = if((𝑉‘𝑖) = 𝑋, 𝐸, ((𝑅 − if((𝑉‘𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄‘𝑖))) |
84 | 25, 16, 37, 24, 48, 50, 51, 12, 15, 79, 26, 11, 80, 81, 82, 83 | fourierdlem75 43722 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → if((𝑉‘𝑖) = 𝑋, 𝐸, ((𝑅 − if((𝑉‘𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄‘𝑖))) ∈ ((𝐻 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) |
85 | 52 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐻:(-π[,]π)⟶ℝ) |
86 | 7 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → -π ∈
ℝ*) |
87 | 9 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → π ∈
ℝ*) |
88 | | simpr 485 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0..^𝑀)) |
89 | 86, 87, 29, 88 | fourierdlem8 43656 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ⊆
(-π[,]π)) |
90 | 33, 89 | sstrid 3932 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆
(-π[,]π)) |
91 | 85, 90 | feqresmpt 6838 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐻 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐻‘𝑠))) |
92 | 91 | oveq1d 7290 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐻 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖)) = ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐻‘𝑠)) limℂ (𝑄‘𝑖))) |
93 | 84, 92 | eleqtrd 2841 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → if((𝑉‘𝑖) = 𝑋, 𝐸, ((𝑅 − if((𝑉‘𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄‘𝑖))) ∈ ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐻‘𝑠)) limℂ (𝑄‘𝑖))) |
94 | | limcresi 25049 |
. . . . . . . 8
⊢ (𝐾 limℂ (𝑄‘𝑖)) ⊆ ((𝐾 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖)) |
95 | | ssid 3943 |
. . . . . . . . . . . 12
⊢ ℂ
⊆ ℂ |
96 | | cncfss 24062 |
. . . . . . . . . . . 12
⊢ ((ℝ
⊆ ℂ ∧ ℂ ⊆ ℂ) →
((-π[,]π)–cn→ℝ)
⊆ ((-π[,]π)–cn→ℂ)) |
97 | 41, 95, 96 | mp2an 689 |
. . . . . . . . . . 11
⊢
((-π[,]π)–cn→ℝ) ⊆ ((-π[,]π)–cn→ℂ) |
98 | 57 | fourierdlem62 43709 |
. . . . . . . . . . 11
⊢ 𝐾 ∈
((-π[,]π)–cn→ℝ) |
99 | 97, 98 | sselii 3918 |
. . . . . . . . . 10
⊢ 𝐾 ∈
((-π[,]π)–cn→ℂ) |
100 | 99 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐾 ∈ ((-π[,]π)–cn→ℂ)) |
101 | | elfzofz 13403 |
. . . . . . . . . . 11
⊢ (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀)) |
102 | 101 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀)) |
103 | 29, 102 | ffvelrnd 6962 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) ∈ (-π[,]π)) |
104 | 100, 103 | cnlimci 25053 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐾‘(𝑄‘𝑖)) ∈ (𝐾 limℂ (𝑄‘𝑖))) |
105 | 94, 104 | sselid 3919 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐾‘(𝑄‘𝑖)) ∈ ((𝐾 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) |
106 | | cncff 24056 |
. . . . . . . . . 10
⊢ (𝐾 ∈
((-π[,]π)–cn→ℂ)
→ 𝐾:(-π[,]π)⟶ℂ) |
107 | 99, 106 | mp1i 13 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐾:(-π[,]π)⟶ℂ) |
108 | 107, 90 | feqresmpt 6838 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐾 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐾‘𝑠))) |
109 | 108 | oveq1d 7290 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐾 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖)) = ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐾‘𝑠)) limℂ (𝑄‘𝑖))) |
110 | 105, 109 | eleqtrd 2841 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐾‘(𝑄‘𝑖)) ∈ ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐾‘𝑠)) limℂ (𝑄‘𝑖))) |
111 | 76, 77, 78, 56, 61, 93, 110 | mullimc 43157 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (if((𝑉‘𝑖) = 𝑋, 𝐸, ((𝑅 − if((𝑉‘𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄‘𝑖))) · (𝐾‘(𝑄‘𝑖))) ∈ ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐻‘𝑠) · (𝐾‘𝑠))) limℂ (𝑄‘𝑖))) |
112 | 65 | mpteq2dva 5174 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑈‘𝑠)) = (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐻‘𝑠) · (𝐾‘𝑠)))) |
113 | 112 | oveq1d 7290 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑈‘𝑠)) limℂ (𝑄‘𝑖)) = ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐻‘𝑠) · (𝐾‘𝑠))) limℂ (𝑄‘𝑖))) |
114 | 111, 113 | eleqtrrd 2842 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (if((𝑉‘𝑖) = 𝑋, 𝐸, ((𝑅 − if((𝑉‘𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄‘𝑖))) · (𝐾‘(𝑄‘𝑖))) ∈ ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑈‘𝑠)) limℂ (𝑄‘𝑖))) |
115 | | limcresi 25049 |
. . . . . 6
⊢ (𝑆 limℂ (𝑄‘𝑖)) ⊆ ((𝑆 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖)) |
116 | 69 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑆 ∈ ((-π[,]π)–cn→ℝ)) |
117 | 116, 103 | cnlimci 25053 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑆‘(𝑄‘𝑖)) ∈ (𝑆 limℂ (𝑄‘𝑖))) |
118 | 115, 117 | sselid 3919 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑆‘(𝑄‘𝑖)) ∈ ((𝑆 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) |
119 | 72, 90 | feqresmpt 6838 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑆 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑆‘𝑠))) |
120 | 119 | oveq1d 7290 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑆 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖)) = ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑆‘𝑠)) limℂ (𝑄‘𝑖))) |
121 | 118, 120 | eleqtrd 2841 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑆‘(𝑄‘𝑖)) ∈ ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑆‘𝑠)) limℂ (𝑄‘𝑖))) |
122 | 2, 3, 4, 66, 75, 114, 121 | mullimc 43157 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((if((𝑉‘𝑖) = 𝑋, 𝐸, ((𝑅 − if((𝑉‘𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄‘𝑖))) · (𝐾‘(𝑄‘𝑖))) · (𝑆‘(𝑄‘𝑖))) ∈ ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝑈‘𝑠) · (𝑆‘𝑠))) limℂ (𝑄‘𝑖))) |
123 | 1, 122 | eqeltrid 2843 |
. 2
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐴 ∈ ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝑈‘𝑠) · (𝑆‘𝑠))) limℂ (𝑄‘𝑖))) |
124 | | fourierdlem85.g |
. . . . 5
⊢ 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈‘𝑠) · (𝑆‘𝑠))) |
125 | 124 | reseq1i 5887 |
. . . 4
⊢ (𝐺 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑠 ∈ (-π[,]π) ↦ ((𝑈‘𝑠) · (𝑆‘𝑠))) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
126 | 90 | resmptd 5948 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑠 ∈ (-π[,]π) ↦ ((𝑈‘𝑠) · (𝑆‘𝑠))) ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝑈‘𝑠) · (𝑆‘𝑠)))) |
127 | 125, 126 | eqtr2id 2791 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝑈‘𝑠) · (𝑆‘𝑠))) = (𝐺 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) |
128 | 127 | oveq1d 7290 |
. 2
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑠 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝑈‘𝑠) · (𝑆‘𝑠))) limℂ (𝑄‘𝑖)) = ((𝐺 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) |
129 | 123, 128 | eleqtrd 2841 |
1
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐴 ∈ ((𝐺 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) |