Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem85 Structured version   Visualization version   GIF version

Theorem fourierdlem85 42466
Description: Limit of the function 𝐺 at the lower bounds of the partition intervals. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem85.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem85.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem85.x (𝜑𝑋 ∈ ran 𝑉)
fourierdlem85.y (𝜑𝑌 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
fourierdlem85.w (𝜑𝑊 ∈ ℝ)
fourierdlem85.h 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
fourierdlem85.k 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
fourierdlem85.u 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))
fourierdlem85.n (𝜑𝑁 ∈ ℝ)
fourierdlem85.s 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑠)))
fourierdlem85.g 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠)))
fourierdlem85.m (𝜑𝑀 ∈ ℕ)
fourierdlem85.v (𝜑𝑉 ∈ (𝑃𝑀))
fourierdlem85.r ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
fourierdlem85.q 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
fourierdlem85.o 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem85.i 𝐼 = (ℝ D 𝐹)
fourierdlem85.ifn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐼 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℂ)
fourierdlem85.e (𝜑𝐸 ∈ ((𝐼 ↾ (𝑋(,)+∞)) lim 𝑋))
fourierdlem85.a 𝐴 = ((if((𝑉𝑖) = 𝑋, 𝐸, ((𝑅 − if((𝑉𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄𝑖))) · (𝐾‘(𝑄𝑖))) · (𝑆‘(𝑄𝑖)))
Assertion
Ref Expression
fourierdlem85 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐴 ∈ ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
Distinct variable groups:   𝐸,𝑠   𝐹,𝑠   𝐻,𝑠   𝐾,𝑠   𝑖,𝑀,𝑚,𝑝   𝑀,𝑠,𝑖   𝑁,𝑠   𝑄,𝑖,𝑝   𝑄,𝑠   𝑅,𝑠   𝑆,𝑠   𝑖,𝑉,𝑝   𝑉,𝑠   𝑊,𝑠   𝑖,𝑋,𝑚,𝑝   𝑋,𝑠   𝑌,𝑠   𝜑,𝑖,𝑠
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝐴(𝑖,𝑚,𝑠,𝑝)   𝑃(𝑖,𝑚,𝑠,𝑝)   𝑄(𝑚)   𝑅(𝑖,𝑚,𝑝)   𝑆(𝑖,𝑚,𝑝)   𝑈(𝑖,𝑚,𝑠,𝑝)   𝐸(𝑖,𝑚,𝑝)   𝐹(𝑖,𝑚,𝑝)   𝐺(𝑖,𝑚,𝑠,𝑝)   𝐻(𝑖,𝑚,𝑝)   𝐼(𝑖,𝑚,𝑠,𝑝)   𝐾(𝑖,𝑚,𝑝)   𝑁(𝑖,𝑚,𝑝)   𝑂(𝑖,𝑚,𝑠,𝑝)   𝑉(𝑚)   𝑊(𝑖,𝑚,𝑝)   𝑌(𝑖,𝑚,𝑝)

Proof of Theorem fourierdlem85
StepHypRef Expression
1 fourierdlem85.a . . 3 𝐴 = ((if((𝑉𝑖) = 𝑋, 𝐸, ((𝑅 − if((𝑉𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄𝑖))) · (𝐾‘(𝑄𝑖))) · (𝑆‘(𝑄𝑖)))
2 eqid 2819 . . . 4 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑈𝑠)) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑈𝑠))
3 eqid 2819 . . . 4 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑆𝑠)) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑆𝑠))
4 eqid 2819 . . . 4 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝑈𝑠) · (𝑆𝑠))) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝑈𝑠) · (𝑆𝑠)))
5 pire 25036 . . . . . . . . . . 11 π ∈ ℝ
65renegcli 10939 . . . . . . . . . 10 -π ∈ ℝ
76rexri 10691 . . . . . . . . 9 -π ∈ ℝ*
87a1i 11 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → -π ∈ ℝ*)
95rexri 10691 . . . . . . . . 9 π ∈ ℝ*
109a1i 11 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → π ∈ ℝ*)
11 fourierdlem85.o . . . . . . . . . . 11 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
12 fourierdlem85.m . . . . . . . . . . 11 (𝜑𝑀 ∈ ℕ)
135a1i 11 . . . . . . . . . . . . 13 (𝜑 → π ∈ ℝ)
1413renegcld 11059 . . . . . . . . . . . 12 (𝜑 → -π ∈ ℝ)
15 fourierdlem85.v . . . . . . . . . . . . . . . 16 (𝜑𝑉 ∈ (𝑃𝑀))
16 fourierdlem85.p . . . . . . . . . . . . . . . . . 18 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
1716fourierdlem2 42384 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ → (𝑉 ∈ (𝑃𝑀) ↔ (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1))))))
1812, 17syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑉 ∈ (𝑃𝑀) ↔ (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1))))))
1915, 18mpbid 234 . . . . . . . . . . . . . . 15 (𝜑 → (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (-π + 𝑋) ∧ (𝑉𝑀) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1)))))
2019simpld 497 . . . . . . . . . . . . . 14 (𝜑𝑉 ∈ (ℝ ↑m (0...𝑀)))
21 elmapi 8420 . . . . . . . . . . . . . 14 (𝑉 ∈ (ℝ ↑m (0...𝑀)) → 𝑉:(0...𝑀)⟶ℝ)
22 frn 6513 . . . . . . . . . . . . . 14 (𝑉:(0...𝑀)⟶ℝ → ran 𝑉 ⊆ ℝ)
2320, 21, 223syl 18 . . . . . . . . . . . . 13 (𝜑 → ran 𝑉 ⊆ ℝ)
24 fourierdlem85.x . . . . . . . . . . . . 13 (𝜑𝑋 ∈ ran 𝑉)
2523, 24sseldd 3966 . . . . . . . . . . . 12 (𝜑𝑋 ∈ ℝ)
26 fourierdlem85.q . . . . . . . . . . . 12 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
2714, 13, 25, 16, 11, 12, 15, 26fourierdlem14 42396 . . . . . . . . . . 11 (𝜑𝑄 ∈ (𝑂𝑀))
2811, 12, 27fourierdlem15 42397 . . . . . . . . . 10 (𝜑𝑄:(0...𝑀)⟶(-π[,]π))
2928adantr 483 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶(-π[,]π))
3029adantr 483 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑄:(0...𝑀)⟶(-π[,]π))
31 simplr 767 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑖 ∈ (0..^𝑀))
328, 10, 30, 31fourierdlem8 42390 . . . . . . 7 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ⊆ (-π[,]π))
33 ioossicc 12814 . . . . . . . . 9 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))
3433sseli 3961 . . . . . . . 8 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) → 𝑠 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))
3534adantl 484 . . . . . . 7 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))))
3632, 35sseldd 3966 . . . . . 6 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑠 ∈ (-π[,]π))
37 fourierdlem85.f . . . . . . . . . . 11 (𝜑𝐹:ℝ⟶ℝ)
38 ioossre 12790 . . . . . . . . . . . . . 14 (𝑋(,)+∞) ⊆ ℝ
3938a1i 11 . . . . . . . . . . . . 13 (𝜑 → (𝑋(,)+∞) ⊆ ℝ)
4037, 39fssresd 6538 . . . . . . . . . . . 12 (𝜑 → (𝐹 ↾ (𝑋(,)+∞)):(𝑋(,)+∞)⟶ℝ)
41 ax-resscn 10586 . . . . . . . . . . . . 13 ℝ ⊆ ℂ
4239, 41sstrdi 3977 . . . . . . . . . . . 12 (𝜑 → (𝑋(,)+∞) ⊆ ℂ)
43 eqid 2819 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
44 pnfxr 10687 . . . . . . . . . . . . . 14 +∞ ∈ ℝ*
4544a1i 11 . . . . . . . . . . . . 13 (𝜑 → +∞ ∈ ℝ*)
4625ltpnfd 12508 . . . . . . . . . . . . 13 (𝜑𝑋 < +∞)
4743, 45, 25, 46lptioo1cn 41916 . . . . . . . . . . . 12 (𝜑𝑋 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝑋(,)+∞)))
48 fourierdlem85.y . . . . . . . . . . . 12 (𝜑𝑌 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))
4940, 42, 47, 48limcrecl 41899 . . . . . . . . . . 11 (𝜑𝑌 ∈ ℝ)
50 fourierdlem85.w . . . . . . . . . . 11 (𝜑𝑊 ∈ ℝ)
51 fourierdlem85.h . . . . . . . . . . 11 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
5237, 25, 49, 50, 51fourierdlem9 42391 . . . . . . . . . 10 (𝜑𝐻:(-π[,]π)⟶ℝ)
5341a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ⊆ ℂ)
5452, 53fssd 6521 . . . . . . . . 9 (𝜑𝐻:(-π[,]π)⟶ℂ)
5554ad2antrr 724 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝐻:(-π[,]π)⟶ℂ)
5655, 36ffvelrnd 6845 . . . . . . 7 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐻𝑠) ∈ ℂ)
57 fourierdlem85.k . . . . . . . . . . 11 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
5857fourierdlem43 42425 . . . . . . . . . 10 𝐾:(-π[,]π)⟶ℝ
5958a1i 11 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝐾:(-π[,]π)⟶ℝ)
6059, 36ffvelrnd 6845 . . . . . . . 8 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐾𝑠) ∈ ℝ)
6160recnd 10661 . . . . . . 7 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝐾𝑠) ∈ ℂ)
6256, 61mulcld 10653 . . . . . 6 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → ((𝐻𝑠) · (𝐾𝑠)) ∈ ℂ)
63 fourierdlem85.u . . . . . . 7 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))
6463fvmpt2 6772 . . . . . 6 ((𝑠 ∈ (-π[,]π) ∧ ((𝐻𝑠) · (𝐾𝑠)) ∈ ℂ) → (𝑈𝑠) = ((𝐻𝑠) · (𝐾𝑠)))
6536, 62, 64syl2anc 586 . . . . 5 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑈𝑠) = ((𝐻𝑠) · (𝐾𝑠)))
6665, 62eqeltrd 2911 . . . 4 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑈𝑠) ∈ ℂ)
67 fourierdlem85.n . . . . . . . . . 10 (𝜑𝑁 ∈ ℝ)
68 fourierdlem85.s . . . . . . . . . 10 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑠)))
6967, 68fourierdlem18 42400 . . . . . . . . 9 (𝜑𝑆 ∈ ((-π[,]π)–cn→ℝ))
70 cncff 23493 . . . . . . . . 9 (𝑆 ∈ ((-π[,]π)–cn→ℝ) → 𝑆:(-π[,]π)⟶ℝ)
7169, 70syl 17 . . . . . . . 8 (𝜑𝑆:(-π[,]π)⟶ℝ)
7271adantr 483 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑆:(-π[,]π)⟶ℝ)
7372adantr 483 . . . . . 6 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → 𝑆:(-π[,]π)⟶ℝ)
7473, 36ffvelrnd 6845 . . . . 5 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑆𝑠) ∈ ℝ)
7574recnd 10661 . . . 4 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) → (𝑆𝑠) ∈ ℂ)
76 eqid 2819 . . . . . 6 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐻𝑠)) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐻𝑠))
77 eqid 2819 . . . . . 6 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐾𝑠)) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐾𝑠))
78 eqid 2819 . . . . . 6 (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐻𝑠) · (𝐾𝑠))) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐻𝑠) · (𝐾𝑠)))
79 fourierdlem85.r . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))
80 fourierdlem85.i . . . . . . . 8 𝐼 = (ℝ D 𝐹)
81 fourierdlem85.ifn . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐼 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))):((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))⟶ℂ)
82 fourierdlem85.e . . . . . . . 8 (𝜑𝐸 ∈ ((𝐼 ↾ (𝑋(,)+∞)) lim 𝑋))
83 eqid 2819 . . . . . . . 8 if((𝑉𝑖) = 𝑋, 𝐸, ((𝑅 − if((𝑉𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄𝑖))) = if((𝑉𝑖) = 𝑋, 𝐸, ((𝑅 − if((𝑉𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄𝑖)))
8425, 16, 37, 24, 48, 50, 51, 12, 15, 79, 26, 11, 80, 81, 82, 83fourierdlem75 42456 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → if((𝑉𝑖) = 𝑋, 𝐸, ((𝑅 − if((𝑉𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄𝑖))) ∈ ((𝐻 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
8552adantr 483 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐻:(-π[,]π)⟶ℝ)
867a1i 11 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → -π ∈ ℝ*)
879a1i 11 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → π ∈ ℝ*)
88 simpr 487 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0..^𝑀))
8986, 87, 29, 88fourierdlem8 42390 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ⊆ (-π[,]π))
9033, 89sstrid 3976 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ (-π[,]π))
9185, 90feqresmpt 6727 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐻 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐻𝑠)))
9291oveq1d 7163 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐻 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) = ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐻𝑠)) lim (𝑄𝑖)))
9384, 92eleqtrd 2913 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → if((𝑉𝑖) = 𝑋, 𝐸, ((𝑅 − if((𝑉𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄𝑖))) ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐻𝑠)) lim (𝑄𝑖)))
94 limcresi 24475 . . . . . . . 8 (𝐾 lim (𝑄𝑖)) ⊆ ((𝐾 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖))
95 ssid 3987 . . . . . . . . . . . 12 ℂ ⊆ ℂ
96 cncfss 23499 . . . . . . . . . . . 12 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((-π[,]π)–cn→ℝ) ⊆ ((-π[,]π)–cn→ℂ))
9741, 95, 96mp2an 690 . . . . . . . . . . 11 ((-π[,]π)–cn→ℝ) ⊆ ((-π[,]π)–cn→ℂ)
9857fourierdlem62 42443 . . . . . . . . . . 11 𝐾 ∈ ((-π[,]π)–cn→ℝ)
9997, 98sselii 3962 . . . . . . . . . 10 𝐾 ∈ ((-π[,]π)–cn→ℂ)
10099a1i 11 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐾 ∈ ((-π[,]π)–cn→ℂ))
101 elfzofz 13045 . . . . . . . . . . 11 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
102101adantl 484 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀))
10329, 102ffvelrnd 6845 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ (-π[,]π))
104100, 103cnlimci 24479 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐾‘(𝑄𝑖)) ∈ (𝐾 lim (𝑄𝑖)))
10594, 104sseldi 3963 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐾‘(𝑄𝑖)) ∈ ((𝐾 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
106 cncff 23493 . . . . . . . . . 10 (𝐾 ∈ ((-π[,]π)–cn→ℂ) → 𝐾:(-π[,]π)⟶ℂ)
10799, 106mp1i 13 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐾:(-π[,]π)⟶ℂ)
108107, 90feqresmpt 6727 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐾 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐾𝑠)))
109108oveq1d 7163 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐾 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) = ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐾𝑠)) lim (𝑄𝑖)))
110105, 109eleqtrd 2913 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐾‘(𝑄𝑖)) ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐾𝑠)) lim (𝑄𝑖)))
11176, 77, 78, 56, 61, 93, 110mullimc 41886 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (if((𝑉𝑖) = 𝑋, 𝐸, ((𝑅 − if((𝑉𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄𝑖))) · (𝐾‘(𝑄𝑖))) ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐻𝑠) · (𝐾𝑠))) lim (𝑄𝑖)))
11265mpteq2dva 5152 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑈𝑠)) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐻𝑠) · (𝐾𝑠))))
113112oveq1d 7163 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑈𝑠)) lim (𝑄𝑖)) = ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝐻𝑠) · (𝐾𝑠))) lim (𝑄𝑖)))
114111, 113eleqtrrd 2914 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (if((𝑉𝑖) = 𝑋, 𝐸, ((𝑅 − if((𝑉𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄𝑖))) · (𝐾‘(𝑄𝑖))) ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑈𝑠)) lim (𝑄𝑖)))
115 limcresi 24475 . . . . . 6 (𝑆 lim (𝑄𝑖)) ⊆ ((𝑆 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖))
11669adantr 483 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑆 ∈ ((-π[,]π)–cn→ℝ))
117116, 103cnlimci 24479 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑆‘(𝑄𝑖)) ∈ (𝑆 lim (𝑄𝑖)))
118115, 117sseldi 3963 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑆‘(𝑄𝑖)) ∈ ((𝑆 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
11972, 90feqresmpt 6727 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑆 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑆𝑠)))
120119oveq1d 7163 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑆 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) = ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑆𝑠)) lim (𝑄𝑖)))
121118, 120eleqtrd 2913 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑆‘(𝑄𝑖)) ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝑆𝑠)) lim (𝑄𝑖)))
1222, 3, 4, 66, 75, 114, 121mullimc 41886 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → ((if((𝑉𝑖) = 𝑋, 𝐸, ((𝑅 − if((𝑉𝑖) < 𝑋, 𝑊, 𝑌)) / (𝑄𝑖))) · (𝐾‘(𝑄𝑖))) · (𝑆‘(𝑄𝑖))) ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝑈𝑠) · (𝑆𝑠))) lim (𝑄𝑖)))
1231, 122eqeltrid 2915 . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐴 ∈ ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝑈𝑠) · (𝑆𝑠))) lim (𝑄𝑖)))
124 fourierdlem85.g . . . . 5 𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠)))
125124reseq1i 5842 . . . 4 (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = ((𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠))) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
12690resmptd 5901 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠))) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝑈𝑠) · (𝑆𝑠))))
127125, 126syl5req 2867 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝑈𝑠) · (𝑆𝑠))) = (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
128127oveq1d 7163 . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑠 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ ((𝑈𝑠) · (𝑆𝑠))) lim (𝑄𝑖)) = ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
129123, 128eleqtrd 2913 1 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐴 ∈ ((𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1531  wcel 2108  wral 3136  {crab 3140  wss 3934  ifcif 4465   class class class wbr 5057  cmpt 5137  ran crn 5549  cres 5550  wf 6344  cfv 6348  (class class class)co 7148  m cmap 8398  cc 10527  cr 10528  0cc0 10529  1c1 10530   + caddc 10532   · cmul 10534  +∞cpnf 10664  *cxr 10666   < clt 10667  cmin 10862  -cneg 10863   / cdiv 11289  cn 11630  2c2 11684  (,)cioo 12730  [,]cicc 12733  ...cfz 12884  ..^cfzo 13025  sincsin 15409  πcpi 15412  TopOpenctopn 16687  fldccnfld 20537  cnccncf 23476   lim climc 24452   D cdv 24453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-inf2 9096  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-addf 10608  ax-mulf 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-fal 1544  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7401  df-om 7573  df-1st 7681  df-2nd 7682  df-supp 7823  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-2o 8095  df-oadd 8098  df-er 8281  df-map 8400  df-pm 8401  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-fi 8867  df-sup 8898  df-inf 8899  df-oi 8966  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-ioo 12734  df-ioc 12735  df-ico 12736  df-icc 12737  df-fz 12885  df-fzo 13026  df-fl 13154  df-mod 13230  df-seq 13362  df-exp 13422  df-fac 13626  df-bc 13655  df-hash 13683  df-shft 14418  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035  df-ef 15413  df-sin 15415  df-cos 15416  df-pi 15418  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20529  df-xmet 20530  df-met 20531  df-bl 20532  df-mopn 20533  df-fbas 20534  df-fg 20535  df-cnfld 20538  df-top 21494  df-topon 21511  df-topsp 21533  df-bases 21546  df-cld 21619  df-ntr 21620  df-cls 21621  df-nei 21698  df-lp 21736  df-perf 21737  df-cn 21827  df-cnp 21828  df-t1 21914  df-haus 21915  df-cmp 21987  df-tx 22162  df-hmeo 22355  df-fil 22446  df-fm 22538  df-flim 22539  df-flf 22540  df-xms 22922  df-ms 22923  df-tms 22924  df-cncf 23478  df-limc 24456  df-dv 24457
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator