Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem13 Structured version   Visualization version   GIF version

Theorem fourierdlem13 42396
Description: Value of 𝑉 in terms of value of 𝑄. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem13.a (𝜑𝐴 ∈ ℝ)
fourierdlem13.b (𝜑𝐵 ∈ ℝ)
fourierdlem13.x (𝜑𝑋 ∈ ℝ)
fourierdlem13.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴 + 𝑋) ∧ (𝑝𝑚) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem13.m (𝜑𝑀 ∈ ℕ)
fourierdlem13.v (𝜑𝑉 ∈ (𝑃𝑀))
fourierdlem13.i (𝜑𝐼 ∈ (0...𝑀))
fourierdlem13.q 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
Assertion
Ref Expression
fourierdlem13 (𝜑 → ((𝑄𝐼) = ((𝑉𝐼) − 𝑋) ∧ (𝑉𝐼) = (𝑋 + (𝑄𝐼))))
Distinct variable groups:   𝐴,𝑚,𝑝   𝐵,𝑚,𝑝   𝑖,𝐼   𝑖,𝑀,𝑚,𝑝   𝑖,𝑉,𝑝   𝑖,𝑋,𝑚,𝑝   𝜑,𝑖
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝐴(𝑖)   𝐵(𝑖)   𝑃(𝑖,𝑚,𝑝)   𝑄(𝑖,𝑚,𝑝)   𝐼(𝑚,𝑝)   𝑉(𝑚)

Proof of Theorem fourierdlem13
StepHypRef Expression
1 fourierdlem13.q . . . 4 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
21a1i 11 . . 3 (𝜑𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋)))
3 simpr 487 . . . . 5 ((𝜑𝑖 = 𝐼) → 𝑖 = 𝐼)
43fveq2d 6667 . . . 4 ((𝜑𝑖 = 𝐼) → (𝑉𝑖) = (𝑉𝐼))
54oveq1d 7163 . . 3 ((𝜑𝑖 = 𝐼) → ((𝑉𝑖) − 𝑋) = ((𝑉𝐼) − 𝑋))
6 fourierdlem13.i . . 3 (𝜑𝐼 ∈ (0...𝑀))
7 fourierdlem13.v . . . . . . . 8 (𝜑𝑉 ∈ (𝑃𝑀))
8 fourierdlem13.m . . . . . . . . 9 (𝜑𝑀 ∈ ℕ)
9 fourierdlem13.p . . . . . . . . . 10 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴 + 𝑋) ∧ (𝑝𝑚) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
109fourierdlem2 42385 . . . . . . . . 9 (𝑀 ∈ ℕ → (𝑉 ∈ (𝑃𝑀) ↔ (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (𝐴 + 𝑋) ∧ (𝑉𝑀) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1))))))
118, 10syl 17 . . . . . . . 8 (𝜑 → (𝑉 ∈ (𝑃𝑀) ↔ (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (𝐴 + 𝑋) ∧ (𝑉𝑀) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1))))))
127, 11mpbid 234 . . . . . . 7 (𝜑 → (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (𝐴 + 𝑋) ∧ (𝑉𝑀) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1)))))
1312simpld 497 . . . . . 6 (𝜑𝑉 ∈ (ℝ ↑m (0...𝑀)))
14 elmapi 8420 . . . . . 6 (𝑉 ∈ (ℝ ↑m (0...𝑀)) → 𝑉:(0...𝑀)⟶ℝ)
1513, 14syl 17 . . . . 5 (𝜑𝑉:(0...𝑀)⟶ℝ)
1615, 6ffvelrnd 6845 . . . 4 (𝜑 → (𝑉𝐼) ∈ ℝ)
17 fourierdlem13.x . . . 4 (𝜑𝑋 ∈ ℝ)
1816, 17resubcld 11060 . . 3 (𝜑 → ((𝑉𝐼) − 𝑋) ∈ ℝ)
192, 5, 6, 18fvmptd 6768 . 2 (𝜑 → (𝑄𝐼) = ((𝑉𝐼) − 𝑋))
2019oveq2d 7164 . . 3 (𝜑 → (𝑋 + (𝑄𝐼)) = (𝑋 + ((𝑉𝐼) − 𝑋)))
2117recnd 10661 . . . 4 (𝜑𝑋 ∈ ℂ)
2216recnd 10661 . . . 4 (𝜑 → (𝑉𝐼) ∈ ℂ)
2321, 22pncan3d 10992 . . 3 (𝜑 → (𝑋 + ((𝑉𝐼) − 𝑋)) = (𝑉𝐼))
2420, 23eqtr2d 2855 . 2 (𝜑 → (𝑉𝐼) = (𝑋 + (𝑄𝐼)))
2519, 24jca 514 1 (𝜑 → ((𝑄𝐼) = ((𝑉𝐼) − 𝑋) ∧ (𝑉𝐼) = (𝑋 + (𝑄𝐼))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1531  wcel 2108  wral 3136  {crab 3140   class class class wbr 5057  cmpt 5137  wf 6344  cfv 6348  (class class class)co 7148  m cmap 8398  cr 10528  0cc0 10529  1c1 10530   + caddc 10532   < clt 10667  cmin 10862  cn 11630  ...cfz 12884  ..^cfzo 13025
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-1st 7681  df-2nd 7682  df-er 8281  df-map 8400  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-ltxr 10672  df-sub 10864  df-neg 10865
This theorem is referenced by:  fourierdlem72  42454  fourierdlem103  42485  fourierdlem104  42486
  Copyright terms: Public domain W3C validator