Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fourierdlem13 | Structured version Visualization version GIF version |
Description: Value of 𝑉 in terms of value of 𝑄. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
fourierdlem13.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
fourierdlem13.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
fourierdlem13.x | ⊢ (𝜑 → 𝑋 ∈ ℝ) |
fourierdlem13.p | ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴 + 𝑋) ∧ (𝑝‘𝑚) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
fourierdlem13.m | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
fourierdlem13.v | ⊢ (𝜑 → 𝑉 ∈ (𝑃‘𝑀)) |
fourierdlem13.i | ⊢ (𝜑 → 𝐼 ∈ (0...𝑀)) |
fourierdlem13.q | ⊢ 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉‘𝑖) − 𝑋)) |
Ref | Expression |
---|---|
fourierdlem13 | ⊢ (𝜑 → ((𝑄‘𝐼) = ((𝑉‘𝐼) − 𝑋) ∧ (𝑉‘𝐼) = (𝑋 + (𝑄‘𝐼)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fourierdlem13.q | . . . 4 ⊢ 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉‘𝑖) − 𝑋)) | |
2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉‘𝑖) − 𝑋))) |
3 | simpr 488 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 = 𝐼) → 𝑖 = 𝐼) | |
4 | 3 | fveq2d 6691 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 = 𝐼) → (𝑉‘𝑖) = (𝑉‘𝐼)) |
5 | 4 | oveq1d 7198 | . . 3 ⊢ ((𝜑 ∧ 𝑖 = 𝐼) → ((𝑉‘𝑖) − 𝑋) = ((𝑉‘𝐼) − 𝑋)) |
6 | fourierdlem13.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ (0...𝑀)) | |
7 | fourierdlem13.v | . . . . . . . 8 ⊢ (𝜑 → 𝑉 ∈ (𝑃‘𝑀)) | |
8 | fourierdlem13.m | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
9 | fourierdlem13.p | . . . . . . . . . 10 ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴 + 𝑋) ∧ (𝑝‘𝑚) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) | |
10 | 9 | fourierdlem2 43233 | . . . . . . . . 9 ⊢ (𝑀 ∈ ℕ → (𝑉 ∈ (𝑃‘𝑀) ↔ (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (𝐴 + 𝑋) ∧ (𝑉‘𝑀) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉‘𝑖) < (𝑉‘(𝑖 + 1)))))) |
11 | 8, 10 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (𝑉 ∈ (𝑃‘𝑀) ↔ (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (𝐴 + 𝑋) ∧ (𝑉‘𝑀) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉‘𝑖) < (𝑉‘(𝑖 + 1)))))) |
12 | 7, 11 | mpbid 235 | . . . . . . 7 ⊢ (𝜑 → (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (𝐴 + 𝑋) ∧ (𝑉‘𝑀) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉‘𝑖) < (𝑉‘(𝑖 + 1))))) |
13 | 12 | simpld 498 | . . . . . 6 ⊢ (𝜑 → 𝑉 ∈ (ℝ ↑m (0...𝑀))) |
14 | elmapi 8472 | . . . . . 6 ⊢ (𝑉 ∈ (ℝ ↑m (0...𝑀)) → 𝑉:(0...𝑀)⟶ℝ) | |
15 | 13, 14 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑉:(0...𝑀)⟶ℝ) |
16 | 15, 6 | ffvelrnd 6875 | . . . 4 ⊢ (𝜑 → (𝑉‘𝐼) ∈ ℝ) |
17 | fourierdlem13.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ ℝ) | |
18 | 16, 17 | resubcld 11159 | . . 3 ⊢ (𝜑 → ((𝑉‘𝐼) − 𝑋) ∈ ℝ) |
19 | 2, 5, 6, 18 | fvmptd 6795 | . 2 ⊢ (𝜑 → (𝑄‘𝐼) = ((𝑉‘𝐼) − 𝑋)) |
20 | 19 | oveq2d 7199 | . . 3 ⊢ (𝜑 → (𝑋 + (𝑄‘𝐼)) = (𝑋 + ((𝑉‘𝐼) − 𝑋))) |
21 | 17 | recnd 10760 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ ℂ) |
22 | 16 | recnd 10760 | . . . 4 ⊢ (𝜑 → (𝑉‘𝐼) ∈ ℂ) |
23 | 21, 22 | pncan3d 11091 | . . 3 ⊢ (𝜑 → (𝑋 + ((𝑉‘𝐼) − 𝑋)) = (𝑉‘𝐼)) |
24 | 20, 23 | eqtr2d 2775 | . 2 ⊢ (𝜑 → (𝑉‘𝐼) = (𝑋 + (𝑄‘𝐼))) |
25 | 19, 24 | jca 515 | 1 ⊢ (𝜑 → ((𝑄‘𝐼) = ((𝑉‘𝐼) − 𝑋) ∧ (𝑉‘𝐼) = (𝑋 + (𝑄‘𝐼)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1542 ∈ wcel 2114 ∀wral 3054 {crab 3058 class class class wbr 5040 ↦ cmpt 5120 ⟶wf 6346 ‘cfv 6350 (class class class)co 7183 ↑m cmap 8450 ℝcr 10627 0cc0 10628 1c1 10629 + caddc 10631 < clt 10766 − cmin 10961 ℕcn 11729 ...cfz 12994 ..^cfzo 13137 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-sep 5177 ax-nul 5184 ax-pow 5242 ax-pr 5306 ax-un 7492 ax-resscn 10685 ax-1cn 10686 ax-icn 10687 ax-addcl 10688 ax-addrcl 10689 ax-mulcl 10690 ax-mulrcl 10691 ax-mulcom 10692 ax-addass 10693 ax-mulass 10694 ax-distr 10695 ax-i2m1 10696 ax-1ne0 10697 ax-1rid 10698 ax-rnegex 10699 ax-rrecex 10700 ax-cnre 10701 ax-pre-lttri 10702 ax-pre-lttrn 10703 ax-pre-ltadd 10704 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-nel 3040 df-ral 3059 df-rex 3060 df-reu 3061 df-rab 3063 df-v 3402 df-sbc 3686 df-csb 3801 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-nul 4222 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-op 4533 df-uni 4807 df-iun 4893 df-br 5041 df-opab 5103 df-mpt 5121 df-id 5439 df-po 5452 df-so 5453 df-xp 5541 df-rel 5542 df-cnv 5543 df-co 5544 df-dm 5545 df-rn 5546 df-res 5547 df-ima 5548 df-iota 6308 df-fun 6352 df-fn 6353 df-f 6354 df-f1 6355 df-fo 6356 df-f1o 6357 df-fv 6358 df-riota 7140 df-ov 7186 df-oprab 7187 df-mpo 7188 df-1st 7727 df-2nd 7728 df-er 8333 df-map 8452 df-en 8569 df-dom 8570 df-sdom 8571 df-pnf 10768 df-mnf 10769 df-ltxr 10771 df-sub 10963 df-neg 10964 |
This theorem is referenced by: fourierdlem72 43302 fourierdlem103 43333 fourierdlem104 43334 |
Copyright terms: Public domain | W3C validator |