Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem13 Structured version   Visualization version   GIF version

Theorem fourierdlem13 46076
Description: Value of 𝑉 in terms of value of 𝑄. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem13.a (𝜑𝐴 ∈ ℝ)
fourierdlem13.b (𝜑𝐵 ∈ ℝ)
fourierdlem13.x (𝜑𝑋 ∈ ℝ)
fourierdlem13.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴 + 𝑋) ∧ (𝑝𝑚) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem13.m (𝜑𝑀 ∈ ℕ)
fourierdlem13.v (𝜑𝑉 ∈ (𝑃𝑀))
fourierdlem13.i (𝜑𝐼 ∈ (0...𝑀))
fourierdlem13.q 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
Assertion
Ref Expression
fourierdlem13 (𝜑 → ((𝑄𝐼) = ((𝑉𝐼) − 𝑋) ∧ (𝑉𝐼) = (𝑋 + (𝑄𝐼))))
Distinct variable groups:   𝐴,𝑚,𝑝   𝐵,𝑚,𝑝   𝑖,𝐼   𝑖,𝑀,𝑚,𝑝   𝑖,𝑉,𝑝   𝑖,𝑋,𝑚,𝑝   𝜑,𝑖
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝐴(𝑖)   𝐵(𝑖)   𝑃(𝑖,𝑚,𝑝)   𝑄(𝑖,𝑚,𝑝)   𝐼(𝑚,𝑝)   𝑉(𝑚)

Proof of Theorem fourierdlem13
StepHypRef Expression
1 fourierdlem13.q . . . 4 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
21a1i 11 . . 3 (𝜑𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋)))
3 simpr 484 . . . . 5 ((𝜑𝑖 = 𝐼) → 𝑖 = 𝐼)
43fveq2d 6911 . . . 4 ((𝜑𝑖 = 𝐼) → (𝑉𝑖) = (𝑉𝐼))
54oveq1d 7446 . . 3 ((𝜑𝑖 = 𝐼) → ((𝑉𝑖) − 𝑋) = ((𝑉𝐼) − 𝑋))
6 fourierdlem13.i . . 3 (𝜑𝐼 ∈ (0...𝑀))
7 fourierdlem13.v . . . . . . . 8 (𝜑𝑉 ∈ (𝑃𝑀))
8 fourierdlem13.m . . . . . . . . 9 (𝜑𝑀 ∈ ℕ)
9 fourierdlem13.p . . . . . . . . . 10 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴 + 𝑋) ∧ (𝑝𝑚) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
109fourierdlem2 46065 . . . . . . . . 9 (𝑀 ∈ ℕ → (𝑉 ∈ (𝑃𝑀) ↔ (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (𝐴 + 𝑋) ∧ (𝑉𝑀) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1))))))
118, 10syl 17 . . . . . . . 8 (𝜑 → (𝑉 ∈ (𝑃𝑀) ↔ (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (𝐴 + 𝑋) ∧ (𝑉𝑀) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1))))))
127, 11mpbid 232 . . . . . . 7 (𝜑 → (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (𝐴 + 𝑋) ∧ (𝑉𝑀) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1)))))
1312simpld 494 . . . . . 6 (𝜑𝑉 ∈ (ℝ ↑m (0...𝑀)))
14 elmapi 8888 . . . . . 6 (𝑉 ∈ (ℝ ↑m (0...𝑀)) → 𝑉:(0...𝑀)⟶ℝ)
1513, 14syl 17 . . . . 5 (𝜑𝑉:(0...𝑀)⟶ℝ)
1615, 6ffvelcdmd 7105 . . . 4 (𝜑 → (𝑉𝐼) ∈ ℝ)
17 fourierdlem13.x . . . 4 (𝜑𝑋 ∈ ℝ)
1816, 17resubcld 11689 . . 3 (𝜑 → ((𝑉𝐼) − 𝑋) ∈ ℝ)
192, 5, 6, 18fvmptd 7023 . 2 (𝜑 → (𝑄𝐼) = ((𝑉𝐼) − 𝑋))
2019oveq2d 7447 . . 3 (𝜑 → (𝑋 + (𝑄𝐼)) = (𝑋 + ((𝑉𝐼) − 𝑋)))
2117recnd 11287 . . . 4 (𝜑𝑋 ∈ ℂ)
2216recnd 11287 . . . 4 (𝜑 → (𝑉𝐼) ∈ ℂ)
2321, 22pncan3d 11621 . . 3 (𝜑 → (𝑋 + ((𝑉𝐼) − 𝑋)) = (𝑉𝐼))
2420, 23eqtr2d 2776 . 2 (𝜑 → (𝑉𝐼) = (𝑋 + (𝑄𝐼)))
2519, 24jca 511 1 (𝜑 → ((𝑄𝐼) = ((𝑉𝐼) − 𝑋) ∧ (𝑉𝐼) = (𝑋 + (𝑄𝐼))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  {crab 3433   class class class wbr 5148  cmpt 5231  wf 6559  cfv 6563  (class class class)co 7431  m cmap 8865  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   < clt 11293  cmin 11490  cn 12264  ...cfz 13544  ..^cfzo 13691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-ltxr 11298  df-sub 11492  df-neg 11493
This theorem is referenced by:  fourierdlem72  46134  fourierdlem103  46165  fourierdlem104  46166
  Copyright terms: Public domain W3C validator