| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fourierdlem13 | Structured version Visualization version GIF version | ||
| Description: Value of 𝑉 in terms of value of 𝑄. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| fourierdlem13.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| fourierdlem13.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| fourierdlem13.x | ⊢ (𝜑 → 𝑋 ∈ ℝ) |
| fourierdlem13.p | ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴 + 𝑋) ∧ (𝑝‘𝑚) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
| fourierdlem13.m | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
| fourierdlem13.v | ⊢ (𝜑 → 𝑉 ∈ (𝑃‘𝑀)) |
| fourierdlem13.i | ⊢ (𝜑 → 𝐼 ∈ (0...𝑀)) |
| fourierdlem13.q | ⊢ 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉‘𝑖) − 𝑋)) |
| Ref | Expression |
|---|---|
| fourierdlem13 | ⊢ (𝜑 → ((𝑄‘𝐼) = ((𝑉‘𝐼) − 𝑋) ∧ (𝑉‘𝐼) = (𝑋 + (𝑄‘𝐼)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fourierdlem13.q | . . . 4 ⊢ 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉‘𝑖) − 𝑋)) | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉‘𝑖) − 𝑋))) |
| 3 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 = 𝐼) → 𝑖 = 𝐼) | |
| 4 | 3 | fveq2d 6862 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 = 𝐼) → (𝑉‘𝑖) = (𝑉‘𝐼)) |
| 5 | 4 | oveq1d 7402 | . . 3 ⊢ ((𝜑 ∧ 𝑖 = 𝐼) → ((𝑉‘𝑖) − 𝑋) = ((𝑉‘𝐼) − 𝑋)) |
| 6 | fourierdlem13.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ (0...𝑀)) | |
| 7 | fourierdlem13.v | . . . . . . . 8 ⊢ (𝜑 → 𝑉 ∈ (𝑃‘𝑀)) | |
| 8 | fourierdlem13.m | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
| 9 | fourierdlem13.p | . . . . . . . . . 10 ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴 + 𝑋) ∧ (𝑝‘𝑚) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) | |
| 10 | 9 | fourierdlem2 46107 | . . . . . . . . 9 ⊢ (𝑀 ∈ ℕ → (𝑉 ∈ (𝑃‘𝑀) ↔ (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (𝐴 + 𝑋) ∧ (𝑉‘𝑀) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉‘𝑖) < (𝑉‘(𝑖 + 1)))))) |
| 11 | 8, 10 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (𝑉 ∈ (𝑃‘𝑀) ↔ (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (𝐴 + 𝑋) ∧ (𝑉‘𝑀) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉‘𝑖) < (𝑉‘(𝑖 + 1)))))) |
| 12 | 7, 11 | mpbid 232 | . . . . . . 7 ⊢ (𝜑 → (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (𝐴 + 𝑋) ∧ (𝑉‘𝑀) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉‘𝑖) < (𝑉‘(𝑖 + 1))))) |
| 13 | 12 | simpld 494 | . . . . . 6 ⊢ (𝜑 → 𝑉 ∈ (ℝ ↑m (0...𝑀))) |
| 14 | elmapi 8822 | . . . . . 6 ⊢ (𝑉 ∈ (ℝ ↑m (0...𝑀)) → 𝑉:(0...𝑀)⟶ℝ) | |
| 15 | 13, 14 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑉:(0...𝑀)⟶ℝ) |
| 16 | 15, 6 | ffvelcdmd 7057 | . . . 4 ⊢ (𝜑 → (𝑉‘𝐼) ∈ ℝ) |
| 17 | fourierdlem13.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ ℝ) | |
| 18 | 16, 17 | resubcld 11606 | . . 3 ⊢ (𝜑 → ((𝑉‘𝐼) − 𝑋) ∈ ℝ) |
| 19 | 2, 5, 6, 18 | fvmptd 6975 | . 2 ⊢ (𝜑 → (𝑄‘𝐼) = ((𝑉‘𝐼) − 𝑋)) |
| 20 | 19 | oveq2d 7403 | . . 3 ⊢ (𝜑 → (𝑋 + (𝑄‘𝐼)) = (𝑋 + ((𝑉‘𝐼) − 𝑋))) |
| 21 | 17 | recnd 11202 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ ℂ) |
| 22 | 16 | recnd 11202 | . . . 4 ⊢ (𝜑 → (𝑉‘𝐼) ∈ ℂ) |
| 23 | 21, 22 | pncan3d 11536 | . . 3 ⊢ (𝜑 → (𝑋 + ((𝑉‘𝐼) − 𝑋)) = (𝑉‘𝐼)) |
| 24 | 20, 23 | eqtr2d 2765 | . 2 ⊢ (𝜑 → (𝑉‘𝐼) = (𝑋 + (𝑄‘𝐼))) |
| 25 | 19, 24 | jca 511 | 1 ⊢ (𝜑 → ((𝑄‘𝐼) = ((𝑉‘𝐼) − 𝑋) ∧ (𝑉‘𝐼) = (𝑋 + (𝑄‘𝐼)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {crab 3405 class class class wbr 5107 ↦ cmpt 5188 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ↑m cmap 8799 ℝcr 11067 0cc0 11068 1c1 11069 + caddc 11071 < clt 11208 − cmin 11405 ℕcn 12186 ...cfz 13468 ..^cfzo 13615 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-ltxr 11213 df-sub 11407 df-neg 11408 |
| This theorem is referenced by: fourierdlem72 46176 fourierdlem103 46207 fourierdlem104 46208 |
| Copyright terms: Public domain | W3C validator |