| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fourierdlem13 | Structured version Visualization version GIF version | ||
| Description: Value of 𝑉 in terms of value of 𝑄. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| fourierdlem13.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| fourierdlem13.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| fourierdlem13.x | ⊢ (𝜑 → 𝑋 ∈ ℝ) |
| fourierdlem13.p | ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴 + 𝑋) ∧ (𝑝‘𝑚) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
| fourierdlem13.m | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
| fourierdlem13.v | ⊢ (𝜑 → 𝑉 ∈ (𝑃‘𝑀)) |
| fourierdlem13.i | ⊢ (𝜑 → 𝐼 ∈ (0...𝑀)) |
| fourierdlem13.q | ⊢ 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉‘𝑖) − 𝑋)) |
| Ref | Expression |
|---|---|
| fourierdlem13 | ⊢ (𝜑 → ((𝑄‘𝐼) = ((𝑉‘𝐼) − 𝑋) ∧ (𝑉‘𝐼) = (𝑋 + (𝑄‘𝐼)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fourierdlem13.q | . . . 4 ⊢ 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉‘𝑖) − 𝑋)) | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉‘𝑖) − 𝑋))) |
| 3 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 = 𝐼) → 𝑖 = 𝐼) | |
| 4 | 3 | fveq2d 6844 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 = 𝐼) → (𝑉‘𝑖) = (𝑉‘𝐼)) |
| 5 | 4 | oveq1d 7384 | . . 3 ⊢ ((𝜑 ∧ 𝑖 = 𝐼) → ((𝑉‘𝑖) − 𝑋) = ((𝑉‘𝐼) − 𝑋)) |
| 6 | fourierdlem13.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ (0...𝑀)) | |
| 7 | fourierdlem13.v | . . . . . . . 8 ⊢ (𝜑 → 𝑉 ∈ (𝑃‘𝑀)) | |
| 8 | fourierdlem13.m | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
| 9 | fourierdlem13.p | . . . . . . . . . 10 ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴 + 𝑋) ∧ (𝑝‘𝑚) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) | |
| 10 | 9 | fourierdlem2 46080 | . . . . . . . . 9 ⊢ (𝑀 ∈ ℕ → (𝑉 ∈ (𝑃‘𝑀) ↔ (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (𝐴 + 𝑋) ∧ (𝑉‘𝑀) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉‘𝑖) < (𝑉‘(𝑖 + 1)))))) |
| 11 | 8, 10 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (𝑉 ∈ (𝑃‘𝑀) ↔ (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (𝐴 + 𝑋) ∧ (𝑉‘𝑀) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉‘𝑖) < (𝑉‘(𝑖 + 1)))))) |
| 12 | 7, 11 | mpbid 232 | . . . . . . 7 ⊢ (𝜑 → (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (𝐴 + 𝑋) ∧ (𝑉‘𝑀) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉‘𝑖) < (𝑉‘(𝑖 + 1))))) |
| 13 | 12 | simpld 494 | . . . . . 6 ⊢ (𝜑 → 𝑉 ∈ (ℝ ↑m (0...𝑀))) |
| 14 | elmapi 8799 | . . . . . 6 ⊢ (𝑉 ∈ (ℝ ↑m (0...𝑀)) → 𝑉:(0...𝑀)⟶ℝ) | |
| 15 | 13, 14 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑉:(0...𝑀)⟶ℝ) |
| 16 | 15, 6 | ffvelcdmd 7039 | . . . 4 ⊢ (𝜑 → (𝑉‘𝐼) ∈ ℝ) |
| 17 | fourierdlem13.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ ℝ) | |
| 18 | 16, 17 | resubcld 11582 | . . 3 ⊢ (𝜑 → ((𝑉‘𝐼) − 𝑋) ∈ ℝ) |
| 19 | 2, 5, 6, 18 | fvmptd 6957 | . 2 ⊢ (𝜑 → (𝑄‘𝐼) = ((𝑉‘𝐼) − 𝑋)) |
| 20 | 19 | oveq2d 7385 | . . 3 ⊢ (𝜑 → (𝑋 + (𝑄‘𝐼)) = (𝑋 + ((𝑉‘𝐼) − 𝑋))) |
| 21 | 17 | recnd 11178 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ ℂ) |
| 22 | 16 | recnd 11178 | . . . 4 ⊢ (𝜑 → (𝑉‘𝐼) ∈ ℂ) |
| 23 | 21, 22 | pncan3d 11512 | . . 3 ⊢ (𝜑 → (𝑋 + ((𝑉‘𝐼) − 𝑋)) = (𝑉‘𝐼)) |
| 24 | 20, 23 | eqtr2d 2765 | . 2 ⊢ (𝜑 → (𝑉‘𝐼) = (𝑋 + (𝑄‘𝐼))) |
| 25 | 19, 24 | jca 511 | 1 ⊢ (𝜑 → ((𝑄‘𝐼) = ((𝑉‘𝐼) − 𝑋) ∧ (𝑉‘𝐼) = (𝑋 + (𝑄‘𝐼)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {crab 3402 class class class wbr 5102 ↦ cmpt 5183 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 ↑m cmap 8776 ℝcr 11043 0cc0 11044 1c1 11045 + caddc 11047 < clt 11184 − cmin 11381 ℕcn 12162 ...cfz 13444 ..^cfzo 13591 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-ltxr 11189 df-sub 11383 df-neg 11384 |
| This theorem is referenced by: fourierdlem72 46149 fourierdlem103 46180 fourierdlem104 46181 |
| Copyright terms: Public domain | W3C validator |