![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fourierdlem13 | Structured version Visualization version GIF version |
Description: Value of 𝑉 in terms of value of 𝑄. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
fourierdlem13.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
fourierdlem13.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
fourierdlem13.x | ⊢ (𝜑 → 𝑋 ∈ ℝ) |
fourierdlem13.p | ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴 + 𝑋) ∧ (𝑝‘𝑚) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
fourierdlem13.m | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
fourierdlem13.v | ⊢ (𝜑 → 𝑉 ∈ (𝑃‘𝑀)) |
fourierdlem13.i | ⊢ (𝜑 → 𝐼 ∈ (0...𝑀)) |
fourierdlem13.q | ⊢ 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉‘𝑖) − 𝑋)) |
Ref | Expression |
---|---|
fourierdlem13 | ⊢ (𝜑 → ((𝑄‘𝐼) = ((𝑉‘𝐼) − 𝑋) ∧ (𝑉‘𝐼) = (𝑋 + (𝑄‘𝐼)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fourierdlem13.q | . . . 4 ⊢ 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉‘𝑖) − 𝑋)) | |
2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉‘𝑖) − 𝑋))) |
3 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 = 𝐼) → 𝑖 = 𝐼) | |
4 | 3 | fveq2d 6911 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 = 𝐼) → (𝑉‘𝑖) = (𝑉‘𝐼)) |
5 | 4 | oveq1d 7446 | . . 3 ⊢ ((𝜑 ∧ 𝑖 = 𝐼) → ((𝑉‘𝑖) − 𝑋) = ((𝑉‘𝐼) − 𝑋)) |
6 | fourierdlem13.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ (0...𝑀)) | |
7 | fourierdlem13.v | . . . . . . . 8 ⊢ (𝜑 → 𝑉 ∈ (𝑃‘𝑀)) | |
8 | fourierdlem13.m | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
9 | fourierdlem13.p | . . . . . . . . . 10 ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴 + 𝑋) ∧ (𝑝‘𝑚) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) | |
10 | 9 | fourierdlem2 46065 | . . . . . . . . 9 ⊢ (𝑀 ∈ ℕ → (𝑉 ∈ (𝑃‘𝑀) ↔ (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (𝐴 + 𝑋) ∧ (𝑉‘𝑀) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉‘𝑖) < (𝑉‘(𝑖 + 1)))))) |
11 | 8, 10 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (𝑉 ∈ (𝑃‘𝑀) ↔ (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (𝐴 + 𝑋) ∧ (𝑉‘𝑀) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉‘𝑖) < (𝑉‘(𝑖 + 1)))))) |
12 | 7, 11 | mpbid 232 | . . . . . . 7 ⊢ (𝜑 → (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (𝐴 + 𝑋) ∧ (𝑉‘𝑀) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉‘𝑖) < (𝑉‘(𝑖 + 1))))) |
13 | 12 | simpld 494 | . . . . . 6 ⊢ (𝜑 → 𝑉 ∈ (ℝ ↑m (0...𝑀))) |
14 | elmapi 8888 | . . . . . 6 ⊢ (𝑉 ∈ (ℝ ↑m (0...𝑀)) → 𝑉:(0...𝑀)⟶ℝ) | |
15 | 13, 14 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑉:(0...𝑀)⟶ℝ) |
16 | 15, 6 | ffvelcdmd 7105 | . . . 4 ⊢ (𝜑 → (𝑉‘𝐼) ∈ ℝ) |
17 | fourierdlem13.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ ℝ) | |
18 | 16, 17 | resubcld 11689 | . . 3 ⊢ (𝜑 → ((𝑉‘𝐼) − 𝑋) ∈ ℝ) |
19 | 2, 5, 6, 18 | fvmptd 7023 | . 2 ⊢ (𝜑 → (𝑄‘𝐼) = ((𝑉‘𝐼) − 𝑋)) |
20 | 19 | oveq2d 7447 | . . 3 ⊢ (𝜑 → (𝑋 + (𝑄‘𝐼)) = (𝑋 + ((𝑉‘𝐼) − 𝑋))) |
21 | 17 | recnd 11287 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ ℂ) |
22 | 16 | recnd 11287 | . . . 4 ⊢ (𝜑 → (𝑉‘𝐼) ∈ ℂ) |
23 | 21, 22 | pncan3d 11621 | . . 3 ⊢ (𝜑 → (𝑋 + ((𝑉‘𝐼) − 𝑋)) = (𝑉‘𝐼)) |
24 | 20, 23 | eqtr2d 2776 | . 2 ⊢ (𝜑 → (𝑉‘𝐼) = (𝑋 + (𝑄‘𝐼))) |
25 | 19, 24 | jca 511 | 1 ⊢ (𝜑 → ((𝑄‘𝐼) = ((𝑉‘𝐼) − 𝑋) ∧ (𝑉‘𝐼) = (𝑋 + (𝑄‘𝐼)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 {crab 3433 class class class wbr 5148 ↦ cmpt 5231 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 ↑m cmap 8865 ℝcr 11152 0cc0 11153 1c1 11154 + caddc 11156 < clt 11293 − cmin 11490 ℕcn 12264 ...cfz 13544 ..^cfzo 13691 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-ltxr 11298 df-sub 11492 df-neg 11493 |
This theorem is referenced by: fourierdlem72 46134 fourierdlem103 46165 fourierdlem104 46166 |
Copyright terms: Public domain | W3C validator |