Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem13 Structured version   Visualization version   GIF version

Theorem fourierdlem13 46118
Description: Value of 𝑉 in terms of value of 𝑄. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem13.a (𝜑𝐴 ∈ ℝ)
fourierdlem13.b (𝜑𝐵 ∈ ℝ)
fourierdlem13.x (𝜑𝑋 ∈ ℝ)
fourierdlem13.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴 + 𝑋) ∧ (𝑝𝑚) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem13.m (𝜑𝑀 ∈ ℕ)
fourierdlem13.v (𝜑𝑉 ∈ (𝑃𝑀))
fourierdlem13.i (𝜑𝐼 ∈ (0...𝑀))
fourierdlem13.q 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
Assertion
Ref Expression
fourierdlem13 (𝜑 → ((𝑄𝐼) = ((𝑉𝐼) − 𝑋) ∧ (𝑉𝐼) = (𝑋 + (𝑄𝐼))))
Distinct variable groups:   𝐴,𝑚,𝑝   𝐵,𝑚,𝑝   𝑖,𝐼   𝑖,𝑀,𝑚,𝑝   𝑖,𝑉,𝑝   𝑖,𝑋,𝑚,𝑝   𝜑,𝑖
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝐴(𝑖)   𝐵(𝑖)   𝑃(𝑖,𝑚,𝑝)   𝑄(𝑖,𝑚,𝑝)   𝐼(𝑚,𝑝)   𝑉(𝑚)

Proof of Theorem fourierdlem13
StepHypRef Expression
1 fourierdlem13.q . . . 4 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
21a1i 11 . . 3 (𝜑𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋)))
3 simpr 484 . . . . 5 ((𝜑𝑖 = 𝐼) → 𝑖 = 𝐼)
43fveq2d 6862 . . . 4 ((𝜑𝑖 = 𝐼) → (𝑉𝑖) = (𝑉𝐼))
54oveq1d 7402 . . 3 ((𝜑𝑖 = 𝐼) → ((𝑉𝑖) − 𝑋) = ((𝑉𝐼) − 𝑋))
6 fourierdlem13.i . . 3 (𝜑𝐼 ∈ (0...𝑀))
7 fourierdlem13.v . . . . . . . 8 (𝜑𝑉 ∈ (𝑃𝑀))
8 fourierdlem13.m . . . . . . . . 9 (𝜑𝑀 ∈ ℕ)
9 fourierdlem13.p . . . . . . . . . 10 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴 + 𝑋) ∧ (𝑝𝑚) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
109fourierdlem2 46107 . . . . . . . . 9 (𝑀 ∈ ℕ → (𝑉 ∈ (𝑃𝑀) ↔ (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (𝐴 + 𝑋) ∧ (𝑉𝑀) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1))))))
118, 10syl 17 . . . . . . . 8 (𝜑 → (𝑉 ∈ (𝑃𝑀) ↔ (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (𝐴 + 𝑋) ∧ (𝑉𝑀) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1))))))
127, 11mpbid 232 . . . . . . 7 (𝜑 → (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (𝐴 + 𝑋) ∧ (𝑉𝑀) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1)))))
1312simpld 494 . . . . . 6 (𝜑𝑉 ∈ (ℝ ↑m (0...𝑀)))
14 elmapi 8822 . . . . . 6 (𝑉 ∈ (ℝ ↑m (0...𝑀)) → 𝑉:(0...𝑀)⟶ℝ)
1513, 14syl 17 . . . . 5 (𝜑𝑉:(0...𝑀)⟶ℝ)
1615, 6ffvelcdmd 7057 . . . 4 (𝜑 → (𝑉𝐼) ∈ ℝ)
17 fourierdlem13.x . . . 4 (𝜑𝑋 ∈ ℝ)
1816, 17resubcld 11606 . . 3 (𝜑 → ((𝑉𝐼) − 𝑋) ∈ ℝ)
192, 5, 6, 18fvmptd 6975 . 2 (𝜑 → (𝑄𝐼) = ((𝑉𝐼) − 𝑋))
2019oveq2d 7403 . . 3 (𝜑 → (𝑋 + (𝑄𝐼)) = (𝑋 + ((𝑉𝐼) − 𝑋)))
2117recnd 11202 . . . 4 (𝜑𝑋 ∈ ℂ)
2216recnd 11202 . . . 4 (𝜑 → (𝑉𝐼) ∈ ℂ)
2321, 22pncan3d 11536 . . 3 (𝜑 → (𝑋 + ((𝑉𝐼) − 𝑋)) = (𝑉𝐼))
2420, 23eqtr2d 2765 . 2 (𝜑 → (𝑉𝐼) = (𝑋 + (𝑄𝐼)))
2519, 24jca 511 1 (𝜑 → ((𝑄𝐼) = ((𝑉𝐼) − 𝑋) ∧ (𝑉𝐼) = (𝑋 + (𝑄𝐼))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3405   class class class wbr 5107  cmpt 5188  wf 6507  cfv 6511  (class class class)co 7387  m cmap 8799  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   < clt 11208  cmin 11405  cn 12186  ...cfz 13468  ..^cfzo 13615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-ltxr 11213  df-sub 11407  df-neg 11408
This theorem is referenced by:  fourierdlem72  46176  fourierdlem103  46207  fourierdlem104  46208
  Copyright terms: Public domain W3C validator