Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem13 Structured version   Visualization version   GIF version

Theorem fourierdlem13 43661
Description: Value of 𝑉 in terms of value of 𝑄. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem13.a (𝜑𝐴 ∈ ℝ)
fourierdlem13.b (𝜑𝐵 ∈ ℝ)
fourierdlem13.x (𝜑𝑋 ∈ ℝ)
fourierdlem13.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴 + 𝑋) ∧ (𝑝𝑚) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem13.m (𝜑𝑀 ∈ ℕ)
fourierdlem13.v (𝜑𝑉 ∈ (𝑃𝑀))
fourierdlem13.i (𝜑𝐼 ∈ (0...𝑀))
fourierdlem13.q 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
Assertion
Ref Expression
fourierdlem13 (𝜑 → ((𝑄𝐼) = ((𝑉𝐼) − 𝑋) ∧ (𝑉𝐼) = (𝑋 + (𝑄𝐼))))
Distinct variable groups:   𝐴,𝑚,𝑝   𝐵,𝑚,𝑝   𝑖,𝐼   𝑖,𝑀,𝑚,𝑝   𝑖,𝑉,𝑝   𝑖,𝑋,𝑚,𝑝   𝜑,𝑖
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝐴(𝑖)   𝐵(𝑖)   𝑃(𝑖,𝑚,𝑝)   𝑄(𝑖,𝑚,𝑝)   𝐼(𝑚,𝑝)   𝑉(𝑚)

Proof of Theorem fourierdlem13
StepHypRef Expression
1 fourierdlem13.q . . . 4 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))
21a1i 11 . . 3 (𝜑𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋)))
3 simpr 485 . . . . 5 ((𝜑𝑖 = 𝐼) → 𝑖 = 𝐼)
43fveq2d 6778 . . . 4 ((𝜑𝑖 = 𝐼) → (𝑉𝑖) = (𝑉𝐼))
54oveq1d 7290 . . 3 ((𝜑𝑖 = 𝐼) → ((𝑉𝑖) − 𝑋) = ((𝑉𝐼) − 𝑋))
6 fourierdlem13.i . . 3 (𝜑𝐼 ∈ (0...𝑀))
7 fourierdlem13.v . . . . . . . 8 (𝜑𝑉 ∈ (𝑃𝑀))
8 fourierdlem13.m . . . . . . . . 9 (𝜑𝑀 ∈ ℕ)
9 fourierdlem13.p . . . . . . . . . 10 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴 + 𝑋) ∧ (𝑝𝑚) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
109fourierdlem2 43650 . . . . . . . . 9 (𝑀 ∈ ℕ → (𝑉 ∈ (𝑃𝑀) ↔ (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (𝐴 + 𝑋) ∧ (𝑉𝑀) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1))))))
118, 10syl 17 . . . . . . . 8 (𝜑 → (𝑉 ∈ (𝑃𝑀) ↔ (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (𝐴 + 𝑋) ∧ (𝑉𝑀) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1))))))
127, 11mpbid 231 . . . . . . 7 (𝜑 → (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (𝐴 + 𝑋) ∧ (𝑉𝑀) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉𝑖) < (𝑉‘(𝑖 + 1)))))
1312simpld 495 . . . . . 6 (𝜑𝑉 ∈ (ℝ ↑m (0...𝑀)))
14 elmapi 8637 . . . . . 6 (𝑉 ∈ (ℝ ↑m (0...𝑀)) → 𝑉:(0...𝑀)⟶ℝ)
1513, 14syl 17 . . . . 5 (𝜑𝑉:(0...𝑀)⟶ℝ)
1615, 6ffvelrnd 6962 . . . 4 (𝜑 → (𝑉𝐼) ∈ ℝ)
17 fourierdlem13.x . . . 4 (𝜑𝑋 ∈ ℝ)
1816, 17resubcld 11403 . . 3 (𝜑 → ((𝑉𝐼) − 𝑋) ∈ ℝ)
192, 5, 6, 18fvmptd 6882 . 2 (𝜑 → (𝑄𝐼) = ((𝑉𝐼) − 𝑋))
2019oveq2d 7291 . . 3 (𝜑 → (𝑋 + (𝑄𝐼)) = (𝑋 + ((𝑉𝐼) − 𝑋)))
2117recnd 11003 . . . 4 (𝜑𝑋 ∈ ℂ)
2216recnd 11003 . . . 4 (𝜑 → (𝑉𝐼) ∈ ℂ)
2321, 22pncan3d 11335 . . 3 (𝜑 → (𝑋 + ((𝑉𝐼) − 𝑋)) = (𝑉𝐼))
2420, 23eqtr2d 2779 . 2 (𝜑 → (𝑉𝐼) = (𝑋 + (𝑄𝐼)))
2519, 24jca 512 1 (𝜑 → ((𝑄𝐼) = ((𝑉𝐼) − 𝑋) ∧ (𝑉𝐼) = (𝑋 + (𝑄𝐼))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  {crab 3068   class class class wbr 5074  cmpt 5157  wf 6429  cfv 6433  (class class class)co 7275  m cmap 8615  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   < clt 11009  cmin 11205  cn 11973  ...cfz 13239  ..^cfzo 13382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-ltxr 11014  df-sub 11207  df-neg 11208
This theorem is referenced by:  fourierdlem72  43719  fourierdlem103  43750  fourierdlem104  43751
  Copyright terms: Public domain W3C validator