| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fourierdlem13 | Structured version Visualization version GIF version | ||
| Description: Value of 𝑉 in terms of value of 𝑄. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| fourierdlem13.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| fourierdlem13.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| fourierdlem13.x | ⊢ (𝜑 → 𝑋 ∈ ℝ) |
| fourierdlem13.p | ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴 + 𝑋) ∧ (𝑝‘𝑚) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
| fourierdlem13.m | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
| fourierdlem13.v | ⊢ (𝜑 → 𝑉 ∈ (𝑃‘𝑀)) |
| fourierdlem13.i | ⊢ (𝜑 → 𝐼 ∈ (0...𝑀)) |
| fourierdlem13.q | ⊢ 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉‘𝑖) − 𝑋)) |
| Ref | Expression |
|---|---|
| fourierdlem13 | ⊢ (𝜑 → ((𝑄‘𝐼) = ((𝑉‘𝐼) − 𝑋) ∧ (𝑉‘𝐼) = (𝑋 + (𝑄‘𝐼)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fourierdlem13.q | . . . 4 ⊢ 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉‘𝑖) − 𝑋)) | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉‘𝑖) − 𝑋))) |
| 3 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑖 = 𝐼) → 𝑖 = 𝐼) | |
| 4 | 3 | fveq2d 6891 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 = 𝐼) → (𝑉‘𝑖) = (𝑉‘𝐼)) |
| 5 | 4 | oveq1d 7429 | . . 3 ⊢ ((𝜑 ∧ 𝑖 = 𝐼) → ((𝑉‘𝑖) − 𝑋) = ((𝑉‘𝐼) − 𝑋)) |
| 6 | fourierdlem13.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ (0...𝑀)) | |
| 7 | fourierdlem13.v | . . . . . . . 8 ⊢ (𝜑 → 𝑉 ∈ (𝑃‘𝑀)) | |
| 8 | fourierdlem13.m | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
| 9 | fourierdlem13.p | . . . . . . . . . 10 ⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = (𝐴 + 𝑋) ∧ (𝑝‘𝑚) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) | |
| 10 | 9 | fourierdlem2 46069 | . . . . . . . . 9 ⊢ (𝑀 ∈ ℕ → (𝑉 ∈ (𝑃‘𝑀) ↔ (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (𝐴 + 𝑋) ∧ (𝑉‘𝑀) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉‘𝑖) < (𝑉‘(𝑖 + 1)))))) |
| 11 | 8, 10 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (𝑉 ∈ (𝑃‘𝑀) ↔ (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (𝐴 + 𝑋) ∧ (𝑉‘𝑀) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉‘𝑖) < (𝑉‘(𝑖 + 1)))))) |
| 12 | 7, 11 | mpbid 232 | . . . . . . 7 ⊢ (𝜑 → (𝑉 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑉‘0) = (𝐴 + 𝑋) ∧ (𝑉‘𝑀) = (𝐵 + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑉‘𝑖) < (𝑉‘(𝑖 + 1))))) |
| 13 | 12 | simpld 494 | . . . . . 6 ⊢ (𝜑 → 𝑉 ∈ (ℝ ↑m (0...𝑀))) |
| 14 | elmapi 8872 | . . . . . 6 ⊢ (𝑉 ∈ (ℝ ↑m (0...𝑀)) → 𝑉:(0...𝑀)⟶ℝ) | |
| 15 | 13, 14 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑉:(0...𝑀)⟶ℝ) |
| 16 | 15, 6 | ffvelcdmd 7086 | . . . 4 ⊢ (𝜑 → (𝑉‘𝐼) ∈ ℝ) |
| 17 | fourierdlem13.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ ℝ) | |
| 18 | 16, 17 | resubcld 11674 | . . 3 ⊢ (𝜑 → ((𝑉‘𝐼) − 𝑋) ∈ ℝ) |
| 19 | 2, 5, 6, 18 | fvmptd 7004 | . 2 ⊢ (𝜑 → (𝑄‘𝐼) = ((𝑉‘𝐼) − 𝑋)) |
| 20 | 19 | oveq2d 7430 | . . 3 ⊢ (𝜑 → (𝑋 + (𝑄‘𝐼)) = (𝑋 + ((𝑉‘𝐼) − 𝑋))) |
| 21 | 17 | recnd 11272 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ ℂ) |
| 22 | 16 | recnd 11272 | . . . 4 ⊢ (𝜑 → (𝑉‘𝐼) ∈ ℂ) |
| 23 | 21, 22 | pncan3d 11606 | . . 3 ⊢ (𝜑 → (𝑋 + ((𝑉‘𝐼) − 𝑋)) = (𝑉‘𝐼)) |
| 24 | 20, 23 | eqtr2d 2770 | . 2 ⊢ (𝜑 → (𝑉‘𝐼) = (𝑋 + (𝑄‘𝐼))) |
| 25 | 19, 24 | jca 511 | 1 ⊢ (𝜑 → ((𝑄‘𝐼) = ((𝑉‘𝐼) − 𝑋) ∧ (𝑉‘𝐼) = (𝑋 + (𝑄‘𝐼)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 {crab 3420 class class class wbr 5125 ↦ cmpt 5207 ⟶wf 6538 ‘cfv 6542 (class class class)co 7414 ↑m cmap 8849 ℝcr 11137 0cc0 11138 1c1 11139 + caddc 11141 < clt 11278 − cmin 11475 ℕcn 12249 ...cfz 13530 ..^cfzo 13677 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-po 5574 df-so 5575 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-1st 7997 df-2nd 7998 df-er 8728 df-map 8851 df-en 8969 df-dom 8970 df-sdom 8971 df-pnf 11280 df-mnf 11281 df-ltxr 11283 df-sub 11477 df-neg 11478 |
| This theorem is referenced by: fourierdlem72 46138 fourierdlem103 46169 fourierdlem104 46170 |
| Copyright terms: Public domain | W3C validator |