Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem69 Structured version   Visualization version   GIF version

Theorem fourierdlem69 43183
 Description: A piecewise continuous function is integrable. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem69.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem69.m (𝜑𝑀 ∈ ℕ)
fourierdlem69.q (𝜑𝑄 ∈ (𝑃𝑀))
fourierdlem69.f (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
fourierdlem69.fcn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
fourierdlem69.r ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
fourierdlem69.l ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
Assertion
Ref Expression
fourierdlem69 (𝜑𝐹 ∈ 𝐿1)
Distinct variable groups:   𝐴,𝑖,𝑚,𝑝   𝐵,𝑖,𝑚,𝑝   𝑖,𝐹   𝑖,𝑀,𝑚,𝑝   𝑄,𝑖,𝑝   𝜑,𝑖
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝑃(𝑖,𝑚,𝑝)   𝑄(𝑚)   𝑅(𝑖,𝑚,𝑝)   𝐹(𝑚,𝑝)   𝐿(𝑖,𝑚,𝑝)

Proof of Theorem fourierdlem69
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem69.f . . . 4 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
2 fourierdlem69.q . . . . . . . . . 10 (𝜑𝑄 ∈ (𝑃𝑀))
3 fourierdlem69.m . . . . . . . . . . 11 (𝜑𝑀 ∈ ℕ)
4 fourierdlem69.p . . . . . . . . . . . 12 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
54fourierdlem2 43117 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
63, 5syl 17 . . . . . . . . . 10 (𝜑 → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
72, 6mpbid 235 . . . . . . . . 9 (𝜑 → (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
87simprd 499 . . . . . . . 8 (𝜑 → (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))
98simpld 498 . . . . . . 7 (𝜑 → ((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵))
109simpld 498 . . . . . 6 (𝜑 → (𝑄‘0) = 𝐴)
119simprd 499 . . . . . 6 (𝜑 → (𝑄𝑀) = 𝐵)
1210, 11oveq12d 7168 . . . . 5 (𝜑 → ((𝑄‘0)[,](𝑄𝑀)) = (𝐴[,]𝐵))
1312feq2d 6484 . . . 4 (𝜑 → (𝐹:((𝑄‘0)[,](𝑄𝑀))⟶ℂ ↔ 𝐹:(𝐴[,]𝐵)⟶ℂ))
141, 13mpbird 260 . . 3 (𝜑𝐹:((𝑄‘0)[,](𝑄𝑀))⟶ℂ)
1514feqmptd 6721 . 2 (𝜑𝐹 = (𝑥 ∈ ((𝑄‘0)[,](𝑄𝑀)) ↦ (𝐹𝑥)))
16 nfv 1915 . . 3 𝑥𝜑
17 0zd 12032 . . 3 (𝜑 → 0 ∈ ℤ)
18 nnuz 12321 . . . . 5 ℕ = (ℤ‘1)
19 1e0p1 12179 . . . . . 6 1 = (0 + 1)
2019fveq2i 6661 . . . . 5 (ℤ‘1) = (ℤ‘(0 + 1))
2118, 20eqtri 2781 . . . 4 ℕ = (ℤ‘(0 + 1))
223, 21eleqtrdi 2862 . . 3 (𝜑𝑀 ∈ (ℤ‘(0 + 1)))
237simpld 498 . . . . 5 (𝜑𝑄 ∈ (ℝ ↑m (0...𝑀)))
24 elmapi 8438 . . . . 5 (𝑄 ∈ (ℝ ↑m (0...𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
2523, 24syl 17 . . . 4 (𝜑𝑄:(0...𝑀)⟶ℝ)
2625ffvelrnda 6842 . . 3 ((𝜑𝑖 ∈ (0...𝑀)) → (𝑄𝑖) ∈ ℝ)
278simprd 499 . . . 4 (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))
2827r19.21bi 3137 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
291adantr 484 . . . 4 ((𝜑𝑥 ∈ ((𝑄‘0)[,](𝑄𝑀))) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
30 simpr 488 . . . . 5 ((𝜑𝑥 ∈ ((𝑄‘0)[,](𝑄𝑀))) → 𝑥 ∈ ((𝑄‘0)[,](𝑄𝑀)))
3110adantr 484 . . . . . 6 ((𝜑𝑥 ∈ ((𝑄‘0)[,](𝑄𝑀))) → (𝑄‘0) = 𝐴)
3211adantr 484 . . . . . 6 ((𝜑𝑥 ∈ ((𝑄‘0)[,](𝑄𝑀))) → (𝑄𝑀) = 𝐵)
3331, 32oveq12d 7168 . . . . 5 ((𝜑𝑥 ∈ ((𝑄‘0)[,](𝑄𝑀))) → ((𝑄‘0)[,](𝑄𝑀)) = (𝐴[,]𝐵))
3430, 33eleqtrd 2854 . . . 4 ((𝜑𝑥 ∈ ((𝑄‘0)[,](𝑄𝑀))) → 𝑥 ∈ (𝐴[,]𝐵))
3529, 34ffvelrnd 6843 . . 3 ((𝜑𝑥 ∈ ((𝑄‘0)[,](𝑄𝑀))) → (𝐹𝑥) ∈ ℂ)
3625adantr 484 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
37 elfzofz 13102 . . . . . 6 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
3837adantl 485 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀))
3936, 38ffvelrnd 6843 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℝ)
40 fzofzp1 13183 . . . . . 6 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
4140adantl 485 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀))
4236, 41ffvelrnd 6843 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
431adantr 484 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
44 ioossicc 12865 . . . . . . . 8 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))
454, 3, 2fourierdlem11 43126 . . . . . . . . . . . 12 (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵))
4645simp1d 1139 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
4746rexrd 10729 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ*)
4847adantr 484 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐴 ∈ ℝ*)
4945simp2d 1140 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ)
5049rexrd 10729 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ*)
5150adantr 484 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐵 ∈ ℝ*)
524, 3, 2fourierdlem15 43130 . . . . . . . . . 10 (𝜑𝑄:(0...𝑀)⟶(𝐴[,]𝐵))
5352adantr 484 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶(𝐴[,]𝐵))
54 simpr 488 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0..^𝑀))
5548, 51, 53, 54fourierdlem8 43123 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ⊆ (𝐴[,]𝐵))
5644, 55sstrid 3903 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ (𝐴[,]𝐵))
5743, 56feqresmpt 6722 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹𝑥)))
58 fourierdlem69.fcn . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
5957, 58eqeltrrd 2853 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹𝑥)) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
60 fourierdlem69.l . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
6157oveq1d 7165 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) = ((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹𝑥)) lim (𝑄‘(𝑖 + 1))))
6260, 61eleqtrd 2854 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹𝑥)) lim (𝑄‘(𝑖 + 1))))
63 fourierdlem69.r . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
6457oveq1d 7165 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) = ((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹𝑥)) lim (𝑄𝑖)))
6563, 64eleqtrd 2854 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹𝑥)) lim (𝑄𝑖)))
6639, 42, 59, 62, 65iblcncfioo 42986 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹𝑥)) ∈ 𝐿1)
6743adantr 484 . . . . 5 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
6855sselda 3892 . . . . 5 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝑥 ∈ (𝐴[,]𝐵))
6967, 68ffvelrnd 6843 . . . 4 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → (𝐹𝑥) ∈ ℂ)
7039, 42, 66, 69ibliooicc 42979 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ↦ (𝐹𝑥)) ∈ 𝐿1)
7116, 17, 22, 26, 28, 35, 70iblspltprt 42981 . 2 (𝜑 → (𝑥 ∈ ((𝑄‘0)[,](𝑄𝑀)) ↦ (𝐹𝑥)) ∈ 𝐿1)
7215, 71eqeltrd 2852 1 (𝜑𝐹 ∈ 𝐿1)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ∀wral 3070  {crab 3074   class class class wbr 5032   ↦ cmpt 5112   ↾ cres 5526  ⟶wf 6331  ‘cfv 6335  (class class class)co 7150   ↑m cmap 8416  ℂcc 10573  ℝcr 10574  0cc0 10575  1c1 10576   + caddc 10578  ℝ*cxr 10712   < clt 10713  ℕcn 11674  ℤ≥cuz 12282  (,)cioo 12779  [,]cicc 12782  ...cfz 12939  ..^cfzo 13082  –cn→ccncf 23577  𝐿1cibl 24317   limℂ climc 24561 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-inf2 9137  ax-cc 9895  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652  ax-pre-sup 10653  ax-addf 10654  ax-mulf 10655 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-symdif 4147  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-iin 4886  df-disj 4998  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-se 5484  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-isom 6344  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7405  df-ofr 7406  df-om 7580  df-1st 7693  df-2nd 7694  df-supp 7836  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-2o 8113  df-oadd 8116  df-omul 8117  df-er 8299  df-map 8418  df-pm 8419  df-ixp 8480  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-fsupp 8867  df-fi 8908  df-sup 8939  df-inf 8940  df-oi 9007  df-dju 9363  df-card 9401  df-acn 9404  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-div 11336  df-nn 11675  df-2 11737  df-3 11738  df-4 11739  df-5 11740  df-6 11741  df-7 11742  df-8 11743  df-9 11744  df-n0 11935  df-z 12021  df-dec 12138  df-uz 12283  df-q 12389  df-rp 12431  df-xneg 12548  df-xadd 12549  df-xmul 12550  df-ioo 12783  df-ioc 12784  df-ico 12785  df-icc 12786  df-fz 12940  df-fzo 13083  df-fl 13211  df-mod 13287  df-seq 13419  df-exp 13480  df-hash 13741  df-cj 14506  df-re 14507  df-im 14508  df-sqrt 14642  df-abs 14643  df-limsup 14876  df-clim 14893  df-rlim 14894  df-sum 15091  df-struct 16543  df-ndx 16544  df-slot 16545  df-base 16547  df-sets 16548  df-ress 16549  df-plusg 16636  df-mulr 16637  df-starv 16638  df-sca 16639  df-vsca 16640  df-ip 16641  df-tset 16642  df-ple 16643  df-ds 16645  df-unif 16646  df-hom 16647  df-cco 16648  df-rest 16754  df-topn 16755  df-0g 16773  df-gsum 16774  df-topgen 16775  df-pt 16776  df-prds 16779  df-xrs 16833  df-qtop 16838  df-imas 16839  df-xps 16841  df-mre 16915  df-mrc 16916  df-acs 16918  df-mgm 17918  df-sgrp 17967  df-mnd 17978  df-submnd 18023  df-mulg 18292  df-cntz 18514  df-cmn 18975  df-psmet 20158  df-xmet 20159  df-met 20160  df-bl 20161  df-mopn 20162  df-cnfld 20167  df-top 21594  df-topon 21611  df-topsp 21633  df-bases 21646  df-cld 21719  df-ntr 21720  df-cls 21721  df-cn 21927  df-cnp 21928  df-cmp 22087  df-tx 22262  df-hmeo 22455  df-xms 23022  df-ms 23023  df-tms 23024  df-cncf 23579  df-ovol 24164  df-vol 24165  df-mbf 24319  df-itg1 24320  df-itg2 24321  df-ibl 24322  df-itg 24323  df-0p 24370  df-limc 24565 This theorem is referenced by:  fourierdlem84  43198  fourierdlem88  43202  fourierdlem100  43214  fourierdlem107  43221  fourierdlem111  43225  fourierdlem112  43226
 Copyright terms: Public domain W3C validator