Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem69 Structured version   Visualization version   GIF version

Theorem fourierdlem69 40909
Description: A piecewise continuous function is integrable. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem69.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem69.m (𝜑𝑀 ∈ ℕ)
fourierdlem69.q (𝜑𝑄 ∈ (𝑃𝑀))
fourierdlem69.f (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
fourierdlem69.fcn ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
fourierdlem69.r ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
fourierdlem69.l ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
Assertion
Ref Expression
fourierdlem69 (𝜑𝐹 ∈ 𝐿1)
Distinct variable groups:   𝐴,𝑖,𝑚,𝑝   𝐵,𝑖,𝑚,𝑝   𝑖,𝐹   𝑖,𝑀,𝑚,𝑝   𝑄,𝑖,𝑝   𝜑,𝑖
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝑃(𝑖,𝑚,𝑝)   𝑄(𝑚)   𝑅(𝑖,𝑚,𝑝)   𝐹(𝑚,𝑝)   𝐿(𝑖,𝑚,𝑝)

Proof of Theorem fourierdlem69
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem69.f . . . 4 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
2 fourierdlem69.q . . . . . . . . . 10 (𝜑𝑄 ∈ (𝑃𝑀))
3 fourierdlem69.m . . . . . . . . . . 11 (𝜑𝑀 ∈ ℕ)
4 fourierdlem69.p . . . . . . . . . . . 12 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
54fourierdlem2 40843 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
63, 5syl 17 . . . . . . . . . 10 (𝜑 → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
72, 6mpbid 222 . . . . . . . . 9 (𝜑 → (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
87simprd 483 . . . . . . . 8 (𝜑 → (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))
98simpld 482 . . . . . . 7 (𝜑 → ((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵))
109simpld 482 . . . . . 6 (𝜑 → (𝑄‘0) = 𝐴)
119simprd 483 . . . . . 6 (𝜑 → (𝑄𝑀) = 𝐵)
1210, 11oveq12d 6811 . . . . 5 (𝜑 → ((𝑄‘0)[,](𝑄𝑀)) = (𝐴[,]𝐵))
1312feq2d 6171 . . . 4 (𝜑 → (𝐹:((𝑄‘0)[,](𝑄𝑀))⟶ℂ ↔ 𝐹:(𝐴[,]𝐵)⟶ℂ))
141, 13mpbird 247 . . 3 (𝜑𝐹:((𝑄‘0)[,](𝑄𝑀))⟶ℂ)
1514feqmptd 6391 . 2 (𝜑𝐹 = (𝑥 ∈ ((𝑄‘0)[,](𝑄𝑀)) ↦ (𝐹𝑥)))
16 nfv 1995 . . 3 𝑥𝜑
17 0zd 11591 . . 3 (𝜑 → 0 ∈ ℤ)
18 nnuz 11925 . . . . 5 ℕ = (ℤ‘1)
19 1e0p1 11754 . . . . . 6 1 = (0 + 1)
2019fveq2i 6335 . . . . 5 (ℤ‘1) = (ℤ‘(0 + 1))
2118, 20eqtri 2793 . . . 4 ℕ = (ℤ‘(0 + 1))
223, 21syl6eleq 2860 . . 3 (𝜑𝑀 ∈ (ℤ‘(0 + 1)))
237simpld 482 . . . . 5 (𝜑𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)))
24 elmapi 8031 . . . . 5 (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
2523, 24syl 17 . . . 4 (𝜑𝑄:(0...𝑀)⟶ℝ)
2625ffvelrnda 6502 . . 3 ((𝜑𝑖 ∈ (0...𝑀)) → (𝑄𝑖) ∈ ℝ)
278simprd 483 . . . 4 (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))
2827r19.21bi 3081 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
291adantr 466 . . . 4 ((𝜑𝑥 ∈ ((𝑄‘0)[,](𝑄𝑀))) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
30 simpr 471 . . . . 5 ((𝜑𝑥 ∈ ((𝑄‘0)[,](𝑄𝑀))) → 𝑥 ∈ ((𝑄‘0)[,](𝑄𝑀)))
3110adantr 466 . . . . . 6 ((𝜑𝑥 ∈ ((𝑄‘0)[,](𝑄𝑀))) → (𝑄‘0) = 𝐴)
3211adantr 466 . . . . . 6 ((𝜑𝑥 ∈ ((𝑄‘0)[,](𝑄𝑀))) → (𝑄𝑀) = 𝐵)
3331, 32oveq12d 6811 . . . . 5 ((𝜑𝑥 ∈ ((𝑄‘0)[,](𝑄𝑀))) → ((𝑄‘0)[,](𝑄𝑀)) = (𝐴[,]𝐵))
3430, 33eleqtrd 2852 . . . 4 ((𝜑𝑥 ∈ ((𝑄‘0)[,](𝑄𝑀))) → 𝑥 ∈ (𝐴[,]𝐵))
3529, 34ffvelrnd 6503 . . 3 ((𝜑𝑥 ∈ ((𝑄‘0)[,](𝑄𝑀))) → (𝐹𝑥) ∈ ℂ)
3625adantr 466 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
37 elfzofz 12693 . . . . . 6 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
3837adantl 467 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀))
3936, 38ffvelrnd 6503 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℝ)
40 fzofzp1 12773 . . . . . 6 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
4140adantl 467 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀))
4236, 41ffvelrnd 6503 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
431adantr 466 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
44 ioossicc 12464 . . . . . . . 8 ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))
454, 3, 2fourierdlem11 40852 . . . . . . . . . . . 12 (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵))
4645simp1d 1136 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
4746rexrd 10291 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ*)
4847adantr 466 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐴 ∈ ℝ*)
4945simp2d 1137 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ)
5049rexrd 10291 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ*)
5150adantr 466 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐵 ∈ ℝ*)
524, 3, 2fourierdlem15 40856 . . . . . . . . . 10 (𝜑𝑄:(0...𝑀)⟶(𝐴[,]𝐵))
5352adantr 466 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶(𝐴[,]𝐵))
54 simpr 471 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0..^𝑀))
5548, 51, 53, 54fourierdlem8 40849 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ⊆ (𝐴[,]𝐵))
5644, 55syl5ss 3763 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ (𝐴[,]𝐵))
5743, 56feqresmpt 6392 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹𝑥)))
58 fourierdlem69.fcn . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
5957, 58eqeltrrd 2851 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹𝑥)) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))
60 fourierdlem69.l . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))
6157oveq1d 6808 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) = ((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹𝑥)) lim (𝑄‘(𝑖 + 1))))
6260, 61eleqtrd 2852 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹𝑥)) lim (𝑄‘(𝑖 + 1))))
63 fourierdlem69.r . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))
6457oveq1d 6808 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) = ((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹𝑥)) lim (𝑄𝑖)))
6563, 64eleqtrd 2852 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹𝑥)) lim (𝑄𝑖)))
6639, 42, 59, 62, 65iblcncfioo 40711 . . . 4 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹𝑥)) ∈ 𝐿1)
6743adantr 466 . . . . 5 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
6855sselda 3752 . . . . 5 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝑥 ∈ (𝐴[,]𝐵))
6967, 68ffvelrnd 6503 . . . 4 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1)))) → (𝐹𝑥) ∈ ℂ)
7039, 42, 66, 69ibliooicc 40704 . . 3 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑄𝑖)[,](𝑄‘(𝑖 + 1))) ↦ (𝐹𝑥)) ∈ 𝐿1)
7116, 17, 22, 26, 28, 35, 70iblspltprt 40706 . 2 (𝜑 → (𝑥 ∈ ((𝑄‘0)[,](𝑄𝑀)) ↦ (𝐹𝑥)) ∈ 𝐿1)
7215, 71eqeltrd 2850 1 (𝜑𝐹 ∈ 𝐿1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  wral 3061  {crab 3065   class class class wbr 4786  cmpt 4863  cres 5251  wf 6027  cfv 6031  (class class class)co 6793  𝑚 cmap 8009  cc 10136  cr 10137  0cc0 10138  1c1 10139   + caddc 10141  *cxr 10275   < clt 10276  cn 11222  cuz 11888  (,)cioo 12380  [,]cicc 12383  ...cfz 12533  ..^cfzo 12673  cnccncf 22899  𝐿1cibl 23605   lim climc 23846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-cc 9459  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216  ax-addf 10217  ax-mulf 10218
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-iin 4657  df-disj 4755  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-of 7044  df-ofr 7045  df-om 7213  df-1st 7315  df-2nd 7316  df-supp 7447  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-2o 7714  df-oadd 7717  df-omul 7718  df-er 7896  df-map 8011  df-pm 8012  df-ixp 8063  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fsupp 8432  df-fi 8473  df-sup 8504  df-inf 8505  df-oi 8571  df-card 8965  df-acn 8968  df-cda 9192  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-n0 11495  df-z 11580  df-dec 11696  df-uz 11889  df-q 11992  df-rp 12036  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-ioo 12384  df-ioc 12385  df-ico 12386  df-icc 12387  df-fz 12534  df-fzo 12674  df-fl 12801  df-mod 12877  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-limsup 14410  df-clim 14427  df-rlim 14428  df-sum 14625  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-starv 16164  df-sca 16165  df-vsca 16166  df-ip 16167  df-tset 16168  df-ple 16169  df-ds 16172  df-unif 16173  df-hom 16174  df-cco 16175  df-rest 16291  df-topn 16292  df-0g 16310  df-gsum 16311  df-topgen 16312  df-pt 16313  df-prds 16316  df-xrs 16370  df-qtop 16375  df-imas 16376  df-xps 16378  df-mre 16454  df-mrc 16455  df-acs 16457  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-submnd 17544  df-mulg 17749  df-cntz 17957  df-cmn 18402  df-psmet 19953  df-xmet 19954  df-met 19955  df-bl 19956  df-mopn 19957  df-cnfld 19962  df-top 20919  df-topon 20936  df-topsp 20958  df-bases 20971  df-cld 21044  df-ntr 21045  df-cls 21046  df-cn 21252  df-cnp 21253  df-cmp 21411  df-tx 21586  df-hmeo 21779  df-xms 22345  df-ms 22346  df-tms 22347  df-cncf 22901  df-ovol 23452  df-vol 23453  df-mbf 23607  df-itg1 23608  df-itg2 23609  df-ibl 23610  df-itg 23611  df-0p 23657  df-limc 23850
This theorem is referenced by:  fourierdlem84  40924  fourierdlem88  40928  fourierdlem100  40940  fourierdlem107  40947  fourierdlem111  40951  fourierdlem112  40952
  Copyright terms: Public domain W3C validator