Step | Hyp | Ref
| Expression |
1 | | fourierdlem69.f |
. . . 4
⊢ (𝜑 → 𝐹:(𝐴[,]𝐵)⟶ℂ) |
2 | | fourierdlem69.q |
. . . . . . . . . 10
⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) |
3 | | fourierdlem69.m |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈ ℕ) |
4 | | fourierdlem69.p |
. . . . . . . . . . . 12
⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m
(0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
5 | 4 | fourierdlem2 43117 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃‘𝑀) ↔ (𝑄 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))))) |
6 | 3, 5 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑄 ∈ (𝑃‘𝑀) ↔ (𝑄 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))))) |
7 | 2, 6 | mpbid 235 |
. . . . . . . . 9
⊢ (𝜑 → (𝑄 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1))))) |
8 | 7 | simprd 499 |
. . . . . . . 8
⊢ (𝜑 → (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))) |
9 | 8 | simpld 498 |
. . . . . . 7
⊢ (𝜑 → ((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵)) |
10 | 9 | simpld 498 |
. . . . . 6
⊢ (𝜑 → (𝑄‘0) = 𝐴) |
11 | 9 | simprd 499 |
. . . . . 6
⊢ (𝜑 → (𝑄‘𝑀) = 𝐵) |
12 | 10, 11 | oveq12d 7168 |
. . . . 5
⊢ (𝜑 → ((𝑄‘0)[,](𝑄‘𝑀)) = (𝐴[,]𝐵)) |
13 | 12 | feq2d 6484 |
. . . 4
⊢ (𝜑 → (𝐹:((𝑄‘0)[,](𝑄‘𝑀))⟶ℂ ↔ 𝐹:(𝐴[,]𝐵)⟶ℂ)) |
14 | 1, 13 | mpbird 260 |
. . 3
⊢ (𝜑 → 𝐹:((𝑄‘0)[,](𝑄‘𝑀))⟶ℂ) |
15 | 14 | feqmptd 6721 |
. 2
⊢ (𝜑 → 𝐹 = (𝑥 ∈ ((𝑄‘0)[,](𝑄‘𝑀)) ↦ (𝐹‘𝑥))) |
16 | | nfv 1915 |
. . 3
⊢
Ⅎ𝑥𝜑 |
17 | | 0zd 12032 |
. . 3
⊢ (𝜑 → 0 ∈
ℤ) |
18 | | nnuz 12321 |
. . . . 5
⊢ ℕ =
(ℤ≥‘1) |
19 | | 1e0p1 12179 |
. . . . . 6
⊢ 1 = (0 +
1) |
20 | 19 | fveq2i 6661 |
. . . . 5
⊢
(ℤ≥‘1) = (ℤ≥‘(0 +
1)) |
21 | 18, 20 | eqtri 2781 |
. . . 4
⊢ ℕ =
(ℤ≥‘(0 + 1)) |
22 | 3, 21 | eleqtrdi 2862 |
. . 3
⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘(0 +
1))) |
23 | 7 | simpld 498 |
. . . . 5
⊢ (𝜑 → 𝑄 ∈ (ℝ ↑m
(0...𝑀))) |
24 | | elmapi 8438 |
. . . . 5
⊢ (𝑄 ∈ (ℝ
↑m (0...𝑀))
→ 𝑄:(0...𝑀)⟶ℝ) |
25 | 23, 24 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑄:(0...𝑀)⟶ℝ) |
26 | 25 | ffvelrnda 6842 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → (𝑄‘𝑖) ∈ ℝ) |
27 | 8 | simprd 499 |
. . . 4
⊢ (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) |
28 | 27 | r19.21bi 3137 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) |
29 | 1 | adantr 484 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘0)[,](𝑄‘𝑀))) → 𝐹:(𝐴[,]𝐵)⟶ℂ) |
30 | | simpr 488 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘0)[,](𝑄‘𝑀))) → 𝑥 ∈ ((𝑄‘0)[,](𝑄‘𝑀))) |
31 | 10 | adantr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘0)[,](𝑄‘𝑀))) → (𝑄‘0) = 𝐴) |
32 | 11 | adantr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘0)[,](𝑄‘𝑀))) → (𝑄‘𝑀) = 𝐵) |
33 | 31, 32 | oveq12d 7168 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘0)[,](𝑄‘𝑀))) → ((𝑄‘0)[,](𝑄‘𝑀)) = (𝐴[,]𝐵)) |
34 | 30, 33 | eleqtrd 2854 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘0)[,](𝑄‘𝑀))) → 𝑥 ∈ (𝐴[,]𝐵)) |
35 | 29, 34 | ffvelrnd 6843 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘0)[,](𝑄‘𝑀))) → (𝐹‘𝑥) ∈ ℂ) |
36 | 25 | adantr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ) |
37 | | elfzofz 13102 |
. . . . . 6
⊢ (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀)) |
38 | 37 | adantl 485 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀)) |
39 | 36, 38 | ffvelrnd 6843 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) ∈ ℝ) |
40 | | fzofzp1 13183 |
. . . . . 6
⊢ (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀)) |
41 | 40 | adantl 485 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀)) |
42 | 36, 41 | ffvelrnd 6843 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ) |
43 | 1 | adantr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐹:(𝐴[,]𝐵)⟶ℂ) |
44 | | ioossicc 12865 |
. . . . . . . 8
⊢ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) |
45 | 4, 3, 2 | fourierdlem11 43126 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵)) |
46 | 45 | simp1d 1139 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈ ℝ) |
47 | 46 | rexrd 10729 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
48 | 47 | adantr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐴 ∈
ℝ*) |
49 | 45 | simp2d 1140 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 ∈ ℝ) |
50 | 49 | rexrd 10729 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ∈
ℝ*) |
51 | 50 | adantr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐵 ∈
ℝ*) |
52 | 4, 3, 2 | fourierdlem15 43130 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑄:(0...𝑀)⟶(𝐴[,]𝐵)) |
53 | 52 | adantr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶(𝐴[,]𝐵)) |
54 | | simpr 488 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0..^𝑀)) |
55 | 48, 51, 53, 54 | fourierdlem8 43123 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ⊆ (𝐴[,]𝐵)) |
56 | 44, 55 | sstrid 3903 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ⊆ (𝐴[,]𝐵)) |
57 | 43, 56 | feqresmpt 6722 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) = (𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘𝑥))) |
58 | | fourierdlem69.fcn |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) |
59 | 57, 58 | eqeltrrd 2853 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘𝑥)) ∈ (((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ)) |
60 | | fourierdlem69.l |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1)))) |
61 | 57 | oveq1d 7165 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘(𝑖 + 1))) = ((𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘𝑥)) limℂ (𝑄‘(𝑖 + 1)))) |
62 | 60, 61 | eleqtrd 2854 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘𝑥)) limℂ (𝑄‘(𝑖 + 1)))) |
63 | | fourierdlem69.r |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖))) |
64 | 57 | oveq1d 7165 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝐹 ↾ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) limℂ (𝑄‘𝑖)) = ((𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘𝑥)) limℂ (𝑄‘𝑖))) |
65 | 63, 64 | eleqtrd 2854 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘𝑥)) limℂ (𝑄‘𝑖))) |
66 | 39, 42, 59, 62, 65 | iblcncfioo 42986 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↦ (𝐹‘𝑥)) ∈
𝐿1) |
67 | 43 | adantr 484 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝐹:(𝐴[,]𝐵)⟶ℂ) |
68 | 55 | sselda 3892 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) → 𝑥 ∈ (𝐴[,]𝐵)) |
69 | 67, 68 | ffvelrnd 6843 |
. . . 4
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1)))) → (𝐹‘𝑥) ∈ ℂ) |
70 | 39, 42, 66, 69 | ibliooicc 42979 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑄‘𝑖)[,](𝑄‘(𝑖 + 1))) ↦ (𝐹‘𝑥)) ∈
𝐿1) |
71 | 16, 17, 22, 26, 28, 35, 70 | iblspltprt 42981 |
. 2
⊢ (𝜑 → (𝑥 ∈ ((𝑄‘0)[,](𝑄‘𝑀)) ↦ (𝐹‘𝑥)) ∈
𝐿1) |
72 | 15, 71 | eqeltrd 2852 |
1
⊢ (𝜑 → 𝐹 ∈
𝐿1) |