Step | Hyp | Ref
| Expression |
1 | | fourierdlem69.f |
. . . 4
β’ (π β πΉ:(π΄[,]π΅)βΆβ) |
2 | | fourierdlem69.q |
. . . . . . . . . 10
β’ (π β π β (πβπ)) |
3 | | fourierdlem69.m |
. . . . . . . . . . 11
β’ (π β π β β) |
4 | | fourierdlem69.p |
. . . . . . . . . . . 12
β’ π = (π β β β¦ {π β (β βm
(0...π)) β£ (((πβ0) = π΄ β§ (πβπ) = π΅) β§ βπ β (0..^π)(πβπ) < (πβ(π + 1)))}) |
5 | 4 | fourierdlem2 44811 |
. . . . . . . . . . 11
β’ (π β β β (π β (πβπ) β (π β (β βm
(0...π)) β§ (((πβ0) = π΄ β§ (πβπ) = π΅) β§ βπ β (0..^π)(πβπ) < (πβ(π + 1)))))) |
6 | 3, 5 | syl 17 |
. . . . . . . . . 10
β’ (π β (π β (πβπ) β (π β (β βm
(0...π)) β§ (((πβ0) = π΄ β§ (πβπ) = π΅) β§ βπ β (0..^π)(πβπ) < (πβ(π + 1)))))) |
7 | 2, 6 | mpbid 231 |
. . . . . . . . 9
β’ (π β (π β (β βm
(0...π)) β§ (((πβ0) = π΄ β§ (πβπ) = π΅) β§ βπ β (0..^π)(πβπ) < (πβ(π + 1))))) |
8 | 7 | simprd 496 |
. . . . . . . 8
β’ (π β (((πβ0) = π΄ β§ (πβπ) = π΅) β§ βπ β (0..^π)(πβπ) < (πβ(π + 1)))) |
9 | 8 | simpld 495 |
. . . . . . 7
β’ (π β ((πβ0) = π΄ β§ (πβπ) = π΅)) |
10 | 9 | simpld 495 |
. . . . . 6
β’ (π β (πβ0) = π΄) |
11 | 9 | simprd 496 |
. . . . . 6
β’ (π β (πβπ) = π΅) |
12 | 10, 11 | oveq12d 7423 |
. . . . 5
β’ (π β ((πβ0)[,](πβπ)) = (π΄[,]π΅)) |
13 | 12 | feq2d 6700 |
. . . 4
β’ (π β (πΉ:((πβ0)[,](πβπ))βΆβ β πΉ:(π΄[,]π΅)βΆβ)) |
14 | 1, 13 | mpbird 256 |
. . 3
β’ (π β πΉ:((πβ0)[,](πβπ))βΆβ) |
15 | 14 | feqmptd 6957 |
. 2
β’ (π β πΉ = (π₯ β ((πβ0)[,](πβπ)) β¦ (πΉβπ₯))) |
16 | | nfv 1917 |
. . 3
β’
β²π₯π |
17 | | 0zd 12566 |
. . 3
β’ (π β 0 β
β€) |
18 | | nnuz 12861 |
. . . . 5
β’ β =
(β€β₯β1) |
19 | | 1e0p1 12715 |
. . . . . 6
β’ 1 = (0 +
1) |
20 | 19 | fveq2i 6891 |
. . . . 5
β’
(β€β₯β1) = (β€β₯β(0 +
1)) |
21 | 18, 20 | eqtri 2760 |
. . . 4
β’ β =
(β€β₯β(0 + 1)) |
22 | 3, 21 | eleqtrdi 2843 |
. . 3
β’ (π β π β (β€β₯β(0 +
1))) |
23 | 7 | simpld 495 |
. . . . 5
β’ (π β π β (β βm
(0...π))) |
24 | | elmapi 8839 |
. . . . 5
β’ (π β (β
βm (0...π))
β π:(0...π)βΆβ) |
25 | 23, 24 | syl 17 |
. . . 4
β’ (π β π:(0...π)βΆβ) |
26 | 25 | ffvelcdmda 7083 |
. . 3
β’ ((π β§ π β (0...π)) β (πβπ) β β) |
27 | 8 | simprd 496 |
. . . 4
β’ (π β βπ β (0..^π)(πβπ) < (πβ(π + 1))) |
28 | 27 | r19.21bi 3248 |
. . 3
β’ ((π β§ π β (0..^π)) β (πβπ) < (πβ(π + 1))) |
29 | 1 | adantr 481 |
. . . 4
β’ ((π β§ π₯ β ((πβ0)[,](πβπ))) β πΉ:(π΄[,]π΅)βΆβ) |
30 | | simpr 485 |
. . . . 5
β’ ((π β§ π₯ β ((πβ0)[,](πβπ))) β π₯ β ((πβ0)[,](πβπ))) |
31 | 10 | adantr 481 |
. . . . . 6
β’ ((π β§ π₯ β ((πβ0)[,](πβπ))) β (πβ0) = π΄) |
32 | 11 | adantr 481 |
. . . . . 6
β’ ((π β§ π₯ β ((πβ0)[,](πβπ))) β (πβπ) = π΅) |
33 | 31, 32 | oveq12d 7423 |
. . . . 5
β’ ((π β§ π₯ β ((πβ0)[,](πβπ))) β ((πβ0)[,](πβπ)) = (π΄[,]π΅)) |
34 | 30, 33 | eleqtrd 2835 |
. . . 4
β’ ((π β§ π₯ β ((πβ0)[,](πβπ))) β π₯ β (π΄[,]π΅)) |
35 | 29, 34 | ffvelcdmd 7084 |
. . 3
β’ ((π β§ π₯ β ((πβ0)[,](πβπ))) β (πΉβπ₯) β β) |
36 | 25 | adantr 481 |
. . . . 5
β’ ((π β§ π β (0..^π)) β π:(0...π)βΆβ) |
37 | | elfzofz 13644 |
. . . . . 6
β’ (π β (0..^π) β π β (0...π)) |
38 | 37 | adantl 482 |
. . . . 5
β’ ((π β§ π β (0..^π)) β π β (0...π)) |
39 | 36, 38 | ffvelcdmd 7084 |
. . . 4
β’ ((π β§ π β (0..^π)) β (πβπ) β β) |
40 | | fzofzp1 13725 |
. . . . . 6
β’ (π β (0..^π) β (π + 1) β (0...π)) |
41 | 40 | adantl 482 |
. . . . 5
β’ ((π β§ π β (0..^π)) β (π + 1) β (0...π)) |
42 | 36, 41 | ffvelcdmd 7084 |
. . . 4
β’ ((π β§ π β (0..^π)) β (πβ(π + 1)) β β) |
43 | 1 | adantr 481 |
. . . . . . 7
β’ ((π β§ π β (0..^π)) β πΉ:(π΄[,]π΅)βΆβ) |
44 | | ioossicc 13406 |
. . . . . . . 8
β’ ((πβπ)(,)(πβ(π + 1))) β ((πβπ)[,](πβ(π + 1))) |
45 | 4, 3, 2 | fourierdlem11 44820 |
. . . . . . . . . . . 12
β’ (π β (π΄ β β β§ π΅ β β β§ π΄ < π΅)) |
46 | 45 | simp1d 1142 |
. . . . . . . . . . 11
β’ (π β π΄ β β) |
47 | 46 | rexrd 11260 |
. . . . . . . . . 10
β’ (π β π΄ β
β*) |
48 | 47 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ π β (0..^π)) β π΄ β
β*) |
49 | 45 | simp2d 1143 |
. . . . . . . . . . 11
β’ (π β π΅ β β) |
50 | 49 | rexrd 11260 |
. . . . . . . . . 10
β’ (π β π΅ β
β*) |
51 | 50 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ π β (0..^π)) β π΅ β
β*) |
52 | 4, 3, 2 | fourierdlem15 44824 |
. . . . . . . . . 10
β’ (π β π:(0...π)βΆ(π΄[,]π΅)) |
53 | 52 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ π β (0..^π)) β π:(0...π)βΆ(π΄[,]π΅)) |
54 | | simpr 485 |
. . . . . . . . 9
β’ ((π β§ π β (0..^π)) β π β (0..^π)) |
55 | 48, 51, 53, 54 | fourierdlem8 44817 |
. . . . . . . 8
β’ ((π β§ π β (0..^π)) β ((πβπ)[,](πβ(π + 1))) β (π΄[,]π΅)) |
56 | 44, 55 | sstrid 3992 |
. . . . . . 7
β’ ((π β§ π β (0..^π)) β ((πβπ)(,)(πβ(π + 1))) β (π΄[,]π΅)) |
57 | 43, 56 | feqresmpt 6958 |
. . . . . 6
β’ ((π β§ π β (0..^π)) β (πΉ βΎ ((πβπ)(,)(πβ(π + 1)))) = (π₯ β ((πβπ)(,)(πβ(π + 1))) β¦ (πΉβπ₯))) |
58 | | fourierdlem69.fcn |
. . . . . 6
β’ ((π β§ π β (0..^π)) β (πΉ βΎ ((πβπ)(,)(πβ(π + 1)))) β (((πβπ)(,)(πβ(π + 1)))βcnββ)) |
59 | 57, 58 | eqeltrrd 2834 |
. . . . 5
β’ ((π β§ π β (0..^π)) β (π₯ β ((πβπ)(,)(πβ(π + 1))) β¦ (πΉβπ₯)) β (((πβπ)(,)(πβ(π + 1)))βcnββ)) |
60 | | fourierdlem69.l |
. . . . . 6
β’ ((π β§ π β (0..^π)) β πΏ β ((πΉ βΎ ((πβπ)(,)(πβ(π + 1)))) limβ (πβ(π + 1)))) |
61 | 57 | oveq1d 7420 |
. . . . . 6
β’ ((π β§ π β (0..^π)) β ((πΉ βΎ ((πβπ)(,)(πβ(π + 1)))) limβ (πβ(π + 1))) = ((π₯ β ((πβπ)(,)(πβ(π + 1))) β¦ (πΉβπ₯)) limβ (πβ(π + 1)))) |
62 | 60, 61 | eleqtrd 2835 |
. . . . 5
β’ ((π β§ π β (0..^π)) β πΏ β ((π₯ β ((πβπ)(,)(πβ(π + 1))) β¦ (πΉβπ₯)) limβ (πβ(π + 1)))) |
63 | | fourierdlem69.r |
. . . . . 6
β’ ((π β§ π β (0..^π)) β π
β ((πΉ βΎ ((πβπ)(,)(πβ(π + 1)))) limβ (πβπ))) |
64 | 57 | oveq1d 7420 |
. . . . . 6
β’ ((π β§ π β (0..^π)) β ((πΉ βΎ ((πβπ)(,)(πβ(π + 1)))) limβ (πβπ)) = ((π₯ β ((πβπ)(,)(πβ(π + 1))) β¦ (πΉβπ₯)) limβ (πβπ))) |
65 | 63, 64 | eleqtrd 2835 |
. . . . 5
β’ ((π β§ π β (0..^π)) β π
β ((π₯ β ((πβπ)(,)(πβ(π + 1))) β¦ (πΉβπ₯)) limβ (πβπ))) |
66 | 39, 42, 59, 62, 65 | iblcncfioo 44680 |
. . . 4
β’ ((π β§ π β (0..^π)) β (π₯ β ((πβπ)(,)(πβ(π + 1))) β¦ (πΉβπ₯)) β
πΏ1) |
67 | 43 | adantr 481 |
. . . . 5
β’ (((π β§ π β (0..^π)) β§ π₯ β ((πβπ)[,](πβ(π + 1)))) β πΉ:(π΄[,]π΅)βΆβ) |
68 | 55 | sselda 3981 |
. . . . 5
β’ (((π β§ π β (0..^π)) β§ π₯ β ((πβπ)[,](πβ(π + 1)))) β π₯ β (π΄[,]π΅)) |
69 | 67, 68 | ffvelcdmd 7084 |
. . . 4
β’ (((π β§ π β (0..^π)) β§ π₯ β ((πβπ)[,](πβ(π + 1)))) β (πΉβπ₯) β β) |
70 | 39, 42, 66, 69 | ibliooicc 44673 |
. . 3
β’ ((π β§ π β (0..^π)) β (π₯ β ((πβπ)[,](πβ(π + 1))) β¦ (πΉβπ₯)) β
πΏ1) |
71 | 16, 17, 22, 26, 28, 35, 70 | iblspltprt 44675 |
. 2
β’ (π β (π₯ β ((πβ0)[,](πβπ)) β¦ (πΉβπ₯)) β
πΏ1) |
72 | 15, 71 | eqeltrd 2833 |
1
β’ (π β πΉ β
πΏ1) |