Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem69 Structured version   Visualization version   GIF version

Theorem fourierdlem69 45189
Description: A piecewise continuous function is integrable. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem69.p 𝑃 = (π‘š ∈ β„• ↦ {𝑝 ∈ (ℝ ↑m (0...π‘š)) ∣ (((π‘β€˜0) = 𝐴 ∧ (π‘β€˜π‘š) = 𝐡) ∧ βˆ€π‘– ∈ (0..^π‘š)(π‘β€˜π‘–) < (π‘β€˜(𝑖 + 1)))})
fourierdlem69.m (πœ‘ β†’ 𝑀 ∈ β„•)
fourierdlem69.q (πœ‘ β†’ 𝑄 ∈ (π‘ƒβ€˜π‘€))
fourierdlem69.f (πœ‘ β†’ 𝐹:(𝐴[,]𝐡)βŸΆβ„‚)
fourierdlem69.fcn ((πœ‘ ∧ 𝑖 ∈ (0..^𝑀)) β†’ (𝐹 β†Ύ ((π‘„β€˜π‘–)(,)(π‘„β€˜(𝑖 + 1)))) ∈ (((π‘„β€˜π‘–)(,)(π‘„β€˜(𝑖 + 1)))–cnβ†’β„‚))
fourierdlem69.r ((πœ‘ ∧ 𝑖 ∈ (0..^𝑀)) β†’ 𝑅 ∈ ((𝐹 β†Ύ ((π‘„β€˜π‘–)(,)(π‘„β€˜(𝑖 + 1)))) limβ„‚ (π‘„β€˜π‘–)))
fourierdlem69.l ((πœ‘ ∧ 𝑖 ∈ (0..^𝑀)) β†’ 𝐿 ∈ ((𝐹 β†Ύ ((π‘„β€˜π‘–)(,)(π‘„β€˜(𝑖 + 1)))) limβ„‚ (π‘„β€˜(𝑖 + 1))))
Assertion
Ref Expression
fourierdlem69 (πœ‘ β†’ 𝐹 ∈ 𝐿1)
Distinct variable groups:   𝐴,𝑖,π‘š,𝑝   𝐡,𝑖,π‘š,𝑝   𝑖,𝐹   𝑖,𝑀,π‘š,𝑝   𝑄,𝑖,𝑝   πœ‘,𝑖
Allowed substitution hints:   πœ‘(π‘š,𝑝)   𝑃(𝑖,π‘š,𝑝)   𝑄(π‘š)   𝑅(𝑖,π‘š,𝑝)   𝐹(π‘š,𝑝)   𝐿(𝑖,π‘š,𝑝)

Proof of Theorem fourierdlem69
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 fourierdlem69.f . . . 4 (πœ‘ β†’ 𝐹:(𝐴[,]𝐡)βŸΆβ„‚)
2 fourierdlem69.q . . . . . . . . . 10 (πœ‘ β†’ 𝑄 ∈ (π‘ƒβ€˜π‘€))
3 fourierdlem69.m . . . . . . . . . . 11 (πœ‘ β†’ 𝑀 ∈ β„•)
4 fourierdlem69.p . . . . . . . . . . . 12 𝑃 = (π‘š ∈ β„• ↦ {𝑝 ∈ (ℝ ↑m (0...π‘š)) ∣ (((π‘β€˜0) = 𝐴 ∧ (π‘β€˜π‘š) = 𝐡) ∧ βˆ€π‘– ∈ (0..^π‘š)(π‘β€˜π‘–) < (π‘β€˜(𝑖 + 1)))})
54fourierdlem2 45123 . . . . . . . . . . 11 (𝑀 ∈ β„• β†’ (𝑄 ∈ (π‘ƒβ€˜π‘€) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((π‘„β€˜0) = 𝐴 ∧ (π‘„β€˜π‘€) = 𝐡) ∧ βˆ€π‘– ∈ (0..^𝑀)(π‘„β€˜π‘–) < (π‘„β€˜(𝑖 + 1))))))
63, 5syl 17 . . . . . . . . . 10 (πœ‘ β†’ (𝑄 ∈ (π‘ƒβ€˜π‘€) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((π‘„β€˜0) = 𝐴 ∧ (π‘„β€˜π‘€) = 𝐡) ∧ βˆ€π‘– ∈ (0..^𝑀)(π‘„β€˜π‘–) < (π‘„β€˜(𝑖 + 1))))))
72, 6mpbid 231 . . . . . . . . 9 (πœ‘ β†’ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((π‘„β€˜0) = 𝐴 ∧ (π‘„β€˜π‘€) = 𝐡) ∧ βˆ€π‘– ∈ (0..^𝑀)(π‘„β€˜π‘–) < (π‘„β€˜(𝑖 + 1)))))
87simprd 494 . . . . . . . 8 (πœ‘ β†’ (((π‘„β€˜0) = 𝐴 ∧ (π‘„β€˜π‘€) = 𝐡) ∧ βˆ€π‘– ∈ (0..^𝑀)(π‘„β€˜π‘–) < (π‘„β€˜(𝑖 + 1))))
98simpld 493 . . . . . . 7 (πœ‘ β†’ ((π‘„β€˜0) = 𝐴 ∧ (π‘„β€˜π‘€) = 𝐡))
109simpld 493 . . . . . 6 (πœ‘ β†’ (π‘„β€˜0) = 𝐴)
119simprd 494 . . . . . 6 (πœ‘ β†’ (π‘„β€˜π‘€) = 𝐡)
1210, 11oveq12d 7429 . . . . 5 (πœ‘ β†’ ((π‘„β€˜0)[,](π‘„β€˜π‘€)) = (𝐴[,]𝐡))
1312feq2d 6702 . . . 4 (πœ‘ β†’ (𝐹:((π‘„β€˜0)[,](π‘„β€˜π‘€))βŸΆβ„‚ ↔ 𝐹:(𝐴[,]𝐡)βŸΆβ„‚))
141, 13mpbird 256 . . 3 (πœ‘ β†’ 𝐹:((π‘„β€˜0)[,](π‘„β€˜π‘€))βŸΆβ„‚)
1514feqmptd 6959 . 2 (πœ‘ β†’ 𝐹 = (π‘₯ ∈ ((π‘„β€˜0)[,](π‘„β€˜π‘€)) ↦ (πΉβ€˜π‘₯)))
16 nfv 1915 . . 3 β„²π‘₯πœ‘
17 0zd 12574 . . 3 (πœ‘ β†’ 0 ∈ β„€)
18 nnuz 12869 . . . . 5 β„• = (β„€β‰₯β€˜1)
19 1e0p1 12723 . . . . . 6 1 = (0 + 1)
2019fveq2i 6893 . . . . 5 (β„€β‰₯β€˜1) = (β„€β‰₯β€˜(0 + 1))
2118, 20eqtri 2758 . . . 4 β„• = (β„€β‰₯β€˜(0 + 1))
223, 21eleqtrdi 2841 . . 3 (πœ‘ β†’ 𝑀 ∈ (β„€β‰₯β€˜(0 + 1)))
237simpld 493 . . . . 5 (πœ‘ β†’ 𝑄 ∈ (ℝ ↑m (0...𝑀)))
24 elmapi 8845 . . . . 5 (𝑄 ∈ (ℝ ↑m (0...𝑀)) β†’ 𝑄:(0...𝑀)βŸΆβ„)
2523, 24syl 17 . . . 4 (πœ‘ β†’ 𝑄:(0...𝑀)βŸΆβ„)
2625ffvelcdmda 7085 . . 3 ((πœ‘ ∧ 𝑖 ∈ (0...𝑀)) β†’ (π‘„β€˜π‘–) ∈ ℝ)
278simprd 494 . . . 4 (πœ‘ β†’ βˆ€π‘– ∈ (0..^𝑀)(π‘„β€˜π‘–) < (π‘„β€˜(𝑖 + 1)))
2827r19.21bi 3246 . . 3 ((πœ‘ ∧ 𝑖 ∈ (0..^𝑀)) β†’ (π‘„β€˜π‘–) < (π‘„β€˜(𝑖 + 1)))
291adantr 479 . . . 4 ((πœ‘ ∧ π‘₯ ∈ ((π‘„β€˜0)[,](π‘„β€˜π‘€))) β†’ 𝐹:(𝐴[,]𝐡)βŸΆβ„‚)
30 simpr 483 . . . . 5 ((πœ‘ ∧ π‘₯ ∈ ((π‘„β€˜0)[,](π‘„β€˜π‘€))) β†’ π‘₯ ∈ ((π‘„β€˜0)[,](π‘„β€˜π‘€)))
3110adantr 479 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ ((π‘„β€˜0)[,](π‘„β€˜π‘€))) β†’ (π‘„β€˜0) = 𝐴)
3211adantr 479 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ ((π‘„β€˜0)[,](π‘„β€˜π‘€))) β†’ (π‘„β€˜π‘€) = 𝐡)
3331, 32oveq12d 7429 . . . . 5 ((πœ‘ ∧ π‘₯ ∈ ((π‘„β€˜0)[,](π‘„β€˜π‘€))) β†’ ((π‘„β€˜0)[,](π‘„β€˜π‘€)) = (𝐴[,]𝐡))
3430, 33eleqtrd 2833 . . . 4 ((πœ‘ ∧ π‘₯ ∈ ((π‘„β€˜0)[,](π‘„β€˜π‘€))) β†’ π‘₯ ∈ (𝐴[,]𝐡))
3529, 34ffvelcdmd 7086 . . 3 ((πœ‘ ∧ π‘₯ ∈ ((π‘„β€˜0)[,](π‘„β€˜π‘€))) β†’ (πΉβ€˜π‘₯) ∈ β„‚)
3625adantr 479 . . . . 5 ((πœ‘ ∧ 𝑖 ∈ (0..^𝑀)) β†’ 𝑄:(0...𝑀)βŸΆβ„)
37 elfzofz 13652 . . . . . 6 (𝑖 ∈ (0..^𝑀) β†’ 𝑖 ∈ (0...𝑀))
3837adantl 480 . . . . 5 ((πœ‘ ∧ 𝑖 ∈ (0..^𝑀)) β†’ 𝑖 ∈ (0...𝑀))
3936, 38ffvelcdmd 7086 . . . 4 ((πœ‘ ∧ 𝑖 ∈ (0..^𝑀)) β†’ (π‘„β€˜π‘–) ∈ ℝ)
40 fzofzp1 13733 . . . . . 6 (𝑖 ∈ (0..^𝑀) β†’ (𝑖 + 1) ∈ (0...𝑀))
4140adantl 480 . . . . 5 ((πœ‘ ∧ 𝑖 ∈ (0..^𝑀)) β†’ (𝑖 + 1) ∈ (0...𝑀))
4236, 41ffvelcdmd 7086 . . . 4 ((πœ‘ ∧ 𝑖 ∈ (0..^𝑀)) β†’ (π‘„β€˜(𝑖 + 1)) ∈ ℝ)
431adantr 479 . . . . . . 7 ((πœ‘ ∧ 𝑖 ∈ (0..^𝑀)) β†’ 𝐹:(𝐴[,]𝐡)βŸΆβ„‚)
44 ioossicc 13414 . . . . . . . 8 ((π‘„β€˜π‘–)(,)(π‘„β€˜(𝑖 + 1))) βŠ† ((π‘„β€˜π‘–)[,](π‘„β€˜(𝑖 + 1)))
454, 3, 2fourierdlem11 45132 . . . . . . . . . . . 12 (πœ‘ β†’ (𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ ∧ 𝐴 < 𝐡))
4645simp1d 1140 . . . . . . . . . . 11 (πœ‘ β†’ 𝐴 ∈ ℝ)
4746rexrd 11268 . . . . . . . . . 10 (πœ‘ β†’ 𝐴 ∈ ℝ*)
4847adantr 479 . . . . . . . . 9 ((πœ‘ ∧ 𝑖 ∈ (0..^𝑀)) β†’ 𝐴 ∈ ℝ*)
4945simp2d 1141 . . . . . . . . . . 11 (πœ‘ β†’ 𝐡 ∈ ℝ)
5049rexrd 11268 . . . . . . . . . 10 (πœ‘ β†’ 𝐡 ∈ ℝ*)
5150adantr 479 . . . . . . . . 9 ((πœ‘ ∧ 𝑖 ∈ (0..^𝑀)) β†’ 𝐡 ∈ ℝ*)
524, 3, 2fourierdlem15 45136 . . . . . . . . . 10 (πœ‘ β†’ 𝑄:(0...𝑀)⟢(𝐴[,]𝐡))
5352adantr 479 . . . . . . . . 9 ((πœ‘ ∧ 𝑖 ∈ (0..^𝑀)) β†’ 𝑄:(0...𝑀)⟢(𝐴[,]𝐡))
54 simpr 483 . . . . . . . . 9 ((πœ‘ ∧ 𝑖 ∈ (0..^𝑀)) β†’ 𝑖 ∈ (0..^𝑀))
5548, 51, 53, 54fourierdlem8 45129 . . . . . . . 8 ((πœ‘ ∧ 𝑖 ∈ (0..^𝑀)) β†’ ((π‘„β€˜π‘–)[,](π‘„β€˜(𝑖 + 1))) βŠ† (𝐴[,]𝐡))
5644, 55sstrid 3992 . . . . . . 7 ((πœ‘ ∧ 𝑖 ∈ (0..^𝑀)) β†’ ((π‘„β€˜π‘–)(,)(π‘„β€˜(𝑖 + 1))) βŠ† (𝐴[,]𝐡))
5743, 56feqresmpt 6960 . . . . . 6 ((πœ‘ ∧ 𝑖 ∈ (0..^𝑀)) β†’ (𝐹 β†Ύ ((π‘„β€˜π‘–)(,)(π‘„β€˜(𝑖 + 1)))) = (π‘₯ ∈ ((π‘„β€˜π‘–)(,)(π‘„β€˜(𝑖 + 1))) ↦ (πΉβ€˜π‘₯)))
58 fourierdlem69.fcn . . . . . 6 ((πœ‘ ∧ 𝑖 ∈ (0..^𝑀)) β†’ (𝐹 β†Ύ ((π‘„β€˜π‘–)(,)(π‘„β€˜(𝑖 + 1)))) ∈ (((π‘„β€˜π‘–)(,)(π‘„β€˜(𝑖 + 1)))–cnβ†’β„‚))
5957, 58eqeltrrd 2832 . . . . 5 ((πœ‘ ∧ 𝑖 ∈ (0..^𝑀)) β†’ (π‘₯ ∈ ((π‘„β€˜π‘–)(,)(π‘„β€˜(𝑖 + 1))) ↦ (πΉβ€˜π‘₯)) ∈ (((π‘„β€˜π‘–)(,)(π‘„β€˜(𝑖 + 1)))–cnβ†’β„‚))
60 fourierdlem69.l . . . . . 6 ((πœ‘ ∧ 𝑖 ∈ (0..^𝑀)) β†’ 𝐿 ∈ ((𝐹 β†Ύ ((π‘„β€˜π‘–)(,)(π‘„β€˜(𝑖 + 1)))) limβ„‚ (π‘„β€˜(𝑖 + 1))))
6157oveq1d 7426 . . . . . 6 ((πœ‘ ∧ 𝑖 ∈ (0..^𝑀)) β†’ ((𝐹 β†Ύ ((π‘„β€˜π‘–)(,)(π‘„β€˜(𝑖 + 1)))) limβ„‚ (π‘„β€˜(𝑖 + 1))) = ((π‘₯ ∈ ((π‘„β€˜π‘–)(,)(π‘„β€˜(𝑖 + 1))) ↦ (πΉβ€˜π‘₯)) limβ„‚ (π‘„β€˜(𝑖 + 1))))
6260, 61eleqtrd 2833 . . . . 5 ((πœ‘ ∧ 𝑖 ∈ (0..^𝑀)) β†’ 𝐿 ∈ ((π‘₯ ∈ ((π‘„β€˜π‘–)(,)(π‘„β€˜(𝑖 + 1))) ↦ (πΉβ€˜π‘₯)) limβ„‚ (π‘„β€˜(𝑖 + 1))))
63 fourierdlem69.r . . . . . 6 ((πœ‘ ∧ 𝑖 ∈ (0..^𝑀)) β†’ 𝑅 ∈ ((𝐹 β†Ύ ((π‘„β€˜π‘–)(,)(π‘„β€˜(𝑖 + 1)))) limβ„‚ (π‘„β€˜π‘–)))
6457oveq1d 7426 . . . . . 6 ((πœ‘ ∧ 𝑖 ∈ (0..^𝑀)) β†’ ((𝐹 β†Ύ ((π‘„β€˜π‘–)(,)(π‘„β€˜(𝑖 + 1)))) limβ„‚ (π‘„β€˜π‘–)) = ((π‘₯ ∈ ((π‘„β€˜π‘–)(,)(π‘„β€˜(𝑖 + 1))) ↦ (πΉβ€˜π‘₯)) limβ„‚ (π‘„β€˜π‘–)))
6563, 64eleqtrd 2833 . . . . 5 ((πœ‘ ∧ 𝑖 ∈ (0..^𝑀)) β†’ 𝑅 ∈ ((π‘₯ ∈ ((π‘„β€˜π‘–)(,)(π‘„β€˜(𝑖 + 1))) ↦ (πΉβ€˜π‘₯)) limβ„‚ (π‘„β€˜π‘–)))
6639, 42, 59, 62, 65iblcncfioo 44992 . . . 4 ((πœ‘ ∧ 𝑖 ∈ (0..^𝑀)) β†’ (π‘₯ ∈ ((π‘„β€˜π‘–)(,)(π‘„β€˜(𝑖 + 1))) ↦ (πΉβ€˜π‘₯)) ∈ 𝐿1)
6743adantr 479 . . . . 5 (((πœ‘ ∧ 𝑖 ∈ (0..^𝑀)) ∧ π‘₯ ∈ ((π‘„β€˜π‘–)[,](π‘„β€˜(𝑖 + 1)))) β†’ 𝐹:(𝐴[,]𝐡)βŸΆβ„‚)
6855sselda 3981 . . . . 5 (((πœ‘ ∧ 𝑖 ∈ (0..^𝑀)) ∧ π‘₯ ∈ ((π‘„β€˜π‘–)[,](π‘„β€˜(𝑖 + 1)))) β†’ π‘₯ ∈ (𝐴[,]𝐡))
6967, 68ffvelcdmd 7086 . . . 4 (((πœ‘ ∧ 𝑖 ∈ (0..^𝑀)) ∧ π‘₯ ∈ ((π‘„β€˜π‘–)[,](π‘„β€˜(𝑖 + 1)))) β†’ (πΉβ€˜π‘₯) ∈ β„‚)
7039, 42, 66, 69ibliooicc 44985 . . 3 ((πœ‘ ∧ 𝑖 ∈ (0..^𝑀)) β†’ (π‘₯ ∈ ((π‘„β€˜π‘–)[,](π‘„β€˜(𝑖 + 1))) ↦ (πΉβ€˜π‘₯)) ∈ 𝐿1)
7116, 17, 22, 26, 28, 35, 70iblspltprt 44987 . 2 (πœ‘ β†’ (π‘₯ ∈ ((π‘„β€˜0)[,](π‘„β€˜π‘€)) ↦ (πΉβ€˜π‘₯)) ∈ 𝐿1)
7215, 71eqeltrd 2831 1 (πœ‘ β†’ 𝐹 ∈ 𝐿1)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   = wceq 1539   ∈ wcel 2104  βˆ€wral 3059  {crab 3430   class class class wbr 5147   ↦ cmpt 5230   β†Ύ cres 5677  βŸΆwf 6538  β€˜cfv 6542  (class class class)co 7411   ↑m cmap 8822  β„‚cc 11110  β„cr 11111  0cc0 11112  1c1 11113   + caddc 11115  β„*cxr 11251   < clt 11252  β„•cn 12216  β„€β‰₯cuz 12826  (,)cioo 13328  [,]cicc 13331  ...cfz 13488  ..^cfzo 13631  β€“cnβ†’ccncf 24616  πΏ1cibl 25366   limβ„‚ climc 25611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-inf2 9638  ax-cc 10432  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190  ax-addf 11191
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-symdif 4241  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-disj 5113  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-of 7672  df-ofr 7673  df-om 7858  df-1st 7977  df-2nd 7978  df-supp 8149  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-2o 8469  df-oadd 8472  df-omul 8473  df-er 8705  df-map 8824  df-pm 8825  df-ixp 8894  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-fsupp 9364  df-fi 9408  df-sup 9439  df-inf 9440  df-oi 9507  df-dju 9898  df-card 9936  df-acn 9939  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-7 12284  df-8 12285  df-9 12286  df-n0 12477  df-z 12563  df-dec 12682  df-uz 12827  df-q 12937  df-rp 12979  df-xneg 13096  df-xadd 13097  df-xmul 13098  df-ioo 13332  df-ioc 13333  df-ico 13334  df-icc 13335  df-fz 13489  df-fzo 13632  df-fl 13761  df-mod 13839  df-seq 13971  df-exp 14032  df-hash 14295  df-cj 15050  df-re 15051  df-im 15052  df-sqrt 15186  df-abs 15187  df-limsup 15419  df-clim 15436  df-rlim 15437  df-sum 15637  df-struct 17084  df-sets 17101  df-slot 17119  df-ndx 17131  df-base 17149  df-ress 17178  df-plusg 17214  df-mulr 17215  df-starv 17216  df-sca 17217  df-vsca 17218  df-ip 17219  df-tset 17220  df-ple 17221  df-ds 17223  df-unif 17224  df-hom 17225  df-cco 17226  df-rest 17372  df-topn 17373  df-0g 17391  df-gsum 17392  df-topgen 17393  df-pt 17394  df-prds 17397  df-xrs 17452  df-qtop 17457  df-imas 17458  df-xps 17460  df-mre 17534  df-mrc 17535  df-acs 17537  df-mgm 18565  df-sgrp 18644  df-mnd 18660  df-submnd 18706  df-mulg 18987  df-cntz 19222  df-cmn 19691  df-psmet 21136  df-xmet 21137  df-met 21138  df-bl 21139  df-mopn 21140  df-cnfld 21145  df-top 22616  df-topon 22633  df-topsp 22655  df-bases 22669  df-cld 22743  df-ntr 22744  df-cls 22745  df-cn 22951  df-cnp 22952  df-cmp 23111  df-tx 23286  df-hmeo 23479  df-xms 24046  df-ms 24047  df-tms 24048  df-cncf 24618  df-ovol 25213  df-vol 25214  df-mbf 25368  df-itg1 25369  df-itg2 25370  df-ibl 25371  df-itg 25372  df-0p 25419  df-limc 25615
This theorem is referenced by:  fourierdlem84  45204  fourierdlem88  45208  fourierdlem100  45220  fourierdlem107  45227  fourierdlem111  45231  fourierdlem112  45232
  Copyright terms: Public domain W3C validator