Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem11 Structured version   Visualization version   GIF version

Theorem fourierdlem11 44349
Description: If there is a partition, than the lower bound is strictly less than the upper bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem11.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem11.m (𝜑𝑀 ∈ ℕ)
fourierdlem11.q (𝜑𝑄 ∈ (𝑃𝑀))
Assertion
Ref Expression
fourierdlem11 (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵))
Distinct variable groups:   𝐴,𝑚,𝑝   𝐵,𝑚,𝑝   𝑖,𝑀,𝑚,𝑝   𝑄,𝑖,𝑝   𝜑,𝑖
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝐴(𝑖)   𝐵(𝑖)   𝑃(𝑖,𝑚,𝑝)   𝑄(𝑚)

Proof of Theorem fourierdlem11
StepHypRef Expression
1 fourierdlem11.q . . . . . . 7 (𝜑𝑄 ∈ (𝑃𝑀))
2 fourierdlem11.m . . . . . . . 8 (𝜑𝑀 ∈ ℕ)
3 fourierdlem11.p . . . . . . . . 9 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
43fourierdlem2 44340 . . . . . . . 8 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
52, 4syl 17 . . . . . . 7 (𝜑 → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
61, 5mpbid 231 . . . . . 6 (𝜑 → (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
76simprd 496 . . . . 5 (𝜑 → (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))
87simpld 495 . . . 4 (𝜑 → ((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵))
98simpld 495 . . 3 (𝜑 → (𝑄‘0) = 𝐴)
106simpld 495 . . . . 5 (𝜑𝑄 ∈ (ℝ ↑m (0...𝑀)))
11 elmapi 8787 . . . . 5 (𝑄 ∈ (ℝ ↑m (0...𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
1210, 11syl 17 . . . 4 (𝜑𝑄:(0...𝑀)⟶ℝ)
13 0zd 12511 . . . . 5 (𝜑 → 0 ∈ ℤ)
142nnzd 12526 . . . . 5 (𝜑𝑀 ∈ ℤ)
15 0red 11158 . . . . . 6 (𝜑 → 0 ∈ ℝ)
1615leidd 11721 . . . . 5 (𝜑 → 0 ≤ 0)
172nnred 12168 . . . . . 6 (𝜑𝑀 ∈ ℝ)
182nngt0d 12202 . . . . . 6 (𝜑 → 0 < 𝑀)
1915, 17, 18ltled 11303 . . . . 5 (𝜑 → 0 ≤ 𝑀)
2013, 14, 13, 16, 19elfzd 13432 . . . 4 (𝜑 → 0 ∈ (0...𝑀))
2112, 20ffvelcdmd 7036 . . 3 (𝜑 → (𝑄‘0) ∈ ℝ)
229, 21eqeltrrd 2839 . 2 (𝜑𝐴 ∈ ℝ)
238simprd 496 . . 3 (𝜑 → (𝑄𝑀) = 𝐵)
2417leidd 11721 . . . . 5 (𝜑𝑀𝑀)
2513, 14, 14, 19, 24elfzd 13432 . . . 4 (𝜑𝑀 ∈ (0...𝑀))
2612, 25ffvelcdmd 7036 . . 3 (𝜑 → (𝑄𝑀) ∈ ℝ)
2723, 26eqeltrrd 2839 . 2 (𝜑𝐵 ∈ ℝ)
28 1zzd 12534 . . . . 5 (𝜑 → 1 ∈ ℤ)
29 0le1 11678 . . . . . 6 0 ≤ 1
3029a1i 11 . . . . 5 (𝜑 → 0 ≤ 1)
312nnge1d 12201 . . . . 5 (𝜑 → 1 ≤ 𝑀)
3213, 14, 28, 30, 31elfzd 13432 . . . 4 (𝜑 → 1 ∈ (0...𝑀))
3312, 32ffvelcdmd 7036 . . 3 (𝜑 → (𝑄‘1) ∈ ℝ)
34 elfzo 13574 . . . . . . 7 ((0 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (0 ∈ (0..^𝑀) ↔ (0 ≤ 0 ∧ 0 < 𝑀)))
3513, 13, 14, 34syl3anc 1371 . . . . . 6 (𝜑 → (0 ∈ (0..^𝑀) ↔ (0 ≤ 0 ∧ 0 < 𝑀)))
3616, 18, 35mpbir2and 711 . . . . 5 (𝜑 → 0 ∈ (0..^𝑀))
37 0re 11157 . . . . . 6 0 ∈ ℝ
38 eleq1 2825 . . . . . . . . 9 (𝑖 = 0 → (𝑖 ∈ (0..^𝑀) ↔ 0 ∈ (0..^𝑀)))
3938anbi2d 629 . . . . . . . 8 (𝑖 = 0 → ((𝜑𝑖 ∈ (0..^𝑀)) ↔ (𝜑 ∧ 0 ∈ (0..^𝑀))))
40 fveq2 6842 . . . . . . . . 9 (𝑖 = 0 → (𝑄𝑖) = (𝑄‘0))
41 oveq1 7364 . . . . . . . . . 10 (𝑖 = 0 → (𝑖 + 1) = (0 + 1))
4241fveq2d 6846 . . . . . . . . 9 (𝑖 = 0 → (𝑄‘(𝑖 + 1)) = (𝑄‘(0 + 1)))
4340, 42breq12d 5118 . . . . . . . 8 (𝑖 = 0 → ((𝑄𝑖) < (𝑄‘(𝑖 + 1)) ↔ (𝑄‘0) < (𝑄‘(0 + 1))))
4439, 43imbi12d 344 . . . . . . 7 (𝑖 = 0 → (((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1))) ↔ ((𝜑 ∧ 0 ∈ (0..^𝑀)) → (𝑄‘0) < (𝑄‘(0 + 1)))))
457simprd 496 . . . . . . . 8 (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))
4645r19.21bi 3234 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
4744, 46vtoclg 3525 . . . . . 6 (0 ∈ ℝ → ((𝜑 ∧ 0 ∈ (0..^𝑀)) → (𝑄‘0) < (𝑄‘(0 + 1))))
4837, 47ax-mp 5 . . . . 5 ((𝜑 ∧ 0 ∈ (0..^𝑀)) → (𝑄‘0) < (𝑄‘(0 + 1)))
4936, 48mpdan 685 . . . 4 (𝜑 → (𝑄‘0) < (𝑄‘(0 + 1)))
50 0p1e1 12275 . . . . . 6 (0 + 1) = 1
5150a1i 11 . . . . 5 (𝜑 → (0 + 1) = 1)
5251fveq2d 6846 . . . 4 (𝜑 → (𝑄‘(0 + 1)) = (𝑄‘1))
5349, 9, 523brtr3d 5136 . . 3 (𝜑𝐴 < (𝑄‘1))
54 nnuz 12806 . . . . . 6 ℕ = (ℤ‘1)
552, 54eleqtrdi 2848 . . . . 5 (𝜑𝑀 ∈ (ℤ‘1))
5612adantr 481 . . . . . 6 ((𝜑𝑖 ∈ (1...𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
57 0zd 12511 . . . . . . . 8 (𝑖 ∈ (1...𝑀) → 0 ∈ ℤ)
58 elfzel2 13439 . . . . . . . 8 (𝑖 ∈ (1...𝑀) → 𝑀 ∈ ℤ)
59 elfzelz 13441 . . . . . . . 8 (𝑖 ∈ (1...𝑀) → 𝑖 ∈ ℤ)
60 0red 11158 . . . . . . . . 9 (𝑖 ∈ (1...𝑀) → 0 ∈ ℝ)
6159zred 12607 . . . . . . . . 9 (𝑖 ∈ (1...𝑀) → 𝑖 ∈ ℝ)
62 1red 11156 . . . . . . . . . 10 (𝑖 ∈ (1...𝑀) → 1 ∈ ℝ)
63 0lt1 11677 . . . . . . . . . . 11 0 < 1
6463a1i 11 . . . . . . . . . 10 (𝑖 ∈ (1...𝑀) → 0 < 1)
65 elfzle1 13444 . . . . . . . . . 10 (𝑖 ∈ (1...𝑀) → 1 ≤ 𝑖)
6660, 62, 61, 64, 65ltletrd 11315 . . . . . . . . 9 (𝑖 ∈ (1...𝑀) → 0 < 𝑖)
6760, 61, 66ltled 11303 . . . . . . . 8 (𝑖 ∈ (1...𝑀) → 0 ≤ 𝑖)
68 elfzle2 13445 . . . . . . . 8 (𝑖 ∈ (1...𝑀) → 𝑖𝑀)
6957, 58, 59, 67, 68elfzd 13432 . . . . . . 7 (𝑖 ∈ (1...𝑀) → 𝑖 ∈ (0...𝑀))
7069adantl 482 . . . . . 6 ((𝜑𝑖 ∈ (1...𝑀)) → 𝑖 ∈ (0...𝑀))
7156, 70ffvelcdmd 7036 . . . . 5 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑄𝑖) ∈ ℝ)
7212adantr 481 . . . . . . 7 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 𝑄:(0...𝑀)⟶ℝ)
73 0zd 12511 . . . . . . . 8 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 0 ∈ ℤ)
7414adantr 481 . . . . . . . 8 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 𝑀 ∈ ℤ)
75 elfzelz 13441 . . . . . . . . 9 (𝑖 ∈ (1...(𝑀 − 1)) → 𝑖 ∈ ℤ)
7675adantl 482 . . . . . . . 8 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 𝑖 ∈ ℤ)
77 0red 11158 . . . . . . . . . 10 (𝑖 ∈ (1...(𝑀 − 1)) → 0 ∈ ℝ)
7875zred 12607 . . . . . . . . . 10 (𝑖 ∈ (1...(𝑀 − 1)) → 𝑖 ∈ ℝ)
79 1red 11156 . . . . . . . . . . 11 (𝑖 ∈ (1...(𝑀 − 1)) → 1 ∈ ℝ)
8063a1i 11 . . . . . . . . . . 11 (𝑖 ∈ (1...(𝑀 − 1)) → 0 < 1)
81 elfzle1 13444 . . . . . . . . . . 11 (𝑖 ∈ (1...(𝑀 − 1)) → 1 ≤ 𝑖)
8277, 79, 78, 80, 81ltletrd 11315 . . . . . . . . . 10 (𝑖 ∈ (1...(𝑀 − 1)) → 0 < 𝑖)
8377, 78, 82ltled 11303 . . . . . . . . 9 (𝑖 ∈ (1...(𝑀 − 1)) → 0 ≤ 𝑖)
8483adantl 482 . . . . . . . 8 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 0 ≤ 𝑖)
8578adantl 482 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 𝑖 ∈ ℝ)
8617adantr 481 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 𝑀 ∈ ℝ)
87 peano2rem 11468 . . . . . . . . . . 11 (𝑀 ∈ ℝ → (𝑀 − 1) ∈ ℝ)
8886, 87syl 17 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑀 − 1) ∈ ℝ)
89 elfzle2 13445 . . . . . . . . . . 11 (𝑖 ∈ (1...(𝑀 − 1)) → 𝑖 ≤ (𝑀 − 1))
9089adantl 482 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 𝑖 ≤ (𝑀 − 1))
9186ltm1d 12087 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑀 − 1) < 𝑀)
9285, 88, 86, 90, 91lelttrd 11313 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 𝑖 < 𝑀)
9385, 86, 92ltled 11303 . . . . . . . 8 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 𝑖𝑀)
9473, 74, 76, 84, 93elfzd 13432 . . . . . . 7 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 𝑖 ∈ (0...𝑀))
9572, 94ffvelcdmd 7036 . . . . . 6 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑄𝑖) ∈ ℝ)
9676peano2zd 12610 . . . . . . . 8 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑖 + 1) ∈ ℤ)
97 0red 11158 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 0 ∈ ℝ)
98 peano2re 11328 . . . . . . . . . 10 (𝑖 ∈ ℝ → (𝑖 + 1) ∈ ℝ)
9985, 98syl 17 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑖 + 1) ∈ ℝ)
100 1red 11156 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 1 ∈ ℝ)
10163a1i 11 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 0 < 1)
10278, 98syl 17 . . . . . . . . . . . 12 (𝑖 ∈ (1...(𝑀 − 1)) → (𝑖 + 1) ∈ ℝ)
10378ltp1d 12085 . . . . . . . . . . . 12 (𝑖 ∈ (1...(𝑀 − 1)) → 𝑖 < (𝑖 + 1))
10479, 78, 102, 81, 103lelttrd 11313 . . . . . . . . . . 11 (𝑖 ∈ (1...(𝑀 − 1)) → 1 < (𝑖 + 1))
105104adantl 482 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 1 < (𝑖 + 1))
10697, 100, 99, 101, 105lttrd 11316 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 0 < (𝑖 + 1))
10797, 99, 106ltled 11303 . . . . . . . 8 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 0 ≤ (𝑖 + 1))
10885, 88, 100, 90leadd1dd 11769 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑖 + 1) ≤ ((𝑀 − 1) + 1))
1092nncnd 12169 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℂ)
110 1cnd 11150 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℂ)
111109, 110npcand 11516 . . . . . . . . . 10 (𝜑 → ((𝑀 − 1) + 1) = 𝑀)
112111adantr 481 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → ((𝑀 − 1) + 1) = 𝑀)
113108, 112breqtrd 5131 . . . . . . . 8 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑖 + 1) ≤ 𝑀)
11473, 74, 96, 107, 113elfzd 13432 . . . . . . 7 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑖 + 1) ∈ (0...𝑀))
11572, 114ffvelcdmd 7036 . . . . . 6 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
116 elfzo 13574 . . . . . . . . 9 ((𝑖 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑖 ∈ (0..^𝑀) ↔ (0 ≤ 𝑖𝑖 < 𝑀)))
11776, 73, 74, 116syl3anc 1371 . . . . . . . 8 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑖 ∈ (0..^𝑀) ↔ (0 ≤ 𝑖𝑖 < 𝑀)))
11884, 92, 117mpbir2and 711 . . . . . . 7 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 𝑖 ∈ (0..^𝑀))
119118, 46syldan 591 . . . . . 6 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
12095, 115, 119ltled 11303 . . . . 5 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑄𝑖) ≤ (𝑄‘(𝑖 + 1)))
12155, 71, 120monoord 13938 . . . 4 (𝜑 → (𝑄‘1) ≤ (𝑄𝑀))
122121, 23breqtrd 5131 . . 3 (𝜑 → (𝑄‘1) ≤ 𝐵)
12322, 33, 27, 53, 122ltletrd 11315 . 2 (𝜑𝐴 < 𝐵)
12422, 27, 1233jca 1128 1 (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3064  {crab 3407   class class class wbr 5105  cmpt 5188  wf 6492  cfv 6496  (class class class)co 7357  m cmap 8765  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   < clt 11189  cle 11190  cmin 11385  cn 12153  cz 12499  cuz 12763  ...cfz 13424  ..^cfzo 13567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-fzo 13568
This theorem is referenced by:  fourierdlem37  44375  fourierdlem54  44391  fourierdlem63  44400  fourierdlem64  44401  fourierdlem65  44402  fourierdlem69  44406  fourierdlem79  44416  fourierdlem89  44426  fourierdlem90  44427  fourierdlem91  44428  fourierdlem107  44444  fourierdlem109  44446
  Copyright terms: Public domain W3C validator