Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem11 Structured version   Visualization version   GIF version

Theorem fourierdlem11 40852
Description: If there is a partition, than the lower bound is strictly less than the upper bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem11.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem11.m (𝜑𝑀 ∈ ℕ)
fourierdlem11.q (𝜑𝑄 ∈ (𝑃𝑀))
Assertion
Ref Expression
fourierdlem11 (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵))
Distinct variable groups:   𝐴,𝑚,𝑝   𝐵,𝑚,𝑝   𝑖,𝑀,𝑚,𝑝   𝑄,𝑖,𝑝   𝜑,𝑖
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝐴(𝑖)   𝐵(𝑖)   𝑃(𝑖,𝑚,𝑝)   𝑄(𝑚)

Proof of Theorem fourierdlem11
StepHypRef Expression
1 fourierdlem11.q . . . . . . 7 (𝜑𝑄 ∈ (𝑃𝑀))
2 fourierdlem11.m . . . . . . . 8 (𝜑𝑀 ∈ ℕ)
3 fourierdlem11.p . . . . . . . . 9 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
43fourierdlem2 40843 . . . . . . . 8 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
52, 4syl 17 . . . . . . 7 (𝜑 → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
61, 5mpbid 222 . . . . . 6 (𝜑 → (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
76simprd 483 . . . . 5 (𝜑 → (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))
87simpld 482 . . . 4 (𝜑 → ((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵))
98simpld 482 . . 3 (𝜑 → (𝑄‘0) = 𝐴)
106simpld 482 . . . . 5 (𝜑𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)))
11 elmapi 8031 . . . . 5 (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
1210, 11syl 17 . . . 4 (𝜑𝑄:(0...𝑀)⟶ℝ)
13 0red 10243 . . . . . 6 (𝜑 → 0 ∈ ℝ)
1413leidd 10796 . . . . 5 (𝜑 → 0 ≤ 0)
152nnred 11237 . . . . . 6 (𝜑𝑀 ∈ ℝ)
162nngt0d 11266 . . . . . 6 (𝜑 → 0 < 𝑀)
1713, 15, 16ltled 10387 . . . . 5 (𝜑 → 0 ≤ 𝑀)
18 0zd 11591 . . . . . 6 (𝜑 → 0 ∈ ℤ)
192nnzd 11683 . . . . . 6 (𝜑𝑀 ∈ ℤ)
20 elfz 12539 . . . . . 6 ((0 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (0 ∈ (0...𝑀) ↔ (0 ≤ 0 ∧ 0 ≤ 𝑀)))
2118, 18, 19, 20syl3anc 1476 . . . . 5 (𝜑 → (0 ∈ (0...𝑀) ↔ (0 ≤ 0 ∧ 0 ≤ 𝑀)))
2214, 17, 21mpbir2and 692 . . . 4 (𝜑 → 0 ∈ (0...𝑀))
2312, 22ffvelrnd 6503 . . 3 (𝜑 → (𝑄‘0) ∈ ℝ)
249, 23eqeltrrd 2851 . 2 (𝜑𝐴 ∈ ℝ)
258simprd 483 . . 3 (𝜑 → (𝑄𝑀) = 𝐵)
2615leidd 10796 . . . . 5 (𝜑𝑀𝑀)
27 elfz 12539 . . . . . 6 ((𝑀 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 ∈ (0...𝑀) ↔ (0 ≤ 𝑀𝑀𝑀)))
2819, 18, 19, 27syl3anc 1476 . . . . 5 (𝜑 → (𝑀 ∈ (0...𝑀) ↔ (0 ≤ 𝑀𝑀𝑀)))
2917, 26, 28mpbir2and 692 . . . 4 (𝜑𝑀 ∈ (0...𝑀))
3012, 29ffvelrnd 6503 . . 3 (𝜑 → (𝑄𝑀) ∈ ℝ)
3125, 30eqeltrrd 2851 . 2 (𝜑𝐵 ∈ ℝ)
32 0le1 10753 . . . . . 6 0 ≤ 1
3332a1i 11 . . . . 5 (𝜑 → 0 ≤ 1)
342nnge1d 11265 . . . . 5 (𝜑 → 1 ≤ 𝑀)
35 1zzd 11610 . . . . . 6 (𝜑 → 1 ∈ ℤ)
36 elfz 12539 . . . . . 6 ((1 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (1 ∈ (0...𝑀) ↔ (0 ≤ 1 ∧ 1 ≤ 𝑀)))
3735, 18, 19, 36syl3anc 1476 . . . . 5 (𝜑 → (1 ∈ (0...𝑀) ↔ (0 ≤ 1 ∧ 1 ≤ 𝑀)))
3833, 34, 37mpbir2and 692 . . . 4 (𝜑 → 1 ∈ (0...𝑀))
3912, 38ffvelrnd 6503 . . 3 (𝜑 → (𝑄‘1) ∈ ℝ)
40 elfzo 12680 . . . . . . 7 ((0 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (0 ∈ (0..^𝑀) ↔ (0 ≤ 0 ∧ 0 < 𝑀)))
4118, 18, 19, 40syl3anc 1476 . . . . . 6 (𝜑 → (0 ∈ (0..^𝑀) ↔ (0 ≤ 0 ∧ 0 < 𝑀)))
4214, 16, 41mpbir2and 692 . . . . 5 (𝜑 → 0 ∈ (0..^𝑀))
43 0re 10242 . . . . . 6 0 ∈ ℝ
44 eleq1 2838 . . . . . . . . 9 (𝑖 = 0 → (𝑖 ∈ (0..^𝑀) ↔ 0 ∈ (0..^𝑀)))
4544anbi2d 614 . . . . . . . 8 (𝑖 = 0 → ((𝜑𝑖 ∈ (0..^𝑀)) ↔ (𝜑 ∧ 0 ∈ (0..^𝑀))))
46 fveq2 6332 . . . . . . . . 9 (𝑖 = 0 → (𝑄𝑖) = (𝑄‘0))
47 oveq1 6800 . . . . . . . . . 10 (𝑖 = 0 → (𝑖 + 1) = (0 + 1))
4847fveq2d 6336 . . . . . . . . 9 (𝑖 = 0 → (𝑄‘(𝑖 + 1)) = (𝑄‘(0 + 1)))
4946, 48breq12d 4799 . . . . . . . 8 (𝑖 = 0 → ((𝑄𝑖) < (𝑄‘(𝑖 + 1)) ↔ (𝑄‘0) < (𝑄‘(0 + 1))))
5045, 49imbi12d 333 . . . . . . 7 (𝑖 = 0 → (((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1))) ↔ ((𝜑 ∧ 0 ∈ (0..^𝑀)) → (𝑄‘0) < (𝑄‘(0 + 1)))))
517simprd 483 . . . . . . . 8 (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))
5251r19.21bi 3081 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
5350, 52vtoclg 3417 . . . . . 6 (0 ∈ ℝ → ((𝜑 ∧ 0 ∈ (0..^𝑀)) → (𝑄‘0) < (𝑄‘(0 + 1))))
5443, 53ax-mp 5 . . . . 5 ((𝜑 ∧ 0 ∈ (0..^𝑀)) → (𝑄‘0) < (𝑄‘(0 + 1)))
5542, 54mpdan 667 . . . 4 (𝜑 → (𝑄‘0) < (𝑄‘(0 + 1)))
56 0p1e1 11334 . . . . . 6 (0 + 1) = 1
5756a1i 11 . . . . 5 (𝜑 → (0 + 1) = 1)
5857fveq2d 6336 . . . 4 (𝜑 → (𝑄‘(0 + 1)) = (𝑄‘1))
5955, 9, 583brtr3d 4817 . . 3 (𝜑𝐴 < (𝑄‘1))
60 nnuz 11925 . . . . . 6 ℕ = (ℤ‘1)
612, 60syl6eleq 2860 . . . . 5 (𝜑𝑀 ∈ (ℤ‘1))
6212adantr 466 . . . . . 6 ((𝜑𝑖 ∈ (1...𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
63 0red 10243 . . . . . . . . 9 (𝑖 ∈ (1...𝑀) → 0 ∈ ℝ)
64 elfzelz 12549 . . . . . . . . . 10 (𝑖 ∈ (1...𝑀) → 𝑖 ∈ ℤ)
6564zred 11684 . . . . . . . . 9 (𝑖 ∈ (1...𝑀) → 𝑖 ∈ ℝ)
66 1red 10257 . . . . . . . . . 10 (𝑖 ∈ (1...𝑀) → 1 ∈ ℝ)
67 0lt1 10752 . . . . . . . . . . 11 0 < 1
6867a1i 11 . . . . . . . . . 10 (𝑖 ∈ (1...𝑀) → 0 < 1)
69 elfzle1 12551 . . . . . . . . . 10 (𝑖 ∈ (1...𝑀) → 1 ≤ 𝑖)
7063, 66, 65, 68, 69ltletrd 10399 . . . . . . . . 9 (𝑖 ∈ (1...𝑀) → 0 < 𝑖)
7163, 65, 70ltled 10387 . . . . . . . 8 (𝑖 ∈ (1...𝑀) → 0 ≤ 𝑖)
72 elfzle2 12552 . . . . . . . 8 (𝑖 ∈ (1...𝑀) → 𝑖𝑀)
73 0zd 11591 . . . . . . . . 9 (𝑖 ∈ (1...𝑀) → 0 ∈ ℤ)
74 elfzel2 12547 . . . . . . . . 9 (𝑖 ∈ (1...𝑀) → 𝑀 ∈ ℤ)
75 elfz 12539 . . . . . . . . 9 ((𝑖 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑖 ∈ (0...𝑀) ↔ (0 ≤ 𝑖𝑖𝑀)))
7664, 73, 74, 75syl3anc 1476 . . . . . . . 8 (𝑖 ∈ (1...𝑀) → (𝑖 ∈ (0...𝑀) ↔ (0 ≤ 𝑖𝑖𝑀)))
7771, 72, 76mpbir2and 692 . . . . . . 7 (𝑖 ∈ (1...𝑀) → 𝑖 ∈ (0...𝑀))
7877adantl 467 . . . . . 6 ((𝜑𝑖 ∈ (1...𝑀)) → 𝑖 ∈ (0...𝑀))
7962, 78ffvelrnd 6503 . . . . 5 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑄𝑖) ∈ ℝ)
8012adantr 466 . . . . . . 7 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 𝑄:(0...𝑀)⟶ℝ)
81 0red 10243 . . . . . . . . . 10 (𝑖 ∈ (1...(𝑀 − 1)) → 0 ∈ ℝ)
82 elfzelz 12549 . . . . . . . . . . 11 (𝑖 ∈ (1...(𝑀 − 1)) → 𝑖 ∈ ℤ)
8382zred 11684 . . . . . . . . . 10 (𝑖 ∈ (1...(𝑀 − 1)) → 𝑖 ∈ ℝ)
84 1red 10257 . . . . . . . . . . 11 (𝑖 ∈ (1...(𝑀 − 1)) → 1 ∈ ℝ)
8567a1i 11 . . . . . . . . . . 11 (𝑖 ∈ (1...(𝑀 − 1)) → 0 < 1)
86 elfzle1 12551 . . . . . . . . . . 11 (𝑖 ∈ (1...(𝑀 − 1)) → 1 ≤ 𝑖)
8781, 84, 83, 85, 86ltletrd 10399 . . . . . . . . . 10 (𝑖 ∈ (1...(𝑀 − 1)) → 0 < 𝑖)
8881, 83, 87ltled 10387 . . . . . . . . 9 (𝑖 ∈ (1...(𝑀 − 1)) → 0 ≤ 𝑖)
8988adantl 467 . . . . . . . 8 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 0 ≤ 𝑖)
9083adantl 467 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 𝑖 ∈ ℝ)
9115adantr 466 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 𝑀 ∈ ℝ)
92 peano2rem 10550 . . . . . . . . . . 11 (𝑀 ∈ ℝ → (𝑀 − 1) ∈ ℝ)
9391, 92syl 17 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑀 − 1) ∈ ℝ)
94 elfzle2 12552 . . . . . . . . . . 11 (𝑖 ∈ (1...(𝑀 − 1)) → 𝑖 ≤ (𝑀 − 1))
9594adantl 467 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 𝑖 ≤ (𝑀 − 1))
9691ltm1d 11158 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑀 − 1) < 𝑀)
9790, 93, 91, 95, 96lelttrd 10397 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 𝑖 < 𝑀)
9890, 91, 97ltled 10387 . . . . . . . 8 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 𝑖𝑀)
9982adantl 467 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 𝑖 ∈ ℤ)
100 0zd 11591 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 0 ∈ ℤ)
10119adantr 466 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 𝑀 ∈ ℤ)
10299, 100, 101, 75syl3anc 1476 . . . . . . . 8 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑖 ∈ (0...𝑀) ↔ (0 ≤ 𝑖𝑖𝑀)))
10389, 98, 102mpbir2and 692 . . . . . . 7 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 𝑖 ∈ (0...𝑀))
10480, 103ffvelrnd 6503 . . . . . 6 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑄𝑖) ∈ ℝ)
105 0red 10243 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 0 ∈ ℝ)
106 peano2re 10411 . . . . . . . . . 10 (𝑖 ∈ ℝ → (𝑖 + 1) ∈ ℝ)
10790, 106syl 17 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑖 + 1) ∈ ℝ)
108 1red 10257 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 1 ∈ ℝ)
10967a1i 11 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 0 < 1)
11083, 106syl 17 . . . . . . . . . . . 12 (𝑖 ∈ (1...(𝑀 − 1)) → (𝑖 + 1) ∈ ℝ)
11183ltp1d 11156 . . . . . . . . . . . 12 (𝑖 ∈ (1...(𝑀 − 1)) → 𝑖 < (𝑖 + 1))
11284, 83, 110, 86, 111lelttrd 10397 . . . . . . . . . . 11 (𝑖 ∈ (1...(𝑀 − 1)) → 1 < (𝑖 + 1))
113112adantl 467 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 1 < (𝑖 + 1))
114105, 108, 107, 109, 113lttrd 10400 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 0 < (𝑖 + 1))
115105, 107, 114ltled 10387 . . . . . . . 8 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 0 ≤ (𝑖 + 1))
11690, 93, 108, 95leadd1dd 10843 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑖 + 1) ≤ ((𝑀 − 1) + 1))
1172nncnd 11238 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℂ)
118 1cnd 10258 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℂ)
119117, 118npcand 10598 . . . . . . . . . 10 (𝜑 → ((𝑀 − 1) + 1) = 𝑀)
120119adantr 466 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → ((𝑀 − 1) + 1) = 𝑀)
121116, 120breqtrd 4812 . . . . . . . 8 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑖 + 1) ≤ 𝑀)
12299peano2zd 11687 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑖 + 1) ∈ ℤ)
123 elfz 12539 . . . . . . . . 9 (((𝑖 + 1) ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑖 + 1) ∈ (0...𝑀) ↔ (0 ≤ (𝑖 + 1) ∧ (𝑖 + 1) ≤ 𝑀)))
124122, 100, 101, 123syl3anc 1476 . . . . . . . 8 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → ((𝑖 + 1) ∈ (0...𝑀) ↔ (0 ≤ (𝑖 + 1) ∧ (𝑖 + 1) ≤ 𝑀)))
125115, 121, 124mpbir2and 692 . . . . . . 7 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑖 + 1) ∈ (0...𝑀))
12680, 125ffvelrnd 6503 . . . . . 6 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
127 elfzo 12680 . . . . . . . . 9 ((𝑖 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑖 ∈ (0..^𝑀) ↔ (0 ≤ 𝑖𝑖 < 𝑀)))
12899, 100, 101, 127syl3anc 1476 . . . . . . . 8 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑖 ∈ (0..^𝑀) ↔ (0 ≤ 𝑖𝑖 < 𝑀)))
12989, 97, 128mpbir2and 692 . . . . . . 7 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 𝑖 ∈ (0..^𝑀))
130129, 52syldan 579 . . . . . 6 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
131104, 126, 130ltled 10387 . . . . 5 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑄𝑖) ≤ (𝑄‘(𝑖 + 1)))
13261, 79, 131monoord 13038 . . . 4 (𝜑 → (𝑄‘1) ≤ (𝑄𝑀))
133132, 25breqtrd 4812 . . 3 (𝜑 → (𝑄‘1) ≤ 𝐵)
13424, 39, 31, 59, 133ltletrd 10399 . 2 (𝜑𝐴 < 𝐵)
13524, 31, 1343jca 1122 1 (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  wral 3061  {crab 3065   class class class wbr 4786  cmpt 4863  wf 6027  cfv 6031  (class class class)co 6793  𝑚 cmap 8009  cr 10137  0cc0 10138  1c1 10139   + caddc 10141   < clt 10276  cle 10277  cmin 10468  cn 11222  cz 11579  cuz 11888  ...cfz 12533  ..^cfzo 12673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-map 8011  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-n0 11495  df-z 11580  df-uz 11889  df-fz 12534  df-fzo 12674
This theorem is referenced by:  fourierdlem37  40878  fourierdlem54  40894  fourierdlem63  40903  fourierdlem64  40904  fourierdlem65  40905  fourierdlem69  40909  fourierdlem79  40919  fourierdlem89  40929  fourierdlem90  40930  fourierdlem91  40931  fourierdlem107  40947  fourierdlem109  40949
  Copyright terms: Public domain W3C validator