Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem11 Structured version   Visualization version   GIF version

Theorem fourierdlem11 43242
Description: If there is a partition, than the lower bound is strictly less than the upper bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem11.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem11.m (𝜑𝑀 ∈ ℕ)
fourierdlem11.q (𝜑𝑄 ∈ (𝑃𝑀))
Assertion
Ref Expression
fourierdlem11 (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵))
Distinct variable groups:   𝐴,𝑚,𝑝   𝐵,𝑚,𝑝   𝑖,𝑀,𝑚,𝑝   𝑄,𝑖,𝑝   𝜑,𝑖
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝐴(𝑖)   𝐵(𝑖)   𝑃(𝑖,𝑚,𝑝)   𝑄(𝑚)

Proof of Theorem fourierdlem11
StepHypRef Expression
1 fourierdlem11.q . . . . . . 7 (𝜑𝑄 ∈ (𝑃𝑀))
2 fourierdlem11.m . . . . . . . 8 (𝜑𝑀 ∈ ℕ)
3 fourierdlem11.p . . . . . . . . 9 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
43fourierdlem2 43233 . . . . . . . 8 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
52, 4syl 17 . . . . . . 7 (𝜑 → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
61, 5mpbid 235 . . . . . 6 (𝜑 → (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
76simprd 499 . . . . 5 (𝜑 → (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))
87simpld 498 . . . 4 (𝜑 → ((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵))
98simpld 498 . . 3 (𝜑 → (𝑄‘0) = 𝐴)
106simpld 498 . . . . 5 (𝜑𝑄 ∈ (ℝ ↑m (0...𝑀)))
11 elmapi 8472 . . . . 5 (𝑄 ∈ (ℝ ↑m (0...𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
1210, 11syl 17 . . . 4 (𝜑𝑄:(0...𝑀)⟶ℝ)
13 0zd 12087 . . . . 5 (𝜑 → 0 ∈ ℤ)
142nnzd 12180 . . . . 5 (𝜑𝑀 ∈ ℤ)
15 0red 10735 . . . . . 6 (𝜑 → 0 ∈ ℝ)
1615leidd 11297 . . . . 5 (𝜑 → 0 ≤ 0)
172nnred 11744 . . . . . 6 (𝜑𝑀 ∈ ℝ)
182nngt0d 11778 . . . . . 6 (𝜑 → 0 < 𝑀)
1915, 17, 18ltled 10879 . . . . 5 (𝜑 → 0 ≤ 𝑀)
2013, 14, 13, 16, 19elfzd 13002 . . . 4 (𝜑 → 0 ∈ (0...𝑀))
2112, 20ffvelrnd 6875 . . 3 (𝜑 → (𝑄‘0) ∈ ℝ)
229, 21eqeltrrd 2835 . 2 (𝜑𝐴 ∈ ℝ)
238simprd 499 . . 3 (𝜑 → (𝑄𝑀) = 𝐵)
2417leidd 11297 . . . . 5 (𝜑𝑀𝑀)
2513, 14, 14, 19, 24elfzd 13002 . . . 4 (𝜑𝑀 ∈ (0...𝑀))
2612, 25ffvelrnd 6875 . . 3 (𝜑 → (𝑄𝑀) ∈ ℝ)
2723, 26eqeltrrd 2835 . 2 (𝜑𝐵 ∈ ℝ)
28 1zzd 12107 . . . . 5 (𝜑 → 1 ∈ ℤ)
29 0le1 11254 . . . . . 6 0 ≤ 1
3029a1i 11 . . . . 5 (𝜑 → 0 ≤ 1)
312nnge1d 11777 . . . . 5 (𝜑 → 1 ≤ 𝑀)
3213, 14, 28, 30, 31elfzd 13002 . . . 4 (𝜑 → 1 ∈ (0...𝑀))
3312, 32ffvelrnd 6875 . . 3 (𝜑 → (𝑄‘1) ∈ ℝ)
34 elfzo 13144 . . . . . . 7 ((0 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (0 ∈ (0..^𝑀) ↔ (0 ≤ 0 ∧ 0 < 𝑀)))
3513, 13, 14, 34syl3anc 1372 . . . . . 6 (𝜑 → (0 ∈ (0..^𝑀) ↔ (0 ≤ 0 ∧ 0 < 𝑀)))
3616, 18, 35mpbir2and 713 . . . . 5 (𝜑 → 0 ∈ (0..^𝑀))
37 0re 10734 . . . . . 6 0 ∈ ℝ
38 eleq1 2821 . . . . . . . . 9 (𝑖 = 0 → (𝑖 ∈ (0..^𝑀) ↔ 0 ∈ (0..^𝑀)))
3938anbi2d 632 . . . . . . . 8 (𝑖 = 0 → ((𝜑𝑖 ∈ (0..^𝑀)) ↔ (𝜑 ∧ 0 ∈ (0..^𝑀))))
40 fveq2 6687 . . . . . . . . 9 (𝑖 = 0 → (𝑄𝑖) = (𝑄‘0))
41 oveq1 7190 . . . . . . . . . 10 (𝑖 = 0 → (𝑖 + 1) = (0 + 1))
4241fveq2d 6691 . . . . . . . . 9 (𝑖 = 0 → (𝑄‘(𝑖 + 1)) = (𝑄‘(0 + 1)))
4340, 42breq12d 5053 . . . . . . . 8 (𝑖 = 0 → ((𝑄𝑖) < (𝑄‘(𝑖 + 1)) ↔ (𝑄‘0) < (𝑄‘(0 + 1))))
4439, 43imbi12d 348 . . . . . . 7 (𝑖 = 0 → (((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1))) ↔ ((𝜑 ∧ 0 ∈ (0..^𝑀)) → (𝑄‘0) < (𝑄‘(0 + 1)))))
457simprd 499 . . . . . . . 8 (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))
4645r19.21bi 3122 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
4744, 46vtoclg 3473 . . . . . 6 (0 ∈ ℝ → ((𝜑 ∧ 0 ∈ (0..^𝑀)) → (𝑄‘0) < (𝑄‘(0 + 1))))
4837, 47ax-mp 5 . . . . 5 ((𝜑 ∧ 0 ∈ (0..^𝑀)) → (𝑄‘0) < (𝑄‘(0 + 1)))
4936, 48mpdan 687 . . . 4 (𝜑 → (𝑄‘0) < (𝑄‘(0 + 1)))
50 0p1e1 11851 . . . . . 6 (0 + 1) = 1
5150a1i 11 . . . . 5 (𝜑 → (0 + 1) = 1)
5251fveq2d 6691 . . . 4 (𝜑 → (𝑄‘(0 + 1)) = (𝑄‘1))
5349, 9, 523brtr3d 5071 . . 3 (𝜑𝐴 < (𝑄‘1))
54 nnuz 12376 . . . . . 6 ℕ = (ℤ‘1)
552, 54eleqtrdi 2844 . . . . 5 (𝜑𝑀 ∈ (ℤ‘1))
5612adantr 484 . . . . . 6 ((𝜑𝑖 ∈ (1...𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
57 0zd 12087 . . . . . . . 8 (𝑖 ∈ (1...𝑀) → 0 ∈ ℤ)
58 elfzel2 13009 . . . . . . . 8 (𝑖 ∈ (1...𝑀) → 𝑀 ∈ ℤ)
59 elfzelz 13011 . . . . . . . 8 (𝑖 ∈ (1...𝑀) → 𝑖 ∈ ℤ)
60 0red 10735 . . . . . . . . 9 (𝑖 ∈ (1...𝑀) → 0 ∈ ℝ)
6159zred 12181 . . . . . . . . 9 (𝑖 ∈ (1...𝑀) → 𝑖 ∈ ℝ)
62 1red 10733 . . . . . . . . . 10 (𝑖 ∈ (1...𝑀) → 1 ∈ ℝ)
63 0lt1 11253 . . . . . . . . . . 11 0 < 1
6463a1i 11 . . . . . . . . . 10 (𝑖 ∈ (1...𝑀) → 0 < 1)
65 elfzle1 13014 . . . . . . . . . 10 (𝑖 ∈ (1...𝑀) → 1 ≤ 𝑖)
6660, 62, 61, 64, 65ltletrd 10891 . . . . . . . . 9 (𝑖 ∈ (1...𝑀) → 0 < 𝑖)
6760, 61, 66ltled 10879 . . . . . . . 8 (𝑖 ∈ (1...𝑀) → 0 ≤ 𝑖)
68 elfzle2 13015 . . . . . . . 8 (𝑖 ∈ (1...𝑀) → 𝑖𝑀)
6957, 58, 59, 67, 68elfzd 13002 . . . . . . 7 (𝑖 ∈ (1...𝑀) → 𝑖 ∈ (0...𝑀))
7069adantl 485 . . . . . 6 ((𝜑𝑖 ∈ (1...𝑀)) → 𝑖 ∈ (0...𝑀))
7156, 70ffvelrnd 6875 . . . . 5 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑄𝑖) ∈ ℝ)
7212adantr 484 . . . . . . 7 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 𝑄:(0...𝑀)⟶ℝ)
73 0zd 12087 . . . . . . . 8 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 0 ∈ ℤ)
7414adantr 484 . . . . . . . 8 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 𝑀 ∈ ℤ)
75 elfzelz 13011 . . . . . . . . 9 (𝑖 ∈ (1...(𝑀 − 1)) → 𝑖 ∈ ℤ)
7675adantl 485 . . . . . . . 8 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 𝑖 ∈ ℤ)
77 0red 10735 . . . . . . . . . 10 (𝑖 ∈ (1...(𝑀 − 1)) → 0 ∈ ℝ)
7875zred 12181 . . . . . . . . . 10 (𝑖 ∈ (1...(𝑀 − 1)) → 𝑖 ∈ ℝ)
79 1red 10733 . . . . . . . . . . 11 (𝑖 ∈ (1...(𝑀 − 1)) → 1 ∈ ℝ)
8063a1i 11 . . . . . . . . . . 11 (𝑖 ∈ (1...(𝑀 − 1)) → 0 < 1)
81 elfzle1 13014 . . . . . . . . . . 11 (𝑖 ∈ (1...(𝑀 − 1)) → 1 ≤ 𝑖)
8277, 79, 78, 80, 81ltletrd 10891 . . . . . . . . . 10 (𝑖 ∈ (1...(𝑀 − 1)) → 0 < 𝑖)
8377, 78, 82ltled 10879 . . . . . . . . 9 (𝑖 ∈ (1...(𝑀 − 1)) → 0 ≤ 𝑖)
8483adantl 485 . . . . . . . 8 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 0 ≤ 𝑖)
8578adantl 485 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 𝑖 ∈ ℝ)
8617adantr 484 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 𝑀 ∈ ℝ)
87 peano2rem 11044 . . . . . . . . . . 11 (𝑀 ∈ ℝ → (𝑀 − 1) ∈ ℝ)
8886, 87syl 17 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑀 − 1) ∈ ℝ)
89 elfzle2 13015 . . . . . . . . . . 11 (𝑖 ∈ (1...(𝑀 − 1)) → 𝑖 ≤ (𝑀 − 1))
9089adantl 485 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 𝑖 ≤ (𝑀 − 1))
9186ltm1d 11663 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑀 − 1) < 𝑀)
9285, 88, 86, 90, 91lelttrd 10889 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 𝑖 < 𝑀)
9385, 86, 92ltled 10879 . . . . . . . 8 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 𝑖𝑀)
9473, 74, 76, 84, 93elfzd 13002 . . . . . . 7 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 𝑖 ∈ (0...𝑀))
9572, 94ffvelrnd 6875 . . . . . 6 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑄𝑖) ∈ ℝ)
9676peano2zd 12184 . . . . . . . 8 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑖 + 1) ∈ ℤ)
97 0red 10735 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 0 ∈ ℝ)
98 peano2re 10904 . . . . . . . . . 10 (𝑖 ∈ ℝ → (𝑖 + 1) ∈ ℝ)
9985, 98syl 17 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑖 + 1) ∈ ℝ)
100 1red 10733 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 1 ∈ ℝ)
10163a1i 11 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 0 < 1)
10278, 98syl 17 . . . . . . . . . . . 12 (𝑖 ∈ (1...(𝑀 − 1)) → (𝑖 + 1) ∈ ℝ)
10378ltp1d 11661 . . . . . . . . . . . 12 (𝑖 ∈ (1...(𝑀 − 1)) → 𝑖 < (𝑖 + 1))
10479, 78, 102, 81, 103lelttrd 10889 . . . . . . . . . . 11 (𝑖 ∈ (1...(𝑀 − 1)) → 1 < (𝑖 + 1))
105104adantl 485 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 1 < (𝑖 + 1))
10697, 100, 99, 101, 105lttrd 10892 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 0 < (𝑖 + 1))
10797, 99, 106ltled 10879 . . . . . . . 8 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 0 ≤ (𝑖 + 1))
10885, 88, 100, 90leadd1dd 11345 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑖 + 1) ≤ ((𝑀 − 1) + 1))
1092nncnd 11745 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℂ)
110 1cnd 10727 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℂ)
111109, 110npcand 11092 . . . . . . . . . 10 (𝜑 → ((𝑀 − 1) + 1) = 𝑀)
112111adantr 484 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → ((𝑀 − 1) + 1) = 𝑀)
113108, 112breqtrd 5066 . . . . . . . 8 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑖 + 1) ≤ 𝑀)
11473, 74, 96, 107, 113elfzd 13002 . . . . . . 7 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑖 + 1) ∈ (0...𝑀))
11572, 114ffvelrnd 6875 . . . . . 6 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
116 elfzo 13144 . . . . . . . . 9 ((𝑖 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑖 ∈ (0..^𝑀) ↔ (0 ≤ 𝑖𝑖 < 𝑀)))
11776, 73, 74, 116syl3anc 1372 . . . . . . . 8 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑖 ∈ (0..^𝑀) ↔ (0 ≤ 𝑖𝑖 < 𝑀)))
11884, 92, 117mpbir2and 713 . . . . . . 7 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 𝑖 ∈ (0..^𝑀))
119118, 46syldan 594 . . . . . 6 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
12095, 115, 119ltled 10879 . . . . 5 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑄𝑖) ≤ (𝑄‘(𝑖 + 1)))
12155, 71, 120monoord 13505 . . . 4 (𝜑 → (𝑄‘1) ≤ (𝑄𝑀))
122121, 23breqtrd 5066 . . 3 (𝜑 → (𝑄‘1) ≤ 𝐵)
12322, 33, 27, 53, 122ltletrd 10891 . 2 (𝜑𝐴 < 𝐵)
12422, 27, 1233jca 1129 1 (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wcel 2114  wral 3054  {crab 3058   class class class wbr 5040  cmpt 5120  wf 6346  cfv 6350  (class class class)co 7183  m cmap 8450  cr 10627  0cc0 10628  1c1 10629   + caddc 10631   < clt 10766  cle 10767  cmin 10961  cn 11729  cz 12075  cuz 12337  ...cfz 12994  ..^cfzo 13137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-sep 5177  ax-nul 5184  ax-pow 5242  ax-pr 5306  ax-un 7492  ax-cnex 10684  ax-resscn 10685  ax-1cn 10686  ax-icn 10687  ax-addcl 10688  ax-addrcl 10689  ax-mulcl 10690  ax-mulrcl 10691  ax-mulcom 10692  ax-addass 10693  ax-mulass 10694  ax-distr 10695  ax-i2m1 10696  ax-1ne0 10697  ax-1rid 10698  ax-rnegex 10699  ax-rrecex 10700  ax-cnre 10701  ax-pre-lttri 10702  ax-pre-lttrn 10703  ax-pre-ltadd 10704  ax-pre-mulgt0 10705
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3402  df-sbc 3686  df-csb 3801  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4222  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4807  df-iun 4893  df-br 5041  df-opab 5103  df-mpt 5121  df-tr 5147  df-id 5439  df-eprel 5444  df-po 5452  df-so 5453  df-fr 5493  df-we 5495  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-res 5547  df-ima 5548  df-pred 6139  df-ord 6186  df-on 6187  df-lim 6188  df-suc 6189  df-iota 6308  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7140  df-ov 7186  df-oprab 7187  df-mpo 7188  df-om 7613  df-1st 7727  df-2nd 7728  df-wrecs 7989  df-recs 8050  df-rdg 8088  df-er 8333  df-map 8452  df-en 8569  df-dom 8570  df-sdom 8571  df-pnf 10768  df-mnf 10769  df-xr 10770  df-ltxr 10771  df-le 10772  df-sub 10963  df-neg 10964  df-nn 11730  df-n0 11990  df-z 12076  df-uz 12338  df-fz 12995  df-fzo 13138
This theorem is referenced by:  fourierdlem37  43268  fourierdlem54  43284  fourierdlem63  43293  fourierdlem64  43294  fourierdlem65  43295  fourierdlem69  43299  fourierdlem79  43309  fourierdlem89  43319  fourierdlem90  43320  fourierdlem91  43321  fourierdlem107  43337  fourierdlem109  43339
  Copyright terms: Public domain W3C validator