Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem11 Structured version   Visualization version   GIF version

Theorem fourierdlem11 43549
Description: If there is a partition, than the lower bound is strictly less than the upper bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem11.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem11.m (𝜑𝑀 ∈ ℕ)
fourierdlem11.q (𝜑𝑄 ∈ (𝑃𝑀))
Assertion
Ref Expression
fourierdlem11 (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵))
Distinct variable groups:   𝐴,𝑚,𝑝   𝐵,𝑚,𝑝   𝑖,𝑀,𝑚,𝑝   𝑄,𝑖,𝑝   𝜑,𝑖
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝐴(𝑖)   𝐵(𝑖)   𝑃(𝑖,𝑚,𝑝)   𝑄(𝑚)

Proof of Theorem fourierdlem11
StepHypRef Expression
1 fourierdlem11.q . . . . . . 7 (𝜑𝑄 ∈ (𝑃𝑀))
2 fourierdlem11.m . . . . . . . 8 (𝜑𝑀 ∈ ℕ)
3 fourierdlem11.p . . . . . . . . 9 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
43fourierdlem2 43540 . . . . . . . 8 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
52, 4syl 17 . . . . . . 7 (𝜑 → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
61, 5mpbid 231 . . . . . 6 (𝜑 → (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
76simprd 495 . . . . 5 (𝜑 → (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))
87simpld 494 . . . 4 (𝜑 → ((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵))
98simpld 494 . . 3 (𝜑 → (𝑄‘0) = 𝐴)
106simpld 494 . . . . 5 (𝜑𝑄 ∈ (ℝ ↑m (0...𝑀)))
11 elmapi 8595 . . . . 5 (𝑄 ∈ (ℝ ↑m (0...𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
1210, 11syl 17 . . . 4 (𝜑𝑄:(0...𝑀)⟶ℝ)
13 0zd 12261 . . . . 5 (𝜑 → 0 ∈ ℤ)
142nnzd 12354 . . . . 5 (𝜑𝑀 ∈ ℤ)
15 0red 10909 . . . . . 6 (𝜑 → 0 ∈ ℝ)
1615leidd 11471 . . . . 5 (𝜑 → 0 ≤ 0)
172nnred 11918 . . . . . 6 (𝜑𝑀 ∈ ℝ)
182nngt0d 11952 . . . . . 6 (𝜑 → 0 < 𝑀)
1915, 17, 18ltled 11053 . . . . 5 (𝜑 → 0 ≤ 𝑀)
2013, 14, 13, 16, 19elfzd 13176 . . . 4 (𝜑 → 0 ∈ (0...𝑀))
2112, 20ffvelrnd 6944 . . 3 (𝜑 → (𝑄‘0) ∈ ℝ)
229, 21eqeltrrd 2840 . 2 (𝜑𝐴 ∈ ℝ)
238simprd 495 . . 3 (𝜑 → (𝑄𝑀) = 𝐵)
2417leidd 11471 . . . . 5 (𝜑𝑀𝑀)
2513, 14, 14, 19, 24elfzd 13176 . . . 4 (𝜑𝑀 ∈ (0...𝑀))
2612, 25ffvelrnd 6944 . . 3 (𝜑 → (𝑄𝑀) ∈ ℝ)
2723, 26eqeltrrd 2840 . 2 (𝜑𝐵 ∈ ℝ)
28 1zzd 12281 . . . . 5 (𝜑 → 1 ∈ ℤ)
29 0le1 11428 . . . . . 6 0 ≤ 1
3029a1i 11 . . . . 5 (𝜑 → 0 ≤ 1)
312nnge1d 11951 . . . . 5 (𝜑 → 1 ≤ 𝑀)
3213, 14, 28, 30, 31elfzd 13176 . . . 4 (𝜑 → 1 ∈ (0...𝑀))
3312, 32ffvelrnd 6944 . . 3 (𝜑 → (𝑄‘1) ∈ ℝ)
34 elfzo 13318 . . . . . . 7 ((0 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (0 ∈ (0..^𝑀) ↔ (0 ≤ 0 ∧ 0 < 𝑀)))
3513, 13, 14, 34syl3anc 1369 . . . . . 6 (𝜑 → (0 ∈ (0..^𝑀) ↔ (0 ≤ 0 ∧ 0 < 𝑀)))
3616, 18, 35mpbir2and 709 . . . . 5 (𝜑 → 0 ∈ (0..^𝑀))
37 0re 10908 . . . . . 6 0 ∈ ℝ
38 eleq1 2826 . . . . . . . . 9 (𝑖 = 0 → (𝑖 ∈ (0..^𝑀) ↔ 0 ∈ (0..^𝑀)))
3938anbi2d 628 . . . . . . . 8 (𝑖 = 0 → ((𝜑𝑖 ∈ (0..^𝑀)) ↔ (𝜑 ∧ 0 ∈ (0..^𝑀))))
40 fveq2 6756 . . . . . . . . 9 (𝑖 = 0 → (𝑄𝑖) = (𝑄‘0))
41 oveq1 7262 . . . . . . . . . 10 (𝑖 = 0 → (𝑖 + 1) = (0 + 1))
4241fveq2d 6760 . . . . . . . . 9 (𝑖 = 0 → (𝑄‘(𝑖 + 1)) = (𝑄‘(0 + 1)))
4340, 42breq12d 5083 . . . . . . . 8 (𝑖 = 0 → ((𝑄𝑖) < (𝑄‘(𝑖 + 1)) ↔ (𝑄‘0) < (𝑄‘(0 + 1))))
4439, 43imbi12d 344 . . . . . . 7 (𝑖 = 0 → (((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1))) ↔ ((𝜑 ∧ 0 ∈ (0..^𝑀)) → (𝑄‘0) < (𝑄‘(0 + 1)))))
457simprd 495 . . . . . . . 8 (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))
4645r19.21bi 3132 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
4744, 46vtoclg 3495 . . . . . 6 (0 ∈ ℝ → ((𝜑 ∧ 0 ∈ (0..^𝑀)) → (𝑄‘0) < (𝑄‘(0 + 1))))
4837, 47ax-mp 5 . . . . 5 ((𝜑 ∧ 0 ∈ (0..^𝑀)) → (𝑄‘0) < (𝑄‘(0 + 1)))
4936, 48mpdan 683 . . . 4 (𝜑 → (𝑄‘0) < (𝑄‘(0 + 1)))
50 0p1e1 12025 . . . . . 6 (0 + 1) = 1
5150a1i 11 . . . . 5 (𝜑 → (0 + 1) = 1)
5251fveq2d 6760 . . . 4 (𝜑 → (𝑄‘(0 + 1)) = (𝑄‘1))
5349, 9, 523brtr3d 5101 . . 3 (𝜑𝐴 < (𝑄‘1))
54 nnuz 12550 . . . . . 6 ℕ = (ℤ‘1)
552, 54eleqtrdi 2849 . . . . 5 (𝜑𝑀 ∈ (ℤ‘1))
5612adantr 480 . . . . . 6 ((𝜑𝑖 ∈ (1...𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
57 0zd 12261 . . . . . . . 8 (𝑖 ∈ (1...𝑀) → 0 ∈ ℤ)
58 elfzel2 13183 . . . . . . . 8 (𝑖 ∈ (1...𝑀) → 𝑀 ∈ ℤ)
59 elfzelz 13185 . . . . . . . 8 (𝑖 ∈ (1...𝑀) → 𝑖 ∈ ℤ)
60 0red 10909 . . . . . . . . 9 (𝑖 ∈ (1...𝑀) → 0 ∈ ℝ)
6159zred 12355 . . . . . . . . 9 (𝑖 ∈ (1...𝑀) → 𝑖 ∈ ℝ)
62 1red 10907 . . . . . . . . . 10 (𝑖 ∈ (1...𝑀) → 1 ∈ ℝ)
63 0lt1 11427 . . . . . . . . . . 11 0 < 1
6463a1i 11 . . . . . . . . . 10 (𝑖 ∈ (1...𝑀) → 0 < 1)
65 elfzle1 13188 . . . . . . . . . 10 (𝑖 ∈ (1...𝑀) → 1 ≤ 𝑖)
6660, 62, 61, 64, 65ltletrd 11065 . . . . . . . . 9 (𝑖 ∈ (1...𝑀) → 0 < 𝑖)
6760, 61, 66ltled 11053 . . . . . . . 8 (𝑖 ∈ (1...𝑀) → 0 ≤ 𝑖)
68 elfzle2 13189 . . . . . . . 8 (𝑖 ∈ (1...𝑀) → 𝑖𝑀)
6957, 58, 59, 67, 68elfzd 13176 . . . . . . 7 (𝑖 ∈ (1...𝑀) → 𝑖 ∈ (0...𝑀))
7069adantl 481 . . . . . 6 ((𝜑𝑖 ∈ (1...𝑀)) → 𝑖 ∈ (0...𝑀))
7156, 70ffvelrnd 6944 . . . . 5 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑄𝑖) ∈ ℝ)
7212adantr 480 . . . . . . 7 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 𝑄:(0...𝑀)⟶ℝ)
73 0zd 12261 . . . . . . . 8 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 0 ∈ ℤ)
7414adantr 480 . . . . . . . 8 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 𝑀 ∈ ℤ)
75 elfzelz 13185 . . . . . . . . 9 (𝑖 ∈ (1...(𝑀 − 1)) → 𝑖 ∈ ℤ)
7675adantl 481 . . . . . . . 8 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 𝑖 ∈ ℤ)
77 0red 10909 . . . . . . . . . 10 (𝑖 ∈ (1...(𝑀 − 1)) → 0 ∈ ℝ)
7875zred 12355 . . . . . . . . . 10 (𝑖 ∈ (1...(𝑀 − 1)) → 𝑖 ∈ ℝ)
79 1red 10907 . . . . . . . . . . 11 (𝑖 ∈ (1...(𝑀 − 1)) → 1 ∈ ℝ)
8063a1i 11 . . . . . . . . . . 11 (𝑖 ∈ (1...(𝑀 − 1)) → 0 < 1)
81 elfzle1 13188 . . . . . . . . . . 11 (𝑖 ∈ (1...(𝑀 − 1)) → 1 ≤ 𝑖)
8277, 79, 78, 80, 81ltletrd 11065 . . . . . . . . . 10 (𝑖 ∈ (1...(𝑀 − 1)) → 0 < 𝑖)
8377, 78, 82ltled 11053 . . . . . . . . 9 (𝑖 ∈ (1...(𝑀 − 1)) → 0 ≤ 𝑖)
8483adantl 481 . . . . . . . 8 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 0 ≤ 𝑖)
8578adantl 481 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 𝑖 ∈ ℝ)
8617adantr 480 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 𝑀 ∈ ℝ)
87 peano2rem 11218 . . . . . . . . . . 11 (𝑀 ∈ ℝ → (𝑀 − 1) ∈ ℝ)
8886, 87syl 17 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑀 − 1) ∈ ℝ)
89 elfzle2 13189 . . . . . . . . . . 11 (𝑖 ∈ (1...(𝑀 − 1)) → 𝑖 ≤ (𝑀 − 1))
9089adantl 481 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 𝑖 ≤ (𝑀 − 1))
9186ltm1d 11837 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑀 − 1) < 𝑀)
9285, 88, 86, 90, 91lelttrd 11063 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 𝑖 < 𝑀)
9385, 86, 92ltled 11053 . . . . . . . 8 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 𝑖𝑀)
9473, 74, 76, 84, 93elfzd 13176 . . . . . . 7 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 𝑖 ∈ (0...𝑀))
9572, 94ffvelrnd 6944 . . . . . 6 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑄𝑖) ∈ ℝ)
9676peano2zd 12358 . . . . . . . 8 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑖 + 1) ∈ ℤ)
97 0red 10909 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 0 ∈ ℝ)
98 peano2re 11078 . . . . . . . . . 10 (𝑖 ∈ ℝ → (𝑖 + 1) ∈ ℝ)
9985, 98syl 17 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑖 + 1) ∈ ℝ)
100 1red 10907 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 1 ∈ ℝ)
10163a1i 11 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 0 < 1)
10278, 98syl 17 . . . . . . . . . . . 12 (𝑖 ∈ (1...(𝑀 − 1)) → (𝑖 + 1) ∈ ℝ)
10378ltp1d 11835 . . . . . . . . . . . 12 (𝑖 ∈ (1...(𝑀 − 1)) → 𝑖 < (𝑖 + 1))
10479, 78, 102, 81, 103lelttrd 11063 . . . . . . . . . . 11 (𝑖 ∈ (1...(𝑀 − 1)) → 1 < (𝑖 + 1))
105104adantl 481 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 1 < (𝑖 + 1))
10697, 100, 99, 101, 105lttrd 11066 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 0 < (𝑖 + 1))
10797, 99, 106ltled 11053 . . . . . . . 8 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 0 ≤ (𝑖 + 1))
10885, 88, 100, 90leadd1dd 11519 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑖 + 1) ≤ ((𝑀 − 1) + 1))
1092nncnd 11919 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℂ)
110 1cnd 10901 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℂ)
111109, 110npcand 11266 . . . . . . . . . 10 (𝜑 → ((𝑀 − 1) + 1) = 𝑀)
112111adantr 480 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → ((𝑀 − 1) + 1) = 𝑀)
113108, 112breqtrd 5096 . . . . . . . 8 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑖 + 1) ≤ 𝑀)
11473, 74, 96, 107, 113elfzd 13176 . . . . . . 7 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑖 + 1) ∈ (0...𝑀))
11572, 114ffvelrnd 6944 . . . . . 6 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
116 elfzo 13318 . . . . . . . . 9 ((𝑖 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑖 ∈ (0..^𝑀) ↔ (0 ≤ 𝑖𝑖 < 𝑀)))
11776, 73, 74, 116syl3anc 1369 . . . . . . . 8 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑖 ∈ (0..^𝑀) ↔ (0 ≤ 𝑖𝑖 < 𝑀)))
11884, 92, 117mpbir2and 709 . . . . . . 7 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 𝑖 ∈ (0..^𝑀))
119118, 46syldan 590 . . . . . 6 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
12095, 115, 119ltled 11053 . . . . 5 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑄𝑖) ≤ (𝑄‘(𝑖 + 1)))
12155, 71, 120monoord 13681 . . . 4 (𝜑 → (𝑄‘1) ≤ (𝑄𝑀))
122121, 23breqtrd 5096 . . 3 (𝜑 → (𝑄‘1) ≤ 𝐵)
12322, 33, 27, 53, 122ltletrd 11065 . 2 (𝜑𝐴 < 𝐵)
12422, 27, 1233jca 1126 1 (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  {crab 3067   class class class wbr 5070  cmpt 5153  wf 6414  cfv 6418  (class class class)co 7255  m cmap 8573  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   < clt 10940  cle 10941  cmin 11135  cn 11903  cz 12249  cuz 12511  ...cfz 13168  ..^cfzo 13311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312
This theorem is referenced by:  fourierdlem37  43575  fourierdlem54  43591  fourierdlem63  43600  fourierdlem64  43601  fourierdlem65  43602  fourierdlem69  43606  fourierdlem79  43616  fourierdlem89  43626  fourierdlem90  43627  fourierdlem91  43628  fourierdlem107  43644  fourierdlem109  43646
  Copyright terms: Public domain W3C validator