Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem11 Structured version   Visualization version   GIF version

Theorem fourierdlem11 46278
Description: If there is a partition, than the lower bound is strictly less than the upper bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem11.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem11.m (𝜑𝑀 ∈ ℕ)
fourierdlem11.q (𝜑𝑄 ∈ (𝑃𝑀))
Assertion
Ref Expression
fourierdlem11 (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵))
Distinct variable groups:   𝐴,𝑚,𝑝   𝐵,𝑚,𝑝   𝑖,𝑀,𝑚,𝑝   𝑄,𝑖,𝑝   𝜑,𝑖
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝐴(𝑖)   𝐵(𝑖)   𝑃(𝑖,𝑚,𝑝)   𝑄(𝑚)

Proof of Theorem fourierdlem11
StepHypRef Expression
1 fourierdlem11.q . . . . . . 7 (𝜑𝑄 ∈ (𝑃𝑀))
2 fourierdlem11.m . . . . . . . 8 (𝜑𝑀 ∈ ℕ)
3 fourierdlem11.p . . . . . . . . 9 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
43fourierdlem2 46269 . . . . . . . 8 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
52, 4syl 17 . . . . . . 7 (𝜑 → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
61, 5mpbid 232 . . . . . 6 (𝜑 → (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
76simprd 495 . . . . 5 (𝜑 → (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))
87simpld 494 . . . 4 (𝜑 → ((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵))
98simpld 494 . . 3 (𝜑 → (𝑄‘0) = 𝐴)
106simpld 494 . . . . 5 (𝜑𝑄 ∈ (ℝ ↑m (0...𝑀)))
11 elmapi 8782 . . . . 5 (𝑄 ∈ (ℝ ↑m (0...𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
1210, 11syl 17 . . . 4 (𝜑𝑄:(0...𝑀)⟶ℝ)
13 0zd 12491 . . . . 5 (𝜑 → 0 ∈ ℤ)
142nnzd 12505 . . . . 5 (𝜑𝑀 ∈ ℤ)
15 0red 11126 . . . . . 6 (𝜑 → 0 ∈ ℝ)
1615leidd 11694 . . . . 5 (𝜑 → 0 ≤ 0)
172nnred 12151 . . . . . 6 (𝜑𝑀 ∈ ℝ)
182nngt0d 12185 . . . . . 6 (𝜑 → 0 < 𝑀)
1915, 17, 18ltled 11272 . . . . 5 (𝜑 → 0 ≤ 𝑀)
2013, 14, 13, 16, 19elfzd 13422 . . . 4 (𝜑 → 0 ∈ (0...𝑀))
2112, 20ffvelcdmd 7027 . . 3 (𝜑 → (𝑄‘0) ∈ ℝ)
229, 21eqeltrrd 2834 . 2 (𝜑𝐴 ∈ ℝ)
238simprd 495 . . 3 (𝜑 → (𝑄𝑀) = 𝐵)
2417leidd 11694 . . . . 5 (𝜑𝑀𝑀)
2513, 14, 14, 19, 24elfzd 13422 . . . 4 (𝜑𝑀 ∈ (0...𝑀))
2612, 25ffvelcdmd 7027 . . 3 (𝜑 → (𝑄𝑀) ∈ ℝ)
2723, 26eqeltrrd 2834 . 2 (𝜑𝐵 ∈ ℝ)
28 1zzd 12513 . . . . 5 (𝜑 → 1 ∈ ℤ)
29 0le1 11651 . . . . . 6 0 ≤ 1
3029a1i 11 . . . . 5 (𝜑 → 0 ≤ 1)
312nnge1d 12184 . . . . 5 (𝜑 → 1 ≤ 𝑀)
3213, 14, 28, 30, 31elfzd 13422 . . . 4 (𝜑 → 1 ∈ (0...𝑀))
3312, 32ffvelcdmd 7027 . . 3 (𝜑 → (𝑄‘1) ∈ ℝ)
34 elfzo 13568 . . . . . . 7 ((0 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (0 ∈ (0..^𝑀) ↔ (0 ≤ 0 ∧ 0 < 𝑀)))
3513, 13, 14, 34syl3anc 1373 . . . . . 6 (𝜑 → (0 ∈ (0..^𝑀) ↔ (0 ≤ 0 ∧ 0 < 𝑀)))
3616, 18, 35mpbir2and 713 . . . . 5 (𝜑 → 0 ∈ (0..^𝑀))
37 0re 11125 . . . . . 6 0 ∈ ℝ
38 eleq1 2821 . . . . . . . . 9 (𝑖 = 0 → (𝑖 ∈ (0..^𝑀) ↔ 0 ∈ (0..^𝑀)))
3938anbi2d 630 . . . . . . . 8 (𝑖 = 0 → ((𝜑𝑖 ∈ (0..^𝑀)) ↔ (𝜑 ∧ 0 ∈ (0..^𝑀))))
40 fveq2 6831 . . . . . . . . 9 (𝑖 = 0 → (𝑄𝑖) = (𝑄‘0))
41 oveq1 7362 . . . . . . . . . 10 (𝑖 = 0 → (𝑖 + 1) = (0 + 1))
4241fveq2d 6835 . . . . . . . . 9 (𝑖 = 0 → (𝑄‘(𝑖 + 1)) = (𝑄‘(0 + 1)))
4340, 42breq12d 5108 . . . . . . . 8 (𝑖 = 0 → ((𝑄𝑖) < (𝑄‘(𝑖 + 1)) ↔ (𝑄‘0) < (𝑄‘(0 + 1))))
4439, 43imbi12d 344 . . . . . . 7 (𝑖 = 0 → (((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1))) ↔ ((𝜑 ∧ 0 ∈ (0..^𝑀)) → (𝑄‘0) < (𝑄‘(0 + 1)))))
457simprd 495 . . . . . . . 8 (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))
4645r19.21bi 3225 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
4744, 46vtoclg 3508 . . . . . 6 (0 ∈ ℝ → ((𝜑 ∧ 0 ∈ (0..^𝑀)) → (𝑄‘0) < (𝑄‘(0 + 1))))
4837, 47ax-mp 5 . . . . 5 ((𝜑 ∧ 0 ∈ (0..^𝑀)) → (𝑄‘0) < (𝑄‘(0 + 1)))
4936, 48mpdan 687 . . . 4 (𝜑 → (𝑄‘0) < (𝑄‘(0 + 1)))
50 0p1e1 12253 . . . . . 6 (0 + 1) = 1
5150a1i 11 . . . . 5 (𝜑 → (0 + 1) = 1)
5251fveq2d 6835 . . . 4 (𝜑 → (𝑄‘(0 + 1)) = (𝑄‘1))
5349, 9, 523brtr3d 5126 . . 3 (𝜑𝐴 < (𝑄‘1))
54 nnuz 12781 . . . . . 6 ℕ = (ℤ‘1)
552, 54eleqtrdi 2843 . . . . 5 (𝜑𝑀 ∈ (ℤ‘1))
5612adantr 480 . . . . . 6 ((𝜑𝑖 ∈ (1...𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
57 0zd 12491 . . . . . . . 8 (𝑖 ∈ (1...𝑀) → 0 ∈ ℤ)
58 elfzel2 13429 . . . . . . . 8 (𝑖 ∈ (1...𝑀) → 𝑀 ∈ ℤ)
59 elfzelz 13431 . . . . . . . 8 (𝑖 ∈ (1...𝑀) → 𝑖 ∈ ℤ)
60 0red 11126 . . . . . . . . 9 (𝑖 ∈ (1...𝑀) → 0 ∈ ℝ)
6159zred 12587 . . . . . . . . 9 (𝑖 ∈ (1...𝑀) → 𝑖 ∈ ℝ)
62 1red 11124 . . . . . . . . . 10 (𝑖 ∈ (1...𝑀) → 1 ∈ ℝ)
63 0lt1 11650 . . . . . . . . . . 11 0 < 1
6463a1i 11 . . . . . . . . . 10 (𝑖 ∈ (1...𝑀) → 0 < 1)
65 elfzle1 13434 . . . . . . . . . 10 (𝑖 ∈ (1...𝑀) → 1 ≤ 𝑖)
6660, 62, 61, 64, 65ltletrd 11284 . . . . . . . . 9 (𝑖 ∈ (1...𝑀) → 0 < 𝑖)
6760, 61, 66ltled 11272 . . . . . . . 8 (𝑖 ∈ (1...𝑀) → 0 ≤ 𝑖)
68 elfzle2 13435 . . . . . . . 8 (𝑖 ∈ (1...𝑀) → 𝑖𝑀)
6957, 58, 59, 67, 68elfzd 13422 . . . . . . 7 (𝑖 ∈ (1...𝑀) → 𝑖 ∈ (0...𝑀))
7069adantl 481 . . . . . 6 ((𝜑𝑖 ∈ (1...𝑀)) → 𝑖 ∈ (0...𝑀))
7156, 70ffvelcdmd 7027 . . . . 5 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑄𝑖) ∈ ℝ)
7212adantr 480 . . . . . . 7 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 𝑄:(0...𝑀)⟶ℝ)
73 0zd 12491 . . . . . . . 8 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 0 ∈ ℤ)
7414adantr 480 . . . . . . . 8 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 𝑀 ∈ ℤ)
75 elfzelz 13431 . . . . . . . . 9 (𝑖 ∈ (1...(𝑀 − 1)) → 𝑖 ∈ ℤ)
7675adantl 481 . . . . . . . 8 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 𝑖 ∈ ℤ)
77 0red 11126 . . . . . . . . . 10 (𝑖 ∈ (1...(𝑀 − 1)) → 0 ∈ ℝ)
7875zred 12587 . . . . . . . . . 10 (𝑖 ∈ (1...(𝑀 − 1)) → 𝑖 ∈ ℝ)
79 1red 11124 . . . . . . . . . . 11 (𝑖 ∈ (1...(𝑀 − 1)) → 1 ∈ ℝ)
8063a1i 11 . . . . . . . . . . 11 (𝑖 ∈ (1...(𝑀 − 1)) → 0 < 1)
81 elfzle1 13434 . . . . . . . . . . 11 (𝑖 ∈ (1...(𝑀 − 1)) → 1 ≤ 𝑖)
8277, 79, 78, 80, 81ltletrd 11284 . . . . . . . . . 10 (𝑖 ∈ (1...(𝑀 − 1)) → 0 < 𝑖)
8377, 78, 82ltled 11272 . . . . . . . . 9 (𝑖 ∈ (1...(𝑀 − 1)) → 0 ≤ 𝑖)
8483adantl 481 . . . . . . . 8 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 0 ≤ 𝑖)
8578adantl 481 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 𝑖 ∈ ℝ)
8617adantr 480 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 𝑀 ∈ ℝ)
87 peano2rem 11439 . . . . . . . . . . 11 (𝑀 ∈ ℝ → (𝑀 − 1) ∈ ℝ)
8886, 87syl 17 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑀 − 1) ∈ ℝ)
89 elfzle2 13435 . . . . . . . . . . 11 (𝑖 ∈ (1...(𝑀 − 1)) → 𝑖 ≤ (𝑀 − 1))
9089adantl 481 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 𝑖 ≤ (𝑀 − 1))
9186ltm1d 12065 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑀 − 1) < 𝑀)
9285, 88, 86, 90, 91lelttrd 11282 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 𝑖 < 𝑀)
9385, 86, 92ltled 11272 . . . . . . . 8 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 𝑖𝑀)
9473, 74, 76, 84, 93elfzd 13422 . . . . . . 7 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 𝑖 ∈ (0...𝑀))
9572, 94ffvelcdmd 7027 . . . . . 6 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑄𝑖) ∈ ℝ)
9676peano2zd 12590 . . . . . . . 8 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑖 + 1) ∈ ℤ)
97 0red 11126 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 0 ∈ ℝ)
98 peano2re 11297 . . . . . . . . . 10 (𝑖 ∈ ℝ → (𝑖 + 1) ∈ ℝ)
9985, 98syl 17 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑖 + 1) ∈ ℝ)
100 1red 11124 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 1 ∈ ℝ)
10163a1i 11 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 0 < 1)
10278, 98syl 17 . . . . . . . . . . . 12 (𝑖 ∈ (1...(𝑀 − 1)) → (𝑖 + 1) ∈ ℝ)
10378ltp1d 12063 . . . . . . . . . . . 12 (𝑖 ∈ (1...(𝑀 − 1)) → 𝑖 < (𝑖 + 1))
10479, 78, 102, 81, 103lelttrd 11282 . . . . . . . . . . 11 (𝑖 ∈ (1...(𝑀 − 1)) → 1 < (𝑖 + 1))
105104adantl 481 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 1 < (𝑖 + 1))
10697, 100, 99, 101, 105lttrd 11285 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 0 < (𝑖 + 1))
10797, 99, 106ltled 11272 . . . . . . . 8 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 0 ≤ (𝑖 + 1))
10885, 88, 100, 90leadd1dd 11742 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑖 + 1) ≤ ((𝑀 − 1) + 1))
1092nncnd 12152 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℂ)
110 1cnd 11118 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℂ)
111109, 110npcand 11487 . . . . . . . . . 10 (𝜑 → ((𝑀 − 1) + 1) = 𝑀)
112111adantr 480 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → ((𝑀 − 1) + 1) = 𝑀)
113108, 112breqtrd 5121 . . . . . . . 8 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑖 + 1) ≤ 𝑀)
11473, 74, 96, 107, 113elfzd 13422 . . . . . . 7 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑖 + 1) ∈ (0...𝑀))
11572, 114ffvelcdmd 7027 . . . . . 6 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
116 elfzo 13568 . . . . . . . . 9 ((𝑖 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑖 ∈ (0..^𝑀) ↔ (0 ≤ 𝑖𝑖 < 𝑀)))
11776, 73, 74, 116syl3anc 1373 . . . . . . . 8 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑖 ∈ (0..^𝑀) ↔ (0 ≤ 𝑖𝑖 < 𝑀)))
11884, 92, 117mpbir2and 713 . . . . . . 7 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 𝑖 ∈ (0..^𝑀))
119118, 46syldan 591 . . . . . 6 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
12095, 115, 119ltled 11272 . . . . 5 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑄𝑖) ≤ (𝑄‘(𝑖 + 1)))
12155, 71, 120monoord 13946 . . . 4 (𝜑 → (𝑄‘1) ≤ (𝑄𝑀))
122121, 23breqtrd 5121 . . 3 (𝜑 → (𝑄‘1) ≤ 𝐵)
12322, 33, 27, 53, 122ltletrd 11284 . 2 (𝜑𝐴 < 𝐵)
12422, 27, 1233jca 1128 1 (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3048  {crab 3396   class class class wbr 5095  cmpt 5176  wf 6485  cfv 6489  (class class class)co 7355  m cmap 8759  cr 11016  0cc0 11017  1c1 11018   + caddc 11020   < clt 11157  cle 11158  cmin 11355  cn 12136  cz 12479  cuz 12742  ...cfz 13414  ..^cfzo 13561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-map 8761  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-n0 12393  df-z 12480  df-uz 12743  df-fz 13415  df-fzo 13562
This theorem is referenced by:  fourierdlem37  46304  fourierdlem54  46320  fourierdlem63  46329  fourierdlem64  46330  fourierdlem65  46331  fourierdlem69  46335  fourierdlem79  46345  fourierdlem89  46355  fourierdlem90  46356  fourierdlem91  46357  fourierdlem107  46373  fourierdlem109  46375
  Copyright terms: Public domain W3C validator