Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem11 Structured version   Visualization version   GIF version

Theorem fourierdlem11 40904
Description: If there is a partition, than the lower bound is strictly less than the upper bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem11.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem11.m (𝜑𝑀 ∈ ℕ)
fourierdlem11.q (𝜑𝑄 ∈ (𝑃𝑀))
Assertion
Ref Expression
fourierdlem11 (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵))
Distinct variable groups:   𝐴,𝑚,𝑝   𝐵,𝑚,𝑝   𝑖,𝑀,𝑚,𝑝   𝑄,𝑖,𝑝   𝜑,𝑖
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝐴(𝑖)   𝐵(𝑖)   𝑃(𝑖,𝑚,𝑝)   𝑄(𝑚)

Proof of Theorem fourierdlem11
StepHypRef Expression
1 fourierdlem11.q . . . . . . 7 (𝜑𝑄 ∈ (𝑃𝑀))
2 fourierdlem11.m . . . . . . . 8 (𝜑𝑀 ∈ ℕ)
3 fourierdlem11.p . . . . . . . . 9 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
43fourierdlem2 40895 . . . . . . . 8 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
52, 4syl 17 . . . . . . 7 (𝜑 → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
61, 5mpbid 223 . . . . . 6 (𝜑 → (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
76simprd 489 . . . . 5 (𝜑 → (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))
87simpld 488 . . . 4 (𝜑 → ((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵))
98simpld 488 . . 3 (𝜑 → (𝑄‘0) = 𝐴)
106simpld 488 . . . . 5 (𝜑𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)))
11 elmapi 8081 . . . . 5 (𝑄 ∈ (ℝ ↑𝑚 (0...𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
1210, 11syl 17 . . . 4 (𝜑𝑄:(0...𝑀)⟶ℝ)
13 0red 10296 . . . . . 6 (𝜑 → 0 ∈ ℝ)
1413leidd 10847 . . . . 5 (𝜑 → 0 ≤ 0)
152nnred 11290 . . . . . 6 (𝜑𝑀 ∈ ℝ)
162nngt0d 11320 . . . . . 6 (𝜑 → 0 < 𝑀)
1713, 15, 16ltled 10438 . . . . 5 (𝜑 → 0 ≤ 𝑀)
18 0zd 11635 . . . . . 6 (𝜑 → 0 ∈ ℤ)
192nnzd 11727 . . . . . 6 (𝜑𝑀 ∈ ℤ)
20 elfz 12538 . . . . . 6 ((0 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (0 ∈ (0...𝑀) ↔ (0 ≤ 0 ∧ 0 ≤ 𝑀)))
2118, 18, 19, 20syl3anc 1490 . . . . 5 (𝜑 → (0 ∈ (0...𝑀) ↔ (0 ≤ 0 ∧ 0 ≤ 𝑀)))
2214, 17, 21mpbir2and 704 . . . 4 (𝜑 → 0 ∈ (0...𝑀))
2312, 22ffvelrnd 6549 . . 3 (𝜑 → (𝑄‘0) ∈ ℝ)
249, 23eqeltrrd 2844 . 2 (𝜑𝐴 ∈ ℝ)
258simprd 489 . . 3 (𝜑 → (𝑄𝑀) = 𝐵)
2615leidd 10847 . . . . 5 (𝜑𝑀𝑀)
27 elfz 12538 . . . . . 6 ((𝑀 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 ∈ (0...𝑀) ↔ (0 ≤ 𝑀𝑀𝑀)))
2819, 18, 19, 27syl3anc 1490 . . . . 5 (𝜑 → (𝑀 ∈ (0...𝑀) ↔ (0 ≤ 𝑀𝑀𝑀)))
2917, 26, 28mpbir2and 704 . . . 4 (𝜑𝑀 ∈ (0...𝑀))
3012, 29ffvelrnd 6549 . . 3 (𝜑 → (𝑄𝑀) ∈ ℝ)
3125, 30eqeltrrd 2844 . 2 (𝜑𝐵 ∈ ℝ)
32 0le1 10804 . . . . . 6 0 ≤ 1
3332a1i 11 . . . . 5 (𝜑 → 0 ≤ 1)
342nnge1d 11319 . . . . 5 (𝜑 → 1 ≤ 𝑀)
35 1zzd 11654 . . . . . 6 (𝜑 → 1 ∈ ℤ)
36 elfz 12538 . . . . . 6 ((1 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (1 ∈ (0...𝑀) ↔ (0 ≤ 1 ∧ 1 ≤ 𝑀)))
3735, 18, 19, 36syl3anc 1490 . . . . 5 (𝜑 → (1 ∈ (0...𝑀) ↔ (0 ≤ 1 ∧ 1 ≤ 𝑀)))
3833, 34, 37mpbir2and 704 . . . 4 (𝜑 → 1 ∈ (0...𝑀))
3912, 38ffvelrnd 6549 . . 3 (𝜑 → (𝑄‘1) ∈ ℝ)
40 elfzo 12679 . . . . . . 7 ((0 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (0 ∈ (0..^𝑀) ↔ (0 ≤ 0 ∧ 0 < 𝑀)))
4118, 18, 19, 40syl3anc 1490 . . . . . 6 (𝜑 → (0 ∈ (0..^𝑀) ↔ (0 ≤ 0 ∧ 0 < 𝑀)))
4214, 16, 41mpbir2and 704 . . . . 5 (𝜑 → 0 ∈ (0..^𝑀))
43 0re 10294 . . . . . 6 0 ∈ ℝ
44 eleq1 2831 . . . . . . . . 9 (𝑖 = 0 → (𝑖 ∈ (0..^𝑀) ↔ 0 ∈ (0..^𝑀)))
4544anbi2d 622 . . . . . . . 8 (𝑖 = 0 → ((𝜑𝑖 ∈ (0..^𝑀)) ↔ (𝜑 ∧ 0 ∈ (0..^𝑀))))
46 fveq2 6374 . . . . . . . . 9 (𝑖 = 0 → (𝑄𝑖) = (𝑄‘0))
47 oveq1 6848 . . . . . . . . . 10 (𝑖 = 0 → (𝑖 + 1) = (0 + 1))
4847fveq2d 6378 . . . . . . . . 9 (𝑖 = 0 → (𝑄‘(𝑖 + 1)) = (𝑄‘(0 + 1)))
4946, 48breq12d 4821 . . . . . . . 8 (𝑖 = 0 → ((𝑄𝑖) < (𝑄‘(𝑖 + 1)) ↔ (𝑄‘0) < (𝑄‘(0 + 1))))
5045, 49imbi12d 335 . . . . . . 7 (𝑖 = 0 → (((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1))) ↔ ((𝜑 ∧ 0 ∈ (0..^𝑀)) → (𝑄‘0) < (𝑄‘(0 + 1)))))
517simprd 489 . . . . . . . 8 (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))
5251r19.21bi 3078 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
5350, 52vtoclg 3417 . . . . . 6 (0 ∈ ℝ → ((𝜑 ∧ 0 ∈ (0..^𝑀)) → (𝑄‘0) < (𝑄‘(0 + 1))))
5443, 53ax-mp 5 . . . . 5 ((𝜑 ∧ 0 ∈ (0..^𝑀)) → (𝑄‘0) < (𝑄‘(0 + 1)))
5542, 54mpdan 678 . . . 4 (𝜑 → (𝑄‘0) < (𝑄‘(0 + 1)))
56 0p1e1 11400 . . . . . 6 (0 + 1) = 1
5756a1i 11 . . . . 5 (𝜑 → (0 + 1) = 1)
5857fveq2d 6378 . . . 4 (𝜑 → (𝑄‘(0 + 1)) = (𝑄‘1))
5955, 9, 583brtr3d 4839 . . 3 (𝜑𝐴 < (𝑄‘1))
60 nnuz 11922 . . . . . 6 ℕ = (ℤ‘1)
612, 60syl6eleq 2853 . . . . 5 (𝜑𝑀 ∈ (ℤ‘1))
6212adantr 472 . . . . . 6 ((𝜑𝑖 ∈ (1...𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
63 0red 10296 . . . . . . . . 9 (𝑖 ∈ (1...𝑀) → 0 ∈ ℝ)
64 elfzelz 12548 . . . . . . . . . 10 (𝑖 ∈ (1...𝑀) → 𝑖 ∈ ℤ)
6564zred 11728 . . . . . . . . 9 (𝑖 ∈ (1...𝑀) → 𝑖 ∈ ℝ)
66 1red 10293 . . . . . . . . . 10 (𝑖 ∈ (1...𝑀) → 1 ∈ ℝ)
67 0lt1 10803 . . . . . . . . . . 11 0 < 1
6867a1i 11 . . . . . . . . . 10 (𝑖 ∈ (1...𝑀) → 0 < 1)
69 elfzle1 12550 . . . . . . . . . 10 (𝑖 ∈ (1...𝑀) → 1 ≤ 𝑖)
7063, 66, 65, 68, 69ltletrd 10450 . . . . . . . . 9 (𝑖 ∈ (1...𝑀) → 0 < 𝑖)
7163, 65, 70ltled 10438 . . . . . . . 8 (𝑖 ∈ (1...𝑀) → 0 ≤ 𝑖)
72 elfzle2 12551 . . . . . . . 8 (𝑖 ∈ (1...𝑀) → 𝑖𝑀)
73 0zd 11635 . . . . . . . . 9 (𝑖 ∈ (1...𝑀) → 0 ∈ ℤ)
74 elfzel2 12546 . . . . . . . . 9 (𝑖 ∈ (1...𝑀) → 𝑀 ∈ ℤ)
75 elfz 12538 . . . . . . . . 9 ((𝑖 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑖 ∈ (0...𝑀) ↔ (0 ≤ 𝑖𝑖𝑀)))
7664, 73, 74, 75syl3anc 1490 . . . . . . . 8 (𝑖 ∈ (1...𝑀) → (𝑖 ∈ (0...𝑀) ↔ (0 ≤ 𝑖𝑖𝑀)))
7771, 72, 76mpbir2and 704 . . . . . . 7 (𝑖 ∈ (1...𝑀) → 𝑖 ∈ (0...𝑀))
7877adantl 473 . . . . . 6 ((𝜑𝑖 ∈ (1...𝑀)) → 𝑖 ∈ (0...𝑀))
7962, 78ffvelrnd 6549 . . . . 5 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑄𝑖) ∈ ℝ)
8012adantr 472 . . . . . . 7 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 𝑄:(0...𝑀)⟶ℝ)
81 0red 10296 . . . . . . . . . 10 (𝑖 ∈ (1...(𝑀 − 1)) → 0 ∈ ℝ)
82 elfzelz 12548 . . . . . . . . . . 11 (𝑖 ∈ (1...(𝑀 − 1)) → 𝑖 ∈ ℤ)
8382zred 11728 . . . . . . . . . 10 (𝑖 ∈ (1...(𝑀 − 1)) → 𝑖 ∈ ℝ)
84 1red 10293 . . . . . . . . . . 11 (𝑖 ∈ (1...(𝑀 − 1)) → 1 ∈ ℝ)
8567a1i 11 . . . . . . . . . . 11 (𝑖 ∈ (1...(𝑀 − 1)) → 0 < 1)
86 elfzle1 12550 . . . . . . . . . . 11 (𝑖 ∈ (1...(𝑀 − 1)) → 1 ≤ 𝑖)
8781, 84, 83, 85, 86ltletrd 10450 . . . . . . . . . 10 (𝑖 ∈ (1...(𝑀 − 1)) → 0 < 𝑖)
8881, 83, 87ltled 10438 . . . . . . . . 9 (𝑖 ∈ (1...(𝑀 − 1)) → 0 ≤ 𝑖)
8988adantl 473 . . . . . . . 8 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 0 ≤ 𝑖)
9083adantl 473 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 𝑖 ∈ ℝ)
9115adantr 472 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 𝑀 ∈ ℝ)
92 peano2rem 10601 . . . . . . . . . . 11 (𝑀 ∈ ℝ → (𝑀 − 1) ∈ ℝ)
9391, 92syl 17 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑀 − 1) ∈ ℝ)
94 elfzle2 12551 . . . . . . . . . . 11 (𝑖 ∈ (1...(𝑀 − 1)) → 𝑖 ≤ (𝑀 − 1))
9594adantl 473 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 𝑖 ≤ (𝑀 − 1))
9691ltm1d 11209 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑀 − 1) < 𝑀)
9790, 93, 91, 95, 96lelttrd 10448 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 𝑖 < 𝑀)
9890, 91, 97ltled 10438 . . . . . . . 8 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 𝑖𝑀)
9982adantl 473 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 𝑖 ∈ ℤ)
100 0zd 11635 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 0 ∈ ℤ)
10119adantr 472 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 𝑀 ∈ ℤ)
10299, 100, 101, 75syl3anc 1490 . . . . . . . 8 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑖 ∈ (0...𝑀) ↔ (0 ≤ 𝑖𝑖𝑀)))
10389, 98, 102mpbir2and 704 . . . . . . 7 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 𝑖 ∈ (0...𝑀))
10480, 103ffvelrnd 6549 . . . . . 6 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑄𝑖) ∈ ℝ)
105 0red 10296 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 0 ∈ ℝ)
106 peano2re 10462 . . . . . . . . . 10 (𝑖 ∈ ℝ → (𝑖 + 1) ∈ ℝ)
10790, 106syl 17 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑖 + 1) ∈ ℝ)
108 1red 10293 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 1 ∈ ℝ)
10967a1i 11 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 0 < 1)
11083, 106syl 17 . . . . . . . . . . . 12 (𝑖 ∈ (1...(𝑀 − 1)) → (𝑖 + 1) ∈ ℝ)
11183ltp1d 11207 . . . . . . . . . . . 12 (𝑖 ∈ (1...(𝑀 − 1)) → 𝑖 < (𝑖 + 1))
11284, 83, 110, 86, 111lelttrd 10448 . . . . . . . . . . 11 (𝑖 ∈ (1...(𝑀 − 1)) → 1 < (𝑖 + 1))
113112adantl 473 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 1 < (𝑖 + 1))
114105, 108, 107, 109, 113lttrd 10451 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 0 < (𝑖 + 1))
115105, 107, 114ltled 10438 . . . . . . . 8 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 0 ≤ (𝑖 + 1))
11690, 93, 108, 95leadd1dd 10894 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑖 + 1) ≤ ((𝑀 − 1) + 1))
1172nncnd 11291 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℂ)
118 1cnd 10287 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℂ)
119117, 118npcand 10649 . . . . . . . . . 10 (𝜑 → ((𝑀 − 1) + 1) = 𝑀)
120119adantr 472 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → ((𝑀 − 1) + 1) = 𝑀)
121116, 120breqtrd 4834 . . . . . . . 8 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑖 + 1) ≤ 𝑀)
12299peano2zd 11731 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑖 + 1) ∈ ℤ)
123 elfz 12538 . . . . . . . . 9 (((𝑖 + 1) ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑖 + 1) ∈ (0...𝑀) ↔ (0 ≤ (𝑖 + 1) ∧ (𝑖 + 1) ≤ 𝑀)))
124122, 100, 101, 123syl3anc 1490 . . . . . . . 8 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → ((𝑖 + 1) ∈ (0...𝑀) ↔ (0 ≤ (𝑖 + 1) ∧ (𝑖 + 1) ≤ 𝑀)))
125115, 121, 124mpbir2and 704 . . . . . . 7 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑖 + 1) ∈ (0...𝑀))
12680, 125ffvelrnd 6549 . . . . . 6 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
127 elfzo 12679 . . . . . . . . 9 ((𝑖 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑖 ∈ (0..^𝑀) ↔ (0 ≤ 𝑖𝑖 < 𝑀)))
12899, 100, 101, 127syl3anc 1490 . . . . . . . 8 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑖 ∈ (0..^𝑀) ↔ (0 ≤ 𝑖𝑖 < 𝑀)))
12989, 97, 128mpbir2and 704 . . . . . . 7 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → 𝑖 ∈ (0..^𝑀))
130129, 52syldan 585 . . . . . 6 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
131104, 126, 130ltled 10438 . . . . 5 ((𝜑𝑖 ∈ (1...(𝑀 − 1))) → (𝑄𝑖) ≤ (𝑄‘(𝑖 + 1)))
13261, 79, 131monoord 13037 . . . 4 (𝜑 → (𝑄‘1) ≤ (𝑄𝑀))
133132, 25breqtrd 4834 . . 3 (𝜑 → (𝑄‘1) ≤ 𝐵)
13424, 39, 31, 59, 133ltletrd 10450 . 2 (𝜑𝐴 < 𝐵)
13524, 31, 1343jca 1158 1 (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  wral 3054  {crab 3058   class class class wbr 4808  cmpt 4887  wf 6063  cfv 6067  (class class class)co 6841  𝑚 cmap 8059  cr 10187  0cc0 10188  1c1 10189   + caddc 10191   < clt 10327  cle 10328  cmin 10519  cn 11273  cz 11623  cuz 11885  ...cfz 12532  ..^cfzo 12672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2349  ax-ext 2742  ax-sep 4940  ax-nul 4948  ax-pow 5000  ax-pr 5061  ax-un 7146  ax-cnex 10244  ax-resscn 10245  ax-1cn 10246  ax-icn 10247  ax-addcl 10248  ax-addrcl 10249  ax-mulcl 10250  ax-mulrcl 10251  ax-mulcom 10252  ax-addass 10253  ax-mulass 10254  ax-distr 10255  ax-i2m1 10256  ax-1ne0 10257  ax-1rid 10258  ax-rnegex 10259  ax-rrecex 10260  ax-cnre 10261  ax-pre-lttri 10262  ax-pre-lttrn 10263  ax-pre-ltadd 10264  ax-pre-mulgt0 10265
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2062  df-mo 2564  df-eu 2581  df-clab 2751  df-cleq 2757  df-clel 2760  df-nfc 2895  df-ne 2937  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3351  df-sbc 3596  df-csb 3691  df-dif 3734  df-un 3736  df-in 3738  df-ss 3745  df-pss 3747  df-nul 4079  df-if 4243  df-pw 4316  df-sn 4334  df-pr 4336  df-tp 4338  df-op 4340  df-uni 4594  df-iun 4677  df-br 4809  df-opab 4871  df-mpt 4888  df-tr 4911  df-id 5184  df-eprel 5189  df-po 5197  df-so 5198  df-fr 5235  df-we 5237  df-xp 5282  df-rel 5283  df-cnv 5284  df-co 5285  df-dm 5286  df-rn 5287  df-res 5288  df-ima 5289  df-pred 5864  df-ord 5910  df-on 5911  df-lim 5912  df-suc 5913  df-iota 6030  df-fun 6069  df-fn 6070  df-f 6071  df-f1 6072  df-fo 6073  df-f1o 6074  df-fv 6075  df-riota 6802  df-ov 6844  df-oprab 6845  df-mpt2 6846  df-om 7263  df-1st 7365  df-2nd 7366  df-wrecs 7609  df-recs 7671  df-rdg 7709  df-er 7946  df-map 8061  df-en 8160  df-dom 8161  df-sdom 8162  df-pnf 10329  df-mnf 10330  df-xr 10331  df-ltxr 10332  df-le 10333  df-sub 10521  df-neg 10522  df-nn 11274  df-n0 11538  df-z 11624  df-uz 11886  df-fz 12533  df-fzo 12673
This theorem is referenced by:  fourierdlem37  40930  fourierdlem54  40946  fourierdlem63  40955  fourierdlem64  40956  fourierdlem65  40957  fourierdlem69  40961  fourierdlem79  40971  fourierdlem89  40981  fourierdlem90  40982  fourierdlem91  40983  fourierdlem107  40999  fourierdlem109  41001
  Copyright terms: Public domain W3C validator