| Step | Hyp | Ref
| Expression |
| 1 | | eqidd 2737 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐸 Func 𝐷)) → (Homf
‘𝐸) =
(Homf ‘𝐸)) |
| 2 | | eqidd 2737 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐸 Func 𝐷)) →
(compf‘𝐸) = (compf‘𝐸)) |
| 3 | | eqid 2736 |
. . . . . . . . 9
⊢
(Base‘𝐶) =
(Base‘𝐶) |
| 4 | | eqid 2736 |
. . . . . . . . 9
⊢
(Homf ‘𝐶) = (Homf ‘𝐶) |
| 5 | | resssetc.1 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑈 ∈ 𝑊) |
| 6 | | resssetc.c |
. . . . . . . . . . . 12
⊢ 𝐶 = (SetCat‘𝑈) |
| 7 | 6 | setccat 18103 |
. . . . . . . . . . 11
⊢ (𝑈 ∈ 𝑊 → 𝐶 ∈ Cat) |
| 8 | 5, 7 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶 ∈ Cat) |
| 9 | 8 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐸 Func 𝐷)) → 𝐶 ∈ Cat) |
| 10 | | resssetc.2 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑉 ⊆ 𝑈) |
| 11 | 6, 5 | setcbas 18096 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑈 = (Base‘𝐶)) |
| 12 | 10, 11 | sseqtrd 4000 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑉 ⊆ (Base‘𝐶)) |
| 13 | 12 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐸 Func 𝐷)) → 𝑉 ⊆ (Base‘𝐶)) |
| 14 | | eqid 2736 |
. . . . . . . . 9
⊢ (𝐶 ↾s 𝑉) = (𝐶 ↾s 𝑉) |
| 15 | | eqid 2736 |
. . . . . . . . 9
⊢ (𝐶 ↾cat
((Homf ‘𝐶) ↾ (𝑉 × 𝑉))) = (𝐶 ↾cat
((Homf ‘𝐶) ↾ (𝑉 × 𝑉))) |
| 16 | 3, 4, 9, 13, 14, 15 | fullresc 17869 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐸 Func 𝐷)) → ((Homf
‘(𝐶
↾s 𝑉)) =
(Homf ‘(𝐶 ↾cat
((Homf ‘𝐶) ↾ (𝑉 × 𝑉)))) ∧
(compf‘(𝐶 ↾s 𝑉)) = (compf‘(𝐶 ↾cat
((Homf ‘𝐶) ↾ (𝑉 × 𝑉)))))) |
| 17 | 16 | simpld 494 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐸 Func 𝐷)) → (Homf
‘(𝐶
↾s 𝑉)) =
(Homf ‘(𝐶 ↾cat
((Homf ‘𝐶) ↾ (𝑉 × 𝑉))))) |
| 18 | | resssetc.d |
. . . . . . . . . 10
⊢ 𝐷 = (SetCat‘𝑉) |
| 19 | 6, 18, 5, 10 | resssetc 18110 |
. . . . . . . . 9
⊢ (𝜑 → ((Homf
‘(𝐶
↾s 𝑉)) =
(Homf ‘𝐷) ∧
(compf‘(𝐶 ↾s 𝑉)) = (compf‘𝐷))) |
| 20 | 19 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐸 Func 𝐷)) → ((Homf
‘(𝐶
↾s 𝑉)) =
(Homf ‘𝐷) ∧
(compf‘(𝐶 ↾s 𝑉)) = (compf‘𝐷))) |
| 21 | 20 | simpld 494 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐸 Func 𝐷)) → (Homf
‘(𝐶
↾s 𝑉)) =
(Homf ‘𝐷)) |
| 22 | 17, 21 | eqtr3d 2773 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐸 Func 𝐷)) → (Homf
‘(𝐶
↾cat ((Homf ‘𝐶) ↾ (𝑉 × 𝑉)))) = (Homf ‘𝐷)) |
| 23 | 16 | simprd 495 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐸 Func 𝐷)) →
(compf‘(𝐶 ↾s 𝑉)) = (compf‘(𝐶 ↾cat
((Homf ‘𝐶) ↾ (𝑉 × 𝑉))))) |
| 24 | 20 | simprd 495 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐸 Func 𝐷)) →
(compf‘(𝐶 ↾s 𝑉)) = (compf‘𝐷)) |
| 25 | 23, 24 | eqtr3d 2773 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐸 Func 𝐷)) →
(compf‘(𝐶 ↾cat
((Homf ‘𝐶) ↾ (𝑉 × 𝑉)))) = (compf‘𝐷)) |
| 26 | | funcrcl 17881 |
. . . . . . . 8
⊢ (𝑓 ∈ (𝐸 Func 𝐷) → (𝐸 ∈ Cat ∧ 𝐷 ∈ Cat)) |
| 27 | 26 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐸 Func 𝐷)) → (𝐸 ∈ Cat ∧ 𝐷 ∈ Cat)) |
| 28 | 27 | simpld 494 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐸 Func 𝐷)) → 𝐸 ∈ Cat) |
| 29 | 3, 4, 9, 13 | fullsubc 17868 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐸 Func 𝐷)) → ((Homf
‘𝐶) ↾ (𝑉 × 𝑉)) ∈ (Subcat‘𝐶)) |
| 30 | 15, 29 | subccat 17866 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐸 Func 𝐷)) → (𝐶 ↾cat
((Homf ‘𝐶) ↾ (𝑉 × 𝑉))) ∈ Cat) |
| 31 | 27 | simprd 495 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐸 Func 𝐷)) → 𝐷 ∈ Cat) |
| 32 | 1, 2, 22, 25, 28, 28, 30, 31 | funcpropd 17920 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐸 Func 𝐷)) → (𝐸 Func (𝐶 ↾cat
((Homf ‘𝐶) ↾ (𝑉 × 𝑉)))) = (𝐸 Func 𝐷)) |
| 33 | | funcres2 17916 |
. . . . . 6
⊢
(((Homf ‘𝐶) ↾ (𝑉 × 𝑉)) ∈ (Subcat‘𝐶) → (𝐸 Func (𝐶 ↾cat
((Homf ‘𝐶) ↾ (𝑉 × 𝑉)))) ⊆ (𝐸 Func 𝐶)) |
| 34 | 29, 33 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐸 Func 𝐷)) → (𝐸 Func (𝐶 ↾cat
((Homf ‘𝐶) ↾ (𝑉 × 𝑉)))) ⊆ (𝐸 Func 𝐶)) |
| 35 | 32, 34 | eqsstrrd 3999 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐸 Func 𝐷)) → (𝐸 Func 𝐷) ⊆ (𝐸 Func 𝐶)) |
| 36 | | simpr 484 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐸 Func 𝐷)) → 𝑓 ∈ (𝐸 Func 𝐷)) |
| 37 | 35, 36 | sseldd 3964 |
. . 3
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐸 Func 𝐷)) → 𝑓 ∈ (𝐸 Func 𝐶)) |
| 38 | 37 | ex 412 |
. 2
⊢ (𝜑 → (𝑓 ∈ (𝐸 Func 𝐷) → 𝑓 ∈ (𝐸 Func 𝐶))) |
| 39 | 38 | ssrdv 3969 |
1
⊢ (𝜑 → (𝐸 Func 𝐷) ⊆ (𝐸 Func 𝐶)) |