MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcsetcres2 Structured version   Visualization version   GIF version

Theorem funcsetcres2 17997
Description: A functor into a smaller category of sets is a functor into the larger category. (Contributed by Mario Carneiro, 28-Jan-2017.)
Hypotheses
Ref Expression
resssetc.c 𝐶 = (SetCat‘𝑈)
resssetc.d 𝐷 = (SetCat‘𝑉)
resssetc.1 (𝜑𝑈𝑊)
resssetc.2 (𝜑𝑉𝑈)
Assertion
Ref Expression
funcsetcres2 (𝜑 → (𝐸 Func 𝐷) ⊆ (𝐸 Func 𝐶))

Proof of Theorem funcsetcres2
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 eqidd 2732 . . . . . 6 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → (Homf𝐸) = (Homf𝐸))
2 eqidd 2732 . . . . . 6 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → (compf𝐸) = (compf𝐸))
3 eqid 2731 . . . . . . . . 9 (Base‘𝐶) = (Base‘𝐶)
4 eqid 2731 . . . . . . . . 9 (Homf𝐶) = (Homf𝐶)
5 resssetc.1 . . . . . . . . . . 11 (𝜑𝑈𝑊)
6 resssetc.c . . . . . . . . . . . 12 𝐶 = (SetCat‘𝑈)
76setccat 17989 . . . . . . . . . . 11 (𝑈𝑊𝐶 ∈ Cat)
85, 7syl 17 . . . . . . . . . 10 (𝜑𝐶 ∈ Cat)
98adantr 480 . . . . . . . . 9 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → 𝐶 ∈ Cat)
10 resssetc.2 . . . . . . . . . . 11 (𝜑𝑉𝑈)
116, 5setcbas 17982 . . . . . . . . . . 11 (𝜑𝑈 = (Base‘𝐶))
1210, 11sseqtrd 3971 . . . . . . . . . 10 (𝜑𝑉 ⊆ (Base‘𝐶))
1312adantr 480 . . . . . . . . 9 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → 𝑉 ⊆ (Base‘𝐶))
14 eqid 2731 . . . . . . . . 9 (𝐶s 𝑉) = (𝐶s 𝑉)
15 eqid 2731 . . . . . . . . 9 (𝐶cat ((Homf𝐶) ↾ (𝑉 × 𝑉))) = (𝐶cat ((Homf𝐶) ↾ (𝑉 × 𝑉)))
163, 4, 9, 13, 14, 15fullresc 17755 . . . . . . . 8 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → ((Homf ‘(𝐶s 𝑉)) = (Homf ‘(𝐶cat ((Homf𝐶) ↾ (𝑉 × 𝑉)))) ∧ (compf‘(𝐶s 𝑉)) = (compf‘(𝐶cat ((Homf𝐶) ↾ (𝑉 × 𝑉))))))
1716simpld 494 . . . . . . 7 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → (Homf ‘(𝐶s 𝑉)) = (Homf ‘(𝐶cat ((Homf𝐶) ↾ (𝑉 × 𝑉)))))
18 resssetc.d . . . . . . . . . 10 𝐷 = (SetCat‘𝑉)
196, 18, 5, 10resssetc 17996 . . . . . . . . 9 (𝜑 → ((Homf ‘(𝐶s 𝑉)) = (Homf𝐷) ∧ (compf‘(𝐶s 𝑉)) = (compf𝐷)))
2019adantr 480 . . . . . . . 8 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → ((Homf ‘(𝐶s 𝑉)) = (Homf𝐷) ∧ (compf‘(𝐶s 𝑉)) = (compf𝐷)))
2120simpld 494 . . . . . . 7 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → (Homf ‘(𝐶s 𝑉)) = (Homf𝐷))
2217, 21eqtr3d 2768 . . . . . 6 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → (Homf ‘(𝐶cat ((Homf𝐶) ↾ (𝑉 × 𝑉)))) = (Homf𝐷))
2316simprd 495 . . . . . . 7 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → (compf‘(𝐶s 𝑉)) = (compf‘(𝐶cat ((Homf𝐶) ↾ (𝑉 × 𝑉)))))
2420simprd 495 . . . . . . 7 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → (compf‘(𝐶s 𝑉)) = (compf𝐷))
2523, 24eqtr3d 2768 . . . . . 6 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → (compf‘(𝐶cat ((Homf𝐶) ↾ (𝑉 × 𝑉)))) = (compf𝐷))
26 funcrcl 17767 . . . . . . . 8 (𝑓 ∈ (𝐸 Func 𝐷) → (𝐸 ∈ Cat ∧ 𝐷 ∈ Cat))
2726adantl 481 . . . . . . 7 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → (𝐸 ∈ Cat ∧ 𝐷 ∈ Cat))
2827simpld 494 . . . . . 6 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → 𝐸 ∈ Cat)
293, 4, 9, 13fullsubc 17754 . . . . . . 7 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → ((Homf𝐶) ↾ (𝑉 × 𝑉)) ∈ (Subcat‘𝐶))
3015, 29subccat 17752 . . . . . 6 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → (𝐶cat ((Homf𝐶) ↾ (𝑉 × 𝑉))) ∈ Cat)
3127simprd 495 . . . . . 6 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → 𝐷 ∈ Cat)
321, 2, 22, 25, 28, 28, 30, 31funcpropd 17806 . . . . 5 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → (𝐸 Func (𝐶cat ((Homf𝐶) ↾ (𝑉 × 𝑉)))) = (𝐸 Func 𝐷))
33 funcres2 17802 . . . . . 6 (((Homf𝐶) ↾ (𝑉 × 𝑉)) ∈ (Subcat‘𝐶) → (𝐸 Func (𝐶cat ((Homf𝐶) ↾ (𝑉 × 𝑉)))) ⊆ (𝐸 Func 𝐶))
3429, 33syl 17 . . . . 5 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → (𝐸 Func (𝐶cat ((Homf𝐶) ↾ (𝑉 × 𝑉)))) ⊆ (𝐸 Func 𝐶))
3532, 34eqsstrrd 3970 . . . 4 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → (𝐸 Func 𝐷) ⊆ (𝐸 Func 𝐶))
36 simpr 484 . . . 4 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → 𝑓 ∈ (𝐸 Func 𝐷))
3735, 36sseldd 3935 . . 3 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → 𝑓 ∈ (𝐸 Func 𝐶))
3837ex 412 . 2 (𝜑 → (𝑓 ∈ (𝐸 Func 𝐷) → 𝑓 ∈ (𝐸 Func 𝐶)))
3938ssrdv 3940 1 (𝜑 → (𝐸 Func 𝐷) ⊆ (𝐸 Func 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wss 3902   × cxp 5614  cres 5618  cfv 6481  (class class class)co 7346  Basecbs 17117  s cress 17138  Catccat 17567  Homf chomf 17569  compfccomf 17570  cat cresc 17712  Subcatcsubc 17713   Func cfunc 17758  SetCatcsetc 17979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-9 12192  df-n0 12379  df-z 12466  df-dec 12586  df-uz 12730  df-fz 13405  df-struct 17055  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-hom 17182  df-cco 17183  df-cat 17571  df-cid 17572  df-homf 17573  df-comf 17574  df-ssc 17714  df-resc 17715  df-subc 17716  df-func 17762  df-setc 17980
This theorem is referenced by:  yonedalem1  18175
  Copyright terms: Public domain W3C validator