MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcsetcres2 Structured version   Visualization version   GIF version

Theorem funcsetcres2 18055
Description: A functor into a smaller category of sets is a functor into the larger category. (Contributed by Mario Carneiro, 28-Jan-2017.)
Hypotheses
Ref Expression
resssetc.c 𝐶 = (SetCat‘𝑈)
resssetc.d 𝐷 = (SetCat‘𝑉)
resssetc.1 (𝜑𝑈𝑊)
resssetc.2 (𝜑𝑉𝑈)
Assertion
Ref Expression
funcsetcres2 (𝜑 → (𝐸 Func 𝐷) ⊆ (𝐸 Func 𝐶))

Proof of Theorem funcsetcres2
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 eqidd 2730 . . . . . 6 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → (Homf𝐸) = (Homf𝐸))
2 eqidd 2730 . . . . . 6 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → (compf𝐸) = (compf𝐸))
3 eqid 2729 . . . . . . . . 9 (Base‘𝐶) = (Base‘𝐶)
4 eqid 2729 . . . . . . . . 9 (Homf𝐶) = (Homf𝐶)
5 resssetc.1 . . . . . . . . . . 11 (𝜑𝑈𝑊)
6 resssetc.c . . . . . . . . . . . 12 𝐶 = (SetCat‘𝑈)
76setccat 18047 . . . . . . . . . . 11 (𝑈𝑊𝐶 ∈ Cat)
85, 7syl 17 . . . . . . . . . 10 (𝜑𝐶 ∈ Cat)
98adantr 480 . . . . . . . . 9 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → 𝐶 ∈ Cat)
10 resssetc.2 . . . . . . . . . . 11 (𝜑𝑉𝑈)
116, 5setcbas 18040 . . . . . . . . . . 11 (𝜑𝑈 = (Base‘𝐶))
1210, 11sseqtrd 3983 . . . . . . . . . 10 (𝜑𝑉 ⊆ (Base‘𝐶))
1312adantr 480 . . . . . . . . 9 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → 𝑉 ⊆ (Base‘𝐶))
14 eqid 2729 . . . . . . . . 9 (𝐶s 𝑉) = (𝐶s 𝑉)
15 eqid 2729 . . . . . . . . 9 (𝐶cat ((Homf𝐶) ↾ (𝑉 × 𝑉))) = (𝐶cat ((Homf𝐶) ↾ (𝑉 × 𝑉)))
163, 4, 9, 13, 14, 15fullresc 17813 . . . . . . . 8 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → ((Homf ‘(𝐶s 𝑉)) = (Homf ‘(𝐶cat ((Homf𝐶) ↾ (𝑉 × 𝑉)))) ∧ (compf‘(𝐶s 𝑉)) = (compf‘(𝐶cat ((Homf𝐶) ↾ (𝑉 × 𝑉))))))
1716simpld 494 . . . . . . 7 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → (Homf ‘(𝐶s 𝑉)) = (Homf ‘(𝐶cat ((Homf𝐶) ↾ (𝑉 × 𝑉)))))
18 resssetc.d . . . . . . . . . 10 𝐷 = (SetCat‘𝑉)
196, 18, 5, 10resssetc 18054 . . . . . . . . 9 (𝜑 → ((Homf ‘(𝐶s 𝑉)) = (Homf𝐷) ∧ (compf‘(𝐶s 𝑉)) = (compf𝐷)))
2019adantr 480 . . . . . . . 8 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → ((Homf ‘(𝐶s 𝑉)) = (Homf𝐷) ∧ (compf‘(𝐶s 𝑉)) = (compf𝐷)))
2120simpld 494 . . . . . . 7 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → (Homf ‘(𝐶s 𝑉)) = (Homf𝐷))
2217, 21eqtr3d 2766 . . . . . 6 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → (Homf ‘(𝐶cat ((Homf𝐶) ↾ (𝑉 × 𝑉)))) = (Homf𝐷))
2316simprd 495 . . . . . . 7 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → (compf‘(𝐶s 𝑉)) = (compf‘(𝐶cat ((Homf𝐶) ↾ (𝑉 × 𝑉)))))
2420simprd 495 . . . . . . 7 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → (compf‘(𝐶s 𝑉)) = (compf𝐷))
2523, 24eqtr3d 2766 . . . . . 6 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → (compf‘(𝐶cat ((Homf𝐶) ↾ (𝑉 × 𝑉)))) = (compf𝐷))
26 funcrcl 17825 . . . . . . . 8 (𝑓 ∈ (𝐸 Func 𝐷) → (𝐸 ∈ Cat ∧ 𝐷 ∈ Cat))
2726adantl 481 . . . . . . 7 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → (𝐸 ∈ Cat ∧ 𝐷 ∈ Cat))
2827simpld 494 . . . . . 6 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → 𝐸 ∈ Cat)
293, 4, 9, 13fullsubc 17812 . . . . . . 7 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → ((Homf𝐶) ↾ (𝑉 × 𝑉)) ∈ (Subcat‘𝐶))
3015, 29subccat 17810 . . . . . 6 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → (𝐶cat ((Homf𝐶) ↾ (𝑉 × 𝑉))) ∈ Cat)
3127simprd 495 . . . . . 6 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → 𝐷 ∈ Cat)
321, 2, 22, 25, 28, 28, 30, 31funcpropd 17864 . . . . 5 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → (𝐸 Func (𝐶cat ((Homf𝐶) ↾ (𝑉 × 𝑉)))) = (𝐸 Func 𝐷))
33 funcres2 17860 . . . . . 6 (((Homf𝐶) ↾ (𝑉 × 𝑉)) ∈ (Subcat‘𝐶) → (𝐸 Func (𝐶cat ((Homf𝐶) ↾ (𝑉 × 𝑉)))) ⊆ (𝐸 Func 𝐶))
3429, 33syl 17 . . . . 5 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → (𝐸 Func (𝐶cat ((Homf𝐶) ↾ (𝑉 × 𝑉)))) ⊆ (𝐸 Func 𝐶))
3532, 34eqsstrrd 3982 . . . 4 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → (𝐸 Func 𝐷) ⊆ (𝐸 Func 𝐶))
36 simpr 484 . . . 4 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → 𝑓 ∈ (𝐸 Func 𝐷))
3735, 36sseldd 3947 . . 3 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → 𝑓 ∈ (𝐸 Func 𝐶))
3837ex 412 . 2 (𝜑 → (𝑓 ∈ (𝐸 Func 𝐷) → 𝑓 ∈ (𝐸 Func 𝐶)))
3938ssrdv 3952 1 (𝜑 → (𝐸 Func 𝐷) ⊆ (𝐸 Func 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wss 3914   × cxp 5636  cres 5640  cfv 6511  (class class class)co 7387  Basecbs 17179  s cress 17200  Catccat 17625  Homf chomf 17627  compfccomf 17628  cat cresc 17770  Subcatcsubc 17771   Func cfunc 17816  SetCatcsetc 18037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-hom 17244  df-cco 17245  df-cat 17629  df-cid 17630  df-homf 17631  df-comf 17632  df-ssc 17772  df-resc 17773  df-subc 17774  df-func 17820  df-setc 18038
This theorem is referenced by:  yonedalem1  18233
  Copyright terms: Public domain W3C validator