Step | Hyp | Ref
| Expression |
1 | | eqidd 2739 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐸 Func 𝐷)) → (Homf
‘𝐸) =
(Homf ‘𝐸)) |
2 | | eqidd 2739 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐸 Func 𝐷)) →
(compf‘𝐸) = (compf‘𝐸)) |
3 | | eqid 2738 |
. . . . . . . . 9
⊢
(Base‘𝐶) =
(Base‘𝐶) |
4 | | eqid 2738 |
. . . . . . . . 9
⊢
(Homf ‘𝐶) = (Homf ‘𝐶) |
5 | | resssetc.1 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑈 ∈ 𝑊) |
6 | | resssetc.c |
. . . . . . . . . . . 12
⊢ 𝐶 = (SetCat‘𝑈) |
7 | 6 | setccat 17716 |
. . . . . . . . . . 11
⊢ (𝑈 ∈ 𝑊 → 𝐶 ∈ Cat) |
8 | 5, 7 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶 ∈ Cat) |
9 | 8 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐸 Func 𝐷)) → 𝐶 ∈ Cat) |
10 | | resssetc.2 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑉 ⊆ 𝑈) |
11 | 6, 5 | setcbas 17709 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑈 = (Base‘𝐶)) |
12 | 10, 11 | sseqtrd 3957 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑉 ⊆ (Base‘𝐶)) |
13 | 12 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐸 Func 𝐷)) → 𝑉 ⊆ (Base‘𝐶)) |
14 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝐶 ↾s 𝑉) = (𝐶 ↾s 𝑉) |
15 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝐶 ↾cat
((Homf ‘𝐶) ↾ (𝑉 × 𝑉))) = (𝐶 ↾cat
((Homf ‘𝐶) ↾ (𝑉 × 𝑉))) |
16 | 3, 4, 9, 13, 14, 15 | fullresc 17482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐸 Func 𝐷)) → ((Homf
‘(𝐶
↾s 𝑉)) =
(Homf ‘(𝐶 ↾cat
((Homf ‘𝐶) ↾ (𝑉 × 𝑉)))) ∧
(compf‘(𝐶 ↾s 𝑉)) = (compf‘(𝐶 ↾cat
((Homf ‘𝐶) ↾ (𝑉 × 𝑉)))))) |
17 | 16 | simpld 494 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐸 Func 𝐷)) → (Homf
‘(𝐶
↾s 𝑉)) =
(Homf ‘(𝐶 ↾cat
((Homf ‘𝐶) ↾ (𝑉 × 𝑉))))) |
18 | | resssetc.d |
. . . . . . . . . 10
⊢ 𝐷 = (SetCat‘𝑉) |
19 | 6, 18, 5, 10 | resssetc 17723 |
. . . . . . . . 9
⊢ (𝜑 → ((Homf
‘(𝐶
↾s 𝑉)) =
(Homf ‘𝐷) ∧
(compf‘(𝐶 ↾s 𝑉)) = (compf‘𝐷))) |
20 | 19 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐸 Func 𝐷)) → ((Homf
‘(𝐶
↾s 𝑉)) =
(Homf ‘𝐷) ∧
(compf‘(𝐶 ↾s 𝑉)) = (compf‘𝐷))) |
21 | 20 | simpld 494 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐸 Func 𝐷)) → (Homf
‘(𝐶
↾s 𝑉)) =
(Homf ‘𝐷)) |
22 | 17, 21 | eqtr3d 2780 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐸 Func 𝐷)) → (Homf
‘(𝐶
↾cat ((Homf ‘𝐶) ↾ (𝑉 × 𝑉)))) = (Homf ‘𝐷)) |
23 | 16 | simprd 495 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐸 Func 𝐷)) →
(compf‘(𝐶 ↾s 𝑉)) = (compf‘(𝐶 ↾cat
((Homf ‘𝐶) ↾ (𝑉 × 𝑉))))) |
24 | 20 | simprd 495 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐸 Func 𝐷)) →
(compf‘(𝐶 ↾s 𝑉)) = (compf‘𝐷)) |
25 | 23, 24 | eqtr3d 2780 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐸 Func 𝐷)) →
(compf‘(𝐶 ↾cat
((Homf ‘𝐶) ↾ (𝑉 × 𝑉)))) = (compf‘𝐷)) |
26 | | funcrcl 17494 |
. . . . . . . 8
⊢ (𝑓 ∈ (𝐸 Func 𝐷) → (𝐸 ∈ Cat ∧ 𝐷 ∈ Cat)) |
27 | 26 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐸 Func 𝐷)) → (𝐸 ∈ Cat ∧ 𝐷 ∈ Cat)) |
28 | 27 | simpld 494 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐸 Func 𝐷)) → 𝐸 ∈ Cat) |
29 | 3, 4, 9, 13 | fullsubc 17481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐸 Func 𝐷)) → ((Homf
‘𝐶) ↾ (𝑉 × 𝑉)) ∈ (Subcat‘𝐶)) |
30 | 15, 29 | subccat 17479 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐸 Func 𝐷)) → (𝐶 ↾cat
((Homf ‘𝐶) ↾ (𝑉 × 𝑉))) ∈ Cat) |
31 | 27 | simprd 495 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐸 Func 𝐷)) → 𝐷 ∈ Cat) |
32 | 1, 2, 22, 25, 28, 28, 30, 31 | funcpropd 17532 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐸 Func 𝐷)) → (𝐸 Func (𝐶 ↾cat
((Homf ‘𝐶) ↾ (𝑉 × 𝑉)))) = (𝐸 Func 𝐷)) |
33 | | funcres2 17529 |
. . . . . 6
⊢
(((Homf ‘𝐶) ↾ (𝑉 × 𝑉)) ∈ (Subcat‘𝐶) → (𝐸 Func (𝐶 ↾cat
((Homf ‘𝐶) ↾ (𝑉 × 𝑉)))) ⊆ (𝐸 Func 𝐶)) |
34 | 29, 33 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐸 Func 𝐷)) → (𝐸 Func (𝐶 ↾cat
((Homf ‘𝐶) ↾ (𝑉 × 𝑉)))) ⊆ (𝐸 Func 𝐶)) |
35 | 32, 34 | eqsstrrd 3956 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐸 Func 𝐷)) → (𝐸 Func 𝐷) ⊆ (𝐸 Func 𝐶)) |
36 | | simpr 484 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐸 Func 𝐷)) → 𝑓 ∈ (𝐸 Func 𝐷)) |
37 | 35, 36 | sseldd 3918 |
. . 3
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐸 Func 𝐷)) → 𝑓 ∈ (𝐸 Func 𝐶)) |
38 | 37 | ex 412 |
. 2
⊢ (𝜑 → (𝑓 ∈ (𝐸 Func 𝐷) → 𝑓 ∈ (𝐸 Func 𝐶))) |
39 | 38 | ssrdv 3923 |
1
⊢ (𝜑 → (𝐸 Func 𝐷) ⊆ (𝐸 Func 𝐶)) |