MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcsetcres2 Structured version   Visualization version   GIF version

Theorem funcsetcres2 17897
Description: A functor into a smaller category of sets is a functor into the larger category. (Contributed by Mario Carneiro, 28-Jan-2017.)
Hypotheses
Ref Expression
resssetc.c 𝐶 = (SetCat‘𝑈)
resssetc.d 𝐷 = (SetCat‘𝑉)
resssetc.1 (𝜑𝑈𝑊)
resssetc.2 (𝜑𝑉𝑈)
Assertion
Ref Expression
funcsetcres2 (𝜑 → (𝐸 Func 𝐷) ⊆ (𝐸 Func 𝐶))

Proof of Theorem funcsetcres2
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 eqidd 2737 . . . . . 6 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → (Homf𝐸) = (Homf𝐸))
2 eqidd 2737 . . . . . 6 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → (compf𝐸) = (compf𝐸))
3 eqid 2736 . . . . . . . . 9 (Base‘𝐶) = (Base‘𝐶)
4 eqid 2736 . . . . . . . . 9 (Homf𝐶) = (Homf𝐶)
5 resssetc.1 . . . . . . . . . . 11 (𝜑𝑈𝑊)
6 resssetc.c . . . . . . . . . . . 12 𝐶 = (SetCat‘𝑈)
76setccat 17889 . . . . . . . . . . 11 (𝑈𝑊𝐶 ∈ Cat)
85, 7syl 17 . . . . . . . . . 10 (𝜑𝐶 ∈ Cat)
98adantr 481 . . . . . . . . 9 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → 𝐶 ∈ Cat)
10 resssetc.2 . . . . . . . . . . 11 (𝜑𝑉𝑈)
116, 5setcbas 17882 . . . . . . . . . . 11 (𝜑𝑈 = (Base‘𝐶))
1210, 11sseqtrd 3971 . . . . . . . . . 10 (𝜑𝑉 ⊆ (Base‘𝐶))
1312adantr 481 . . . . . . . . 9 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → 𝑉 ⊆ (Base‘𝐶))
14 eqid 2736 . . . . . . . . 9 (𝐶s 𝑉) = (𝐶s 𝑉)
15 eqid 2736 . . . . . . . . 9 (𝐶cat ((Homf𝐶) ↾ (𝑉 × 𝑉))) = (𝐶cat ((Homf𝐶) ↾ (𝑉 × 𝑉)))
163, 4, 9, 13, 14, 15fullresc 17655 . . . . . . . 8 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → ((Homf ‘(𝐶s 𝑉)) = (Homf ‘(𝐶cat ((Homf𝐶) ↾ (𝑉 × 𝑉)))) ∧ (compf‘(𝐶s 𝑉)) = (compf‘(𝐶cat ((Homf𝐶) ↾ (𝑉 × 𝑉))))))
1716simpld 495 . . . . . . 7 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → (Homf ‘(𝐶s 𝑉)) = (Homf ‘(𝐶cat ((Homf𝐶) ↾ (𝑉 × 𝑉)))))
18 resssetc.d . . . . . . . . . 10 𝐷 = (SetCat‘𝑉)
196, 18, 5, 10resssetc 17896 . . . . . . . . 9 (𝜑 → ((Homf ‘(𝐶s 𝑉)) = (Homf𝐷) ∧ (compf‘(𝐶s 𝑉)) = (compf𝐷)))
2019adantr 481 . . . . . . . 8 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → ((Homf ‘(𝐶s 𝑉)) = (Homf𝐷) ∧ (compf‘(𝐶s 𝑉)) = (compf𝐷)))
2120simpld 495 . . . . . . 7 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → (Homf ‘(𝐶s 𝑉)) = (Homf𝐷))
2217, 21eqtr3d 2778 . . . . . 6 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → (Homf ‘(𝐶cat ((Homf𝐶) ↾ (𝑉 × 𝑉)))) = (Homf𝐷))
2316simprd 496 . . . . . . 7 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → (compf‘(𝐶s 𝑉)) = (compf‘(𝐶cat ((Homf𝐶) ↾ (𝑉 × 𝑉)))))
2420simprd 496 . . . . . . 7 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → (compf‘(𝐶s 𝑉)) = (compf𝐷))
2523, 24eqtr3d 2778 . . . . . 6 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → (compf‘(𝐶cat ((Homf𝐶) ↾ (𝑉 × 𝑉)))) = (compf𝐷))
26 funcrcl 17667 . . . . . . . 8 (𝑓 ∈ (𝐸 Func 𝐷) → (𝐸 ∈ Cat ∧ 𝐷 ∈ Cat))
2726adantl 482 . . . . . . 7 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → (𝐸 ∈ Cat ∧ 𝐷 ∈ Cat))
2827simpld 495 . . . . . 6 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → 𝐸 ∈ Cat)
293, 4, 9, 13fullsubc 17654 . . . . . . 7 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → ((Homf𝐶) ↾ (𝑉 × 𝑉)) ∈ (Subcat‘𝐶))
3015, 29subccat 17652 . . . . . 6 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → (𝐶cat ((Homf𝐶) ↾ (𝑉 × 𝑉))) ∈ Cat)
3127simprd 496 . . . . . 6 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → 𝐷 ∈ Cat)
321, 2, 22, 25, 28, 28, 30, 31funcpropd 17705 . . . . 5 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → (𝐸 Func (𝐶cat ((Homf𝐶) ↾ (𝑉 × 𝑉)))) = (𝐸 Func 𝐷))
33 funcres2 17702 . . . . . 6 (((Homf𝐶) ↾ (𝑉 × 𝑉)) ∈ (Subcat‘𝐶) → (𝐸 Func (𝐶cat ((Homf𝐶) ↾ (𝑉 × 𝑉)))) ⊆ (𝐸 Func 𝐶))
3429, 33syl 17 . . . . 5 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → (𝐸 Func (𝐶cat ((Homf𝐶) ↾ (𝑉 × 𝑉)))) ⊆ (𝐸 Func 𝐶))
3532, 34eqsstrrd 3970 . . . 4 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → (𝐸 Func 𝐷) ⊆ (𝐸 Func 𝐶))
36 simpr 485 . . . 4 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → 𝑓 ∈ (𝐸 Func 𝐷))
3735, 36sseldd 3932 . . 3 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → 𝑓 ∈ (𝐸 Func 𝐶))
3837ex 413 . 2 (𝜑 → (𝑓 ∈ (𝐸 Func 𝐷) → 𝑓 ∈ (𝐸 Func 𝐶)))
3938ssrdv 3937 1 (𝜑 → (𝐸 Func 𝐷) ⊆ (𝐸 Func 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wcel 2105  wss 3897   × cxp 5612  cres 5616  cfv 6473  (class class class)co 7329  Basecbs 17001  s cress 17030  Catccat 17462  Homf chomf 17464  compfccomf 17465  cat cresc 17609  Subcatcsubc 17610   Func cfunc 17658  SetCatcsetc 17879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5226  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642  ax-cnex 11020  ax-resscn 11021  ax-1cn 11022  ax-icn 11023  ax-addcl 11024  ax-addrcl 11025  ax-mulcl 11026  ax-mulrcl 11027  ax-mulcom 11028  ax-addass 11029  ax-mulass 11030  ax-distr 11031  ax-i2m1 11032  ax-1ne0 11033  ax-1rid 11034  ax-rnegex 11035  ax-rrecex 11036  ax-cnre 11037  ax-pre-lttri 11038  ax-pre-lttrn 11039  ax-pre-ltadd 11040  ax-pre-mulgt0 11041
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-tp 4577  df-op 4579  df-uni 4852  df-iun 4940  df-br 5090  df-opab 5152  df-mpt 5173  df-tr 5207  df-id 5512  df-eprel 5518  df-po 5526  df-so 5527  df-fr 5569  df-we 5571  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6232  df-ord 6299  df-on 6300  df-lim 6301  df-suc 6302  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-riota 7286  df-ov 7332  df-oprab 7333  df-mpo 7334  df-om 7773  df-1st 7891  df-2nd 7892  df-frecs 8159  df-wrecs 8190  df-recs 8264  df-rdg 8303  df-1o 8359  df-er 8561  df-map 8680  df-pm 8681  df-ixp 8749  df-en 8797  df-dom 8798  df-sdom 8799  df-fin 8800  df-pnf 11104  df-mnf 11105  df-xr 11106  df-ltxr 11107  df-le 11108  df-sub 11300  df-neg 11301  df-nn 12067  df-2 12129  df-3 12130  df-4 12131  df-5 12132  df-6 12133  df-7 12134  df-8 12135  df-9 12136  df-n0 12327  df-z 12413  df-dec 12531  df-uz 12676  df-fz 13333  df-struct 16937  df-sets 16954  df-slot 16972  df-ndx 16984  df-base 17002  df-ress 17031  df-hom 17075  df-cco 17076  df-cat 17466  df-cid 17467  df-homf 17468  df-comf 17469  df-ssc 17611  df-resc 17612  df-subc 17613  df-func 17662  df-setc 17880
This theorem is referenced by:  yonedalem1  18079
  Copyright terms: Public domain W3C validator