MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcsetcres2 Structured version   Visualization version   GIF version

Theorem funcsetcres2 17724
Description: A functor into a smaller category of sets is a functor into the larger category. (Contributed by Mario Carneiro, 28-Jan-2017.)
Hypotheses
Ref Expression
resssetc.c 𝐶 = (SetCat‘𝑈)
resssetc.d 𝐷 = (SetCat‘𝑉)
resssetc.1 (𝜑𝑈𝑊)
resssetc.2 (𝜑𝑉𝑈)
Assertion
Ref Expression
funcsetcres2 (𝜑 → (𝐸 Func 𝐷) ⊆ (𝐸 Func 𝐶))

Proof of Theorem funcsetcres2
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 eqidd 2739 . . . . . 6 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → (Homf𝐸) = (Homf𝐸))
2 eqidd 2739 . . . . . 6 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → (compf𝐸) = (compf𝐸))
3 eqid 2738 . . . . . . . . 9 (Base‘𝐶) = (Base‘𝐶)
4 eqid 2738 . . . . . . . . 9 (Homf𝐶) = (Homf𝐶)
5 resssetc.1 . . . . . . . . . . 11 (𝜑𝑈𝑊)
6 resssetc.c . . . . . . . . . . . 12 𝐶 = (SetCat‘𝑈)
76setccat 17716 . . . . . . . . . . 11 (𝑈𝑊𝐶 ∈ Cat)
85, 7syl 17 . . . . . . . . . 10 (𝜑𝐶 ∈ Cat)
98adantr 480 . . . . . . . . 9 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → 𝐶 ∈ Cat)
10 resssetc.2 . . . . . . . . . . 11 (𝜑𝑉𝑈)
116, 5setcbas 17709 . . . . . . . . . . 11 (𝜑𝑈 = (Base‘𝐶))
1210, 11sseqtrd 3957 . . . . . . . . . 10 (𝜑𝑉 ⊆ (Base‘𝐶))
1312adantr 480 . . . . . . . . 9 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → 𝑉 ⊆ (Base‘𝐶))
14 eqid 2738 . . . . . . . . 9 (𝐶s 𝑉) = (𝐶s 𝑉)
15 eqid 2738 . . . . . . . . 9 (𝐶cat ((Homf𝐶) ↾ (𝑉 × 𝑉))) = (𝐶cat ((Homf𝐶) ↾ (𝑉 × 𝑉)))
163, 4, 9, 13, 14, 15fullresc 17482 . . . . . . . 8 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → ((Homf ‘(𝐶s 𝑉)) = (Homf ‘(𝐶cat ((Homf𝐶) ↾ (𝑉 × 𝑉)))) ∧ (compf‘(𝐶s 𝑉)) = (compf‘(𝐶cat ((Homf𝐶) ↾ (𝑉 × 𝑉))))))
1716simpld 494 . . . . . . 7 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → (Homf ‘(𝐶s 𝑉)) = (Homf ‘(𝐶cat ((Homf𝐶) ↾ (𝑉 × 𝑉)))))
18 resssetc.d . . . . . . . . . 10 𝐷 = (SetCat‘𝑉)
196, 18, 5, 10resssetc 17723 . . . . . . . . 9 (𝜑 → ((Homf ‘(𝐶s 𝑉)) = (Homf𝐷) ∧ (compf‘(𝐶s 𝑉)) = (compf𝐷)))
2019adantr 480 . . . . . . . 8 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → ((Homf ‘(𝐶s 𝑉)) = (Homf𝐷) ∧ (compf‘(𝐶s 𝑉)) = (compf𝐷)))
2120simpld 494 . . . . . . 7 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → (Homf ‘(𝐶s 𝑉)) = (Homf𝐷))
2217, 21eqtr3d 2780 . . . . . 6 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → (Homf ‘(𝐶cat ((Homf𝐶) ↾ (𝑉 × 𝑉)))) = (Homf𝐷))
2316simprd 495 . . . . . . 7 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → (compf‘(𝐶s 𝑉)) = (compf‘(𝐶cat ((Homf𝐶) ↾ (𝑉 × 𝑉)))))
2420simprd 495 . . . . . . 7 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → (compf‘(𝐶s 𝑉)) = (compf𝐷))
2523, 24eqtr3d 2780 . . . . . 6 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → (compf‘(𝐶cat ((Homf𝐶) ↾ (𝑉 × 𝑉)))) = (compf𝐷))
26 funcrcl 17494 . . . . . . . 8 (𝑓 ∈ (𝐸 Func 𝐷) → (𝐸 ∈ Cat ∧ 𝐷 ∈ Cat))
2726adantl 481 . . . . . . 7 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → (𝐸 ∈ Cat ∧ 𝐷 ∈ Cat))
2827simpld 494 . . . . . 6 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → 𝐸 ∈ Cat)
293, 4, 9, 13fullsubc 17481 . . . . . . 7 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → ((Homf𝐶) ↾ (𝑉 × 𝑉)) ∈ (Subcat‘𝐶))
3015, 29subccat 17479 . . . . . 6 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → (𝐶cat ((Homf𝐶) ↾ (𝑉 × 𝑉))) ∈ Cat)
3127simprd 495 . . . . . 6 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → 𝐷 ∈ Cat)
321, 2, 22, 25, 28, 28, 30, 31funcpropd 17532 . . . . 5 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → (𝐸 Func (𝐶cat ((Homf𝐶) ↾ (𝑉 × 𝑉)))) = (𝐸 Func 𝐷))
33 funcres2 17529 . . . . . 6 (((Homf𝐶) ↾ (𝑉 × 𝑉)) ∈ (Subcat‘𝐶) → (𝐸 Func (𝐶cat ((Homf𝐶) ↾ (𝑉 × 𝑉)))) ⊆ (𝐸 Func 𝐶))
3429, 33syl 17 . . . . 5 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → (𝐸 Func (𝐶cat ((Homf𝐶) ↾ (𝑉 × 𝑉)))) ⊆ (𝐸 Func 𝐶))
3532, 34eqsstrrd 3956 . . . 4 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → (𝐸 Func 𝐷) ⊆ (𝐸 Func 𝐶))
36 simpr 484 . . . 4 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → 𝑓 ∈ (𝐸 Func 𝐷))
3735, 36sseldd 3918 . . 3 ((𝜑𝑓 ∈ (𝐸 Func 𝐷)) → 𝑓 ∈ (𝐸 Func 𝐶))
3837ex 412 . 2 (𝜑 → (𝑓 ∈ (𝐸 Func 𝐷) → 𝑓 ∈ (𝐸 Func 𝐶)))
3938ssrdv 3923 1 (𝜑 → (𝐸 Func 𝐷) ⊆ (𝐸 Func 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wss 3883   × cxp 5578  cres 5582  cfv 6418  (class class class)co 7255  Basecbs 16840  s cress 16867  Catccat 17290  Homf chomf 17292  compfccomf 17293  cat cresc 17437  Subcatcsubc 17438   Func cfunc 17485  SetCatcsetc 17706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-hom 16912  df-cco 16913  df-cat 17294  df-cid 17295  df-homf 17296  df-comf 17297  df-ssc 17439  df-resc 17440  df-subc 17441  df-func 17489  df-setc 17707
This theorem is referenced by:  yonedalem1  17906
  Copyright terms: Public domain W3C validator