Step | Hyp | Ref
| Expression |
1 | | simp1 1135 |
. . . . . 6
β’ ((πΊ β USGraph β§
(β―βπΉ) = 2 β§
(πβ0) β (πβ(β―βπΉ))) β πΊ β USGraph) |
2 | 1 | anim2i 616 |
. . . . 5
β’ ((πΉ(WalksβπΊ)π β§ (πΊ β USGraph β§ (β―βπΉ) = 2 β§ (πβ0) β (πβ(β―βπΉ)))) β (πΉ(WalksβπΊ)π β§ πΊ β USGraph)) |
3 | 2 | ancomd 461 |
. . . 4
β’ ((πΉ(WalksβπΊ)π β§ (πΊ β USGraph β§ (β―βπΉ) = 2 β§ (πβ0) β (πβ(β―βπΉ)))) β (πΊ β USGraph β§ πΉ(WalksβπΊ)π)) |
4 | | 3simpc 1149 |
. . . . 5
β’ ((πΊ β USGraph β§
(β―βπΉ) = 2 β§
(πβ0) β (πβ(β―βπΉ))) β ((β―βπΉ) = 2 β§ (πβ0) β (πβ(β―βπΉ)))) |
5 | 4 | adantl 481 |
. . . 4
β’ ((πΉ(WalksβπΊ)π β§ (πΊ β USGraph β§ (β―βπΉ) = 2 β§ (πβ0) β (πβ(β―βπΉ)))) β ((β―βπΉ) = 2 β§ (πβ0) β (πβ(β―βπΉ)))) |
6 | | usgr2wlkneq 29281 |
. . . 4
β’ (((πΊ β USGraph β§ πΉ(WalksβπΊ)π) β§ ((β―βπΉ) = 2 β§ (πβ0) β (πβ(β―βπΉ)))) β (((πβ0) β (πβ1) β§ (πβ0) β (πβ2) β§ (πβ1) β (πβ2)) β§ (πΉβ0) β (πΉβ1))) |
7 | 3, 5, 6 | syl2anc 583 |
. . 3
β’ ((πΉ(WalksβπΊ)π β§ (πΊ β USGraph β§ (β―βπΉ) = 2 β§ (πβ0) β (πβ(β―βπΉ)))) β (((πβ0) β (πβ1) β§ (πβ0) β (πβ2) β§ (πβ1) β (πβ2)) β§ (πΉβ0) β (πΉβ1))) |
8 | | fvexd 6906 |
. . . 4
β’ ((((πβ0) β (πβ1) β§ (πβ0) β (πβ2) β§ (πβ1) β (πβ2)) β§ (πΉβ0) β (πΉβ1)) β (πΉβ0) β
V) |
9 | | fvexd 6906 |
. . . 4
β’ ((((πβ0) β (πβ1) β§ (πβ0) β (πβ2) β§ (πβ1) β (πβ2)) β§ (πΉβ0) β (πΉβ1)) β (πΉβ1) β
V) |
10 | | simpr 484 |
. . . 4
β’ ((((πβ0) β (πβ1) β§ (πβ0) β (πβ2) β§ (πβ1) β (πβ2)) β§ (πΉβ0) β (πΉβ1)) β (πΉβ0) β (πΉβ1)) |
11 | 8, 9, 10 | 3jca 1127 |
. . 3
β’ ((((πβ0) β (πβ1) β§ (πβ0) β (πβ2) β§ (πβ1) β (πβ2)) β§ (πΉβ0) β (πΉβ1)) β ((πΉβ0) β V β§ (πΉβ1) β V β§ (πΉβ0) β (πΉβ1))) |
12 | | funcnvs2 14869 |
. . 3
β’ (((πΉβ0) β V β§ (πΉβ1) β V β§ (πΉβ0) β (πΉβ1)) β Fun β‘β¨β(πΉβ0)(πΉβ1)ββ©) |
13 | 7, 11, 12 | 3syl 18 |
. 2
β’ ((πΉ(WalksβπΊ)π β§ (πΊ β USGraph β§ (β―βπΉ) = 2 β§ (πβ0) β (πβ(β―βπΉ)))) β Fun β‘β¨β(πΉβ0)(πΉβ1)ββ©) |
14 | | eqid 2731 |
. . . . . 6
β’
(iEdgβπΊ) =
(iEdgβπΊ) |
15 | 14 | wlkf 29139 |
. . . . 5
β’ (πΉ(WalksβπΊ)π β πΉ β Word dom (iEdgβπΊ)) |
16 | | simp2 1136 |
. . . . 5
β’ ((πΊ β USGraph β§
(β―βπΉ) = 2 β§
(πβ0) β (πβ(β―βπΉ))) β (β―βπΉ) = 2) |
17 | | wrdlen2s2 14901 |
. . . . 5
β’ ((πΉ β Word dom
(iEdgβπΊ) β§
(β―βπΉ) = 2)
β πΉ =
β¨β(πΉβ0)(πΉβ1)ββ©) |
18 | 15, 16, 17 | syl2an 595 |
. . . 4
β’ ((πΉ(WalksβπΊ)π β§ (πΊ β USGraph β§ (β―βπΉ) = 2 β§ (πβ0) β (πβ(β―βπΉ)))) β πΉ = β¨β(πΉβ0)(πΉβ1)ββ©) |
19 | 18 | cnveqd 5875 |
. . 3
β’ ((πΉ(WalksβπΊ)π β§ (πΊ β USGraph β§ (β―βπΉ) = 2 β§ (πβ0) β (πβ(β―βπΉ)))) β β‘πΉ = β‘β¨β(πΉβ0)(πΉβ1)ββ©) |
20 | 19 | funeqd 6570 |
. 2
β’ ((πΉ(WalksβπΊ)π β§ (πΊ β USGraph β§ (β―βπΉ) = 2 β§ (πβ0) β (πβ(β―βπΉ)))) β (Fun β‘πΉ β Fun β‘β¨β(πΉβ0)(πΉβ1)ββ©)) |
21 | 13, 20 | mpbird 257 |
1
β’ ((πΉ(WalksβπΊ)π β§ (πΊ β USGraph β§ (β―βπΉ) = 2 β§ (πβ0) β (πβ(β―βπΉ)))) β Fun β‘πΉ) |