![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > usgr2wlkspthlem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for usgr2wlkspth 29593. (Contributed by Alexander van der Vekens, 2-Mar-2018.) (Revised by AV, 26-Jan-2021.) |
Ref | Expression |
---|---|
usgr2wlkspthlem1 | ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))) → Fun ◡𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1133 | . . . . . 6 ⊢ ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → 𝐺 ∈ USGraph) | |
2 | 1 | anim2i 615 | . . . . 5 ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))) → (𝐹(Walks‘𝐺)𝑃 ∧ 𝐺 ∈ USGraph)) |
3 | 2 | ancomd 460 | . . . 4 ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))) → (𝐺 ∈ USGraph ∧ 𝐹(Walks‘𝐺)𝑃)) |
4 | 3simpc 1147 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → ((♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))) | |
5 | 4 | adantl 480 | . . . 4 ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))) → ((♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))) |
6 | usgr2wlkneq 29590 | . . . 4 ⊢ (((𝐺 ∈ USGraph ∧ 𝐹(Walks‘𝐺)𝑃) ∧ ((♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1))) | |
7 | 3, 5, 6 | syl2anc 582 | . . 3 ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1))) |
8 | fvexd 6917 | . . . 4 ⊢ ((((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)) → (𝐹‘0) ∈ V) | |
9 | fvexd 6917 | . . . 4 ⊢ ((((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)) → (𝐹‘1) ∈ V) | |
10 | simpr 483 | . . . 4 ⊢ ((((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)) → (𝐹‘0) ≠ (𝐹‘1)) | |
11 | 8, 9, 10 | 3jca 1125 | . . 3 ⊢ ((((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)) → ((𝐹‘0) ∈ V ∧ (𝐹‘1) ∈ V ∧ (𝐹‘0) ≠ (𝐹‘1))) |
12 | funcnvs2 14904 | . . 3 ⊢ (((𝐹‘0) ∈ V ∧ (𝐹‘1) ∈ V ∧ (𝐹‘0) ≠ (𝐹‘1)) → Fun ◡〈“(𝐹‘0)(𝐹‘1)”〉) | |
13 | 7, 11, 12 | 3syl 18 | . 2 ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))) → Fun ◡〈“(𝐹‘0)(𝐹‘1)”〉) |
14 | eqid 2728 | . . . . . 6 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
15 | 14 | wlkf 29448 | . . . . 5 ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝐹 ∈ Word dom (iEdg‘𝐺)) |
16 | simp2 1134 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → (♯‘𝐹) = 2) | |
17 | wrdlen2s2 14936 | . . . . 5 ⊢ ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ (♯‘𝐹) = 2) → 𝐹 = 〈“(𝐹‘0)(𝐹‘1)”〉) | |
18 | 15, 16, 17 | syl2an 594 | . . . 4 ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))) → 𝐹 = 〈“(𝐹‘0)(𝐹‘1)”〉) |
19 | 18 | cnveqd 5882 | . . 3 ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))) → ◡𝐹 = ◡〈“(𝐹‘0)(𝐹‘1)”〉) |
20 | 19 | funeqd 6580 | . 2 ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))) → (Fun ◡𝐹 ↔ Fun ◡〈“(𝐹‘0)(𝐹‘1)”〉)) |
21 | 13, 20 | mpbird 256 | 1 ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))) → Fun ◡𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2937 Vcvv 3473 class class class wbr 5152 ◡ccnv 5681 dom cdm 5682 Fun wfun 6547 ‘cfv 6553 0cc0 11146 1c1 11147 2c2 12305 ♯chash 14329 Word cword 14504 〈“cs2 14832 iEdgciedg 28830 USGraphcusgr 28982 Walkscwlks 29430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-ifp 1061 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-1st 7999 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-1o 8493 df-2o 8494 df-oadd 8497 df-er 8731 df-map 8853 df-pm 8854 df-en 8971 df-dom 8972 df-sdom 8973 df-fin 8974 df-dju 9932 df-card 9970 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-nn 12251 df-2 12313 df-n0 12511 df-xnn0 12583 df-z 12597 df-uz 12861 df-fz 13525 df-fzo 13668 df-hash 14330 df-word 14505 df-concat 14561 df-s1 14586 df-s2 14839 df-edg 28881 df-uhgr 28891 df-upgr 28915 df-umgr 28916 df-uspgr 28983 df-usgr 28984 df-wlks 29433 |
This theorem is referenced by: usgr2wlkspth 29593 |
Copyright terms: Public domain | W3C validator |