| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > usgr2wlkspthlem2 | Structured version Visualization version GIF version | ||
| Description: Lemma 2 for usgr2wlkspth 29737. (Contributed by Alexander van der Vekens, 2-Mar-2018.) (Revised by AV, 27-Jan-2021.) |
| Ref | Expression |
|---|---|
| usgr2wlkspthlem2 | ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))) → Fun ◡𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . . . . 6 ⊢ ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → 𝐺 ∈ USGraph) | |
| 2 | 1 | anim2i 617 | . . . . 5 ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))) → (𝐹(Walks‘𝐺)𝑃 ∧ 𝐺 ∈ USGraph)) |
| 3 | 2 | ancomd 461 | . . . 4 ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))) → (𝐺 ∈ USGraph ∧ 𝐹(Walks‘𝐺)𝑃)) |
| 4 | 3simpc 1150 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → ((♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))) | |
| 5 | 4 | adantl 481 | . . . 4 ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))) → ((♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))) |
| 6 | usgr2wlkneq 29734 | . . . 4 ⊢ (((𝐺 ∈ USGraph ∧ 𝐹(Walks‘𝐺)𝑃) ∧ ((♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1))) | |
| 7 | 3, 5, 6 | syl2anc 584 | . . 3 ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1))) |
| 8 | simpl 482 | . . . 4 ⊢ ((((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)) → ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2))) | |
| 9 | fvex 6835 | . . . . 5 ⊢ (𝑃‘0) ∈ V | |
| 10 | fvex 6835 | . . . . 5 ⊢ (𝑃‘1) ∈ V | |
| 11 | fvex 6835 | . . . . 5 ⊢ (𝑃‘2) ∈ V | |
| 12 | 9, 10, 11 | 3pm3.2i 1340 | . . . 4 ⊢ ((𝑃‘0) ∈ V ∧ (𝑃‘1) ∈ V ∧ (𝑃‘2) ∈ V) |
| 13 | 8, 12 | jctil 519 | . . 3 ⊢ ((((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1)) → (((𝑃‘0) ∈ V ∧ (𝑃‘1) ∈ V ∧ (𝑃‘2) ∈ V) ∧ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)))) |
| 14 | funcnvs3 14821 | . . 3 ⊢ ((((𝑃‘0) ∈ V ∧ (𝑃‘1) ∈ V ∧ (𝑃‘2) ∈ V) ∧ ((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2))) → Fun ◡〈“(𝑃‘0)(𝑃‘1)(𝑃‘2)”〉) | |
| 15 | 7, 13, 14 | 3syl 18 | . 2 ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))) → Fun ◡〈“(𝑃‘0)(𝑃‘1)(𝑃‘2)”〉) |
| 16 | eqid 2731 | . . . . . 6 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 17 | 16 | wlkpwrd 29596 | . . . . 5 ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝑃 ∈ Word (Vtx‘𝐺)) |
| 18 | wlklenvp1 29597 | . . . . . 6 ⊢ (𝐹(Walks‘𝐺)𝑃 → (♯‘𝑃) = ((♯‘𝐹) + 1)) | |
| 19 | oveq1 7353 | . . . . . . . 8 ⊢ ((♯‘𝐹) = 2 → ((♯‘𝐹) + 1) = (2 + 1)) | |
| 20 | 2p1e3 12262 | . . . . . . . 8 ⊢ (2 + 1) = 3 | |
| 21 | 19, 20 | eqtrdi 2782 | . . . . . . 7 ⊢ ((♯‘𝐹) = 2 → ((♯‘𝐹) + 1) = 3) |
| 22 | 21 | 3ad2ant2 1134 | . . . . . 6 ⊢ ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → ((♯‘𝐹) + 1) = 3) |
| 23 | 18, 22 | sylan9eq 2786 | . . . . 5 ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))) → (♯‘𝑃) = 3) |
| 24 | wrdlen3s3 14856 | . . . . 5 ⊢ ((𝑃 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑃) = 3) → 𝑃 = 〈“(𝑃‘0)(𝑃‘1)(𝑃‘2)”〉) | |
| 25 | 17, 23, 24 | syl2an2r 685 | . . . 4 ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))) → 𝑃 = 〈“(𝑃‘0)(𝑃‘1)(𝑃‘2)”〉) |
| 26 | 25 | cnveqd 5814 | . . 3 ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))) → ◡𝑃 = ◡〈“(𝑃‘0)(𝑃‘1)(𝑃‘2)”〉) |
| 27 | 26 | funeqd 6503 | . 2 ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))) → (Fun ◡𝑃 ↔ Fun ◡〈“(𝑃‘0)(𝑃‘1)(𝑃‘2)”〉)) |
| 28 | 15, 27 | mpbird 257 | 1 ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))) → Fun ◡𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 Vcvv 3436 class class class wbr 5089 ◡ccnv 5613 Fun wfun 6475 ‘cfv 6481 (class class class)co 7346 0cc0 11006 1c1 11007 + caddc 11009 2c2 12180 3c3 12181 ♯chash 14237 Word cword 14420 〈“cs3 14749 Vtxcvtx 28974 USGraphcusgr 29127 Walkscwlks 29575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-oadd 8389 df-er 8622 df-map 8752 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-dju 9794 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-xnn0 12455 df-z 12469 df-uz 12733 df-fz 13408 df-fzo 13555 df-hash 14238 df-word 14421 df-concat 14478 df-s1 14504 df-s2 14755 df-s3 14756 df-edg 29026 df-uhgr 29036 df-upgr 29060 df-umgr 29061 df-uspgr 29128 df-usgr 29129 df-wlks 29578 |
| This theorem is referenced by: usgr2wlkspth 29737 |
| Copyright terms: Public domain | W3C validator |