![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fznn0sub | Structured version Visualization version GIF version |
Description: Subtraction closure for a member of a finite set of sequential integers. (Contributed by NM, 16-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
fznn0sub | ⊢ (𝐾 ∈ (𝑀...𝑁) → (𝑁 − 𝐾) ∈ ℕ0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzuz3 13581 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝐾)) | |
2 | uznn0sub 12942 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → (𝑁 − 𝐾) ∈ ℕ0) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ (𝑀...𝑁) → (𝑁 − 𝐾) ∈ ℕ0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 − cmin 11520 ℕ0cn0 12553 ℤ≥cuz 12903 ...cfz 13567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 |
This theorem is referenced by: fznn0sub2 13692 bcrpcl 14357 bcm1k 14364 bcp1n 14365 bcval5 14367 bcpasc 14370 permnn 14375 swrdlen 14695 swrdwrdsymb 14710 pfxswrd 14754 binomlem 15877 binom1p 15879 pwdif 15916 mertenslem1 15932 mertens 15934 binomfallfaclem1 16087 binomfallfaclem2 16088 fallfacval4 16091 bcfallfac 16092 bpolycl 16100 bpolysum 16101 bpolydiflem 16102 efaddlem 16141 pcbc 16947 srgbinomlem3 20255 srgbinomlem4 20256 srgbinomlem 20257 freshmansdream 21616 coe1mul2 22293 coe1tmmul2 22300 coe1tmmul 22301 cply1mul 22321 lply1binomsc 22336 decpmatmul 22799 pm2mpmhmlem2 22846 chpscmatgsumbin 22871 chpscmatgsummon 22872 coe1mul3 26158 plymullem1 26273 plymullem 26275 coemullem 26309 coemulhi 26313 coemulc 26314 vieta1lem2 26371 aareccl 26386 aalioulem1 26392 dvntaylp 26431 dvntaylp0 26432 birthdaylem2 27013 basellem3 27144 cycpmco2lem5 33123 plymulx0 34524 jm2.22 42952 jm2.23 42953 dvnmul 45864 ply1mulgsumlem2 48116 ply1mulgsum 48119 |
Copyright terms: Public domain | W3C validator |