| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fznn0sub | Structured version Visualization version GIF version | ||
| Description: Subtraction closure for a member of a finite set of sequential integers. (Contributed by NM, 16-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| fznn0sub | ⊢ (𝐾 ∈ (𝑀...𝑁) → (𝑁 − 𝐾) ∈ ℕ0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuz3 13538 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝐾)) | |
| 2 | uznn0sub 12891 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → (𝑁 − 𝐾) ∈ ℕ0) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ (𝑀...𝑁) → (𝑁 − 𝐾) ∈ ℕ0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 ‘cfv 6531 (class class class)co 7405 − cmin 11466 ℕ0cn0 12501 ℤ≥cuz 12852 ...cfz 13524 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-n0 12502 df-z 12589 df-uz 12853 df-fz 13525 |
| This theorem is referenced by: fznn0sub2 13652 bcrpcl 14326 bcm1k 14333 bcp1n 14334 bcval5 14336 bcpasc 14339 permnn 14344 swrdlen 14665 swrdwrdsymb 14680 pfxswrd 14724 binomlem 15845 binom1p 15847 pwdif 15884 mertenslem1 15900 mertens 15902 binomfallfaclem1 16055 binomfallfaclem2 16056 fallfacval4 16059 bcfallfac 16060 bpolycl 16068 bpolysum 16069 bpolydiflem 16070 efaddlem 16109 pcbc 16920 srgbinomlem3 20188 srgbinomlem4 20189 srgbinomlem 20190 freshmansdream 21535 coe1mul2 22206 coe1tmmul2 22213 coe1tmmul 22214 cply1mul 22234 lply1binomsc 22249 decpmatmul 22710 pm2mpmhmlem2 22757 chpscmatgsumbin 22782 chpscmatgsummon 22783 coe1mul3 26056 plymullem1 26171 plymullem 26173 coemullem 26207 coemulhi 26211 coemulc 26212 vieta1lem2 26271 aareccl 26286 aalioulem1 26292 dvntaylp 26331 dvntaylp0 26332 birthdaylem2 26914 basellem3 27045 cycpmco2lem5 33141 plymulx0 34579 jm2.22 43019 jm2.23 43020 dvnmul 45972 ply1mulgsumlem2 48363 ply1mulgsum 48366 |
| Copyright terms: Public domain | W3C validator |