![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fznn0sub | Structured version Visualization version GIF version |
Description: Subtraction closure for a member of a finite set of sequential integers. (Contributed by NM, 16-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
fznn0sub | ⊢ (𝐾 ∈ (𝑀...𝑁) → (𝑁 − 𝐾) ∈ ℕ0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzuz3 13494 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝐾)) | |
2 | uznn0sub 12857 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → (𝑁 − 𝐾) ∈ ℕ0) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ (𝑀...𝑁) → (𝑁 − 𝐾) ∈ ℕ0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ‘cfv 6540 (class class class)co 7405 − cmin 11440 ℕ0cn0 12468 ℤ≥cuz 12818 ...cfz 13480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-n0 12469 df-z 12555 df-uz 12819 df-fz 13481 |
This theorem is referenced by: fznn0sub2 13604 bcrpcl 14264 bcm1k 14271 bcp1n 14272 bcval5 14274 bcpasc 14277 permnn 14282 swrdlen 14593 swrdwrdsymb 14608 pfxswrd 14652 binomlem 15771 binom1p 15773 pwdif 15810 mertenslem1 15826 mertens 15828 binomfallfaclem1 15979 binomfallfaclem2 15980 fallfacval4 15983 bcfallfac 15984 bpolycl 15992 bpolysum 15993 bpolydiflem 15994 efaddlem 16032 pcbc 16829 srgbinomlem3 20044 srgbinomlem4 20045 srgbinomlem 20046 coe1mul2 21782 coe1tmmul2 21789 coe1tmmul 21790 cply1mul 21809 lply1binomsc 21822 decpmatmul 22265 pm2mpmhmlem2 22312 chpscmatgsumbin 22337 chpscmatgsummon 22338 coe1mul3 25608 plymullem1 25719 plymullem 25721 coemullem 25755 coemulhi 25759 coemulc 25760 vieta1lem2 25815 aareccl 25830 aalioulem1 25836 dvntaylp 25874 dvntaylp0 25875 birthdaylem2 26446 basellem3 26576 cycpmco2lem5 32276 freshmansdream 32369 plymulx0 33546 jm2.22 41719 jm2.23 41720 dvnmul 44645 ply1mulgsumlem2 47021 ply1mulgsum 47024 |
Copyright terms: Public domain | W3C validator |