| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fznn0sub | Structured version Visualization version GIF version | ||
| Description: Subtraction closure for a member of a finite set of sequential integers. (Contributed by NM, 16-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| fznn0sub | ⊢ (𝐾 ∈ (𝑀...𝑁) → (𝑁 − 𝐾) ∈ ℕ0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuz3 13460 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝐾)) | |
| 2 | uznn0sub 12810 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → (𝑁 − 𝐾) ∈ ℕ0) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ (𝑀...𝑁) → (𝑁 − 𝐾) ∈ ℕ0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ‘cfv 6499 (class class class)co 7369 − cmin 11383 ℕ0cn0 12420 ℤ≥cuz 12771 ...cfz 13446 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11102 ax-resscn 11103 ax-1cn 11104 ax-icn 11105 ax-addcl 11106 ax-addrcl 11107 ax-mulcl 11108 ax-mulrcl 11109 ax-mulcom 11110 ax-addass 11111 ax-mulass 11112 ax-distr 11113 ax-i2m1 11114 ax-1ne0 11115 ax-1rid 11116 ax-rnegex 11117 ax-rrecex 11118 ax-cnre 11119 ax-pre-lttri 11120 ax-pre-lttrn 11121 ax-pre-ltadd 11122 ax-pre-mulgt0 11123 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11188 df-mnf 11189 df-xr 11190 df-ltxr 11191 df-le 11192 df-sub 11385 df-neg 11386 df-nn 12165 df-n0 12421 df-z 12508 df-uz 12772 df-fz 13447 |
| This theorem is referenced by: fznn0sub2 13574 bcrpcl 14251 bcm1k 14258 bcp1n 14259 bcval5 14261 bcpasc 14264 permnn 14269 swrdlen 14590 swrdwrdsymb 14605 pfxswrd 14648 lenrevpfxcctswrd 14654 binomlem 15772 binom1p 15774 pwdif 15811 mertenslem1 15827 mertens 15829 binomfallfaclem1 15982 binomfallfaclem2 15983 fallfacval4 15986 bcfallfac 15987 bpolycl 15995 bpolysum 15996 bpolydiflem 15997 efaddlem 16036 pcbc 16848 srgbinomlem3 20149 srgbinomlem4 20150 srgbinomlem 20151 freshmansdream 21517 coe1mul2 22189 coe1tmmul2 22196 coe1tmmul 22197 cply1mul 22217 lply1binomsc 22232 decpmatmul 22693 pm2mpmhmlem2 22740 chpscmatgsumbin 22765 chpscmatgsummon 22766 coe1mul3 26038 plymullem1 26153 plymullem 26155 coemullem 26189 coemulhi 26193 coemulc 26194 vieta1lem2 26253 aareccl 26268 aalioulem1 26274 dvntaylp 26313 dvntaylp0 26314 birthdaylem2 26896 basellem3 27027 cycpmco2lem5 33103 plymulx0 34532 jm2.22 42978 jm2.23 42979 dvnmul 45935 ply1mulgsumlem2 48370 ply1mulgsum 48373 |
| Copyright terms: Public domain | W3C validator |