Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fznn0sub | Structured version Visualization version GIF version |
Description: Subtraction closure for a member of a finite set of sequential integers. (Contributed by NM, 16-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
fznn0sub | ⊢ (𝐾 ∈ (𝑀...𝑁) → (𝑁 − 𝐾) ∈ ℕ0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzuz3 13244 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝐾)) | |
2 | uznn0sub 12608 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → (𝑁 − 𝐾) ∈ ℕ0) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ (𝑀...𝑁) → (𝑁 − 𝐾) ∈ ℕ0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2110 ‘cfv 6431 (class class class)co 7269 − cmin 11197 ℕ0cn0 12225 ℤ≥cuz 12573 ...cfz 13230 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 ax-cnex 10920 ax-resscn 10921 ax-1cn 10922 ax-icn 10923 ax-addcl 10924 ax-addrcl 10925 ax-mulcl 10926 ax-mulrcl 10927 ax-mulcom 10928 ax-addass 10929 ax-mulass 10930 ax-distr 10931 ax-i2m1 10932 ax-1ne0 10933 ax-1rid 10934 ax-rnegex 10935 ax-rrecex 10936 ax-cnre 10937 ax-pre-lttri 10938 ax-pre-lttrn 10939 ax-pre-ltadd 10940 ax-pre-mulgt0 10941 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-tp 4572 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6200 df-ord 6267 df-on 6268 df-lim 6269 df-suc 6270 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-riota 7226 df-ov 7272 df-oprab 7273 df-mpo 7274 df-om 7702 df-1st 7818 df-2nd 7819 df-frecs 8082 df-wrecs 8113 df-recs 8187 df-rdg 8226 df-er 8473 df-en 8709 df-dom 8710 df-sdom 8711 df-pnf 11004 df-mnf 11005 df-xr 11006 df-ltxr 11007 df-le 11008 df-sub 11199 df-neg 11200 df-nn 11966 df-n0 12226 df-z 12312 df-uz 12574 df-fz 13231 |
This theorem is referenced by: fznn0sub2 13354 bcrpcl 14012 bcm1k 14019 bcp1n 14020 bcval5 14022 bcpasc 14025 permnn 14030 swrdlen 14350 swrdwrdsymb 14365 pfxswrd 14409 binomlem 15531 binom1p 15533 pwdif 15570 mertenslem1 15586 mertens 15588 binomfallfaclem1 15739 binomfallfaclem2 15740 fallfacval4 15743 bcfallfac 15744 bpolycl 15752 bpolysum 15753 bpolydiflem 15754 efaddlem 15792 pcbc 16591 srgbinomlem3 19768 srgbinomlem4 19769 srgbinomlem 19770 coe1mul2 21430 coe1tmmul2 21437 coe1tmmul 21438 cply1mul 21455 lply1binomsc 21468 decpmatmul 21911 pm2mpmhmlem2 21958 chpscmatgsumbin 21983 chpscmatgsummon 21984 coe1mul3 25254 plymullem1 25365 plymullem 25367 coemullem 25401 coemulhi 25405 coemulc 25406 vieta1lem2 25461 aareccl 25476 aalioulem1 25482 dvntaylp 25520 dvntaylp0 25521 birthdaylem2 26092 basellem3 26222 cycpmco2lem5 31385 freshmansdream 31472 plymulx0 32514 jm2.22 40806 jm2.23 40807 dvnmul 43447 ply1mulgsumlem2 45689 ply1mulgsum 45692 |
Copyright terms: Public domain | W3C validator |