MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fznn0sub Structured version   Visualization version   GIF version

Theorem fznn0sub 13279
Description: Subtraction closure for a member of a finite set of sequential integers. (Contributed by NM, 16-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
fznn0sub (𝐾 ∈ (𝑀...𝑁) → (𝑁𝐾) ∈ ℕ0)

Proof of Theorem fznn0sub
StepHypRef Expression
1 elfzuz3 13244 . 2 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝐾))
2 uznn0sub 12608 . 2 (𝑁 ∈ (ℤ𝐾) → (𝑁𝐾) ∈ ℕ0)
31, 2syl 17 1 (𝐾 ∈ (𝑀...𝑁) → (𝑁𝐾) ∈ ℕ0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2110  cfv 6431  (class class class)co 7269  cmin 11197  0cn0 12225  cuz 12573  ...cfz 13230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580  ax-cnex 10920  ax-resscn 10921  ax-1cn 10922  ax-icn 10923  ax-addcl 10924  ax-addrcl 10925  ax-mulcl 10926  ax-mulrcl 10927  ax-mulcom 10928  ax-addass 10929  ax-mulass 10930  ax-distr 10931  ax-i2m1 10932  ax-1ne0 10933  ax-1rid 10934  ax-rnegex 10935  ax-rrecex 10936  ax-cnre 10937  ax-pre-lttri 10938  ax-pre-lttrn 10939  ax-pre-ltadd 10940  ax-pre-mulgt0 10941
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6200  df-ord 6267  df-on 6268  df-lim 6269  df-suc 6270  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-riota 7226  df-ov 7272  df-oprab 7273  df-mpo 7274  df-om 7702  df-1st 7818  df-2nd 7819  df-frecs 8082  df-wrecs 8113  df-recs 8187  df-rdg 8226  df-er 8473  df-en 8709  df-dom 8710  df-sdom 8711  df-pnf 11004  df-mnf 11005  df-xr 11006  df-ltxr 11007  df-le 11008  df-sub 11199  df-neg 11200  df-nn 11966  df-n0 12226  df-z 12312  df-uz 12574  df-fz 13231
This theorem is referenced by:  fznn0sub2  13354  bcrpcl  14012  bcm1k  14019  bcp1n  14020  bcval5  14022  bcpasc  14025  permnn  14030  swrdlen  14350  swrdwrdsymb  14365  pfxswrd  14409  binomlem  15531  binom1p  15533  pwdif  15570  mertenslem1  15586  mertens  15588  binomfallfaclem1  15739  binomfallfaclem2  15740  fallfacval4  15743  bcfallfac  15744  bpolycl  15752  bpolysum  15753  bpolydiflem  15754  efaddlem  15792  pcbc  16591  srgbinomlem3  19768  srgbinomlem4  19769  srgbinomlem  19770  coe1mul2  21430  coe1tmmul2  21437  coe1tmmul  21438  cply1mul  21455  lply1binomsc  21468  decpmatmul  21911  pm2mpmhmlem2  21958  chpscmatgsumbin  21983  chpscmatgsummon  21984  coe1mul3  25254  plymullem1  25365  plymullem  25367  coemullem  25401  coemulhi  25405  coemulc  25406  vieta1lem2  25461  aareccl  25476  aalioulem1  25482  dvntaylp  25520  dvntaylp0  25521  birthdaylem2  26092  basellem3  26222  cycpmco2lem5  31385  freshmansdream  31472  plymulx0  32514  jm2.22  40806  jm2.23  40807  dvnmul  43447  ply1mulgsumlem2  45689  ply1mulgsum  45692
  Copyright terms: Public domain W3C validator