MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fznn0sub Structured version   Visualization version   GIF version

Theorem fznn0sub 13459
Description: Subtraction closure for a member of a finite set of sequential integers. (Contributed by NM, 16-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
fznn0sub (𝐾 ∈ (𝑀...𝑁) → (𝑁𝐾) ∈ ℕ0)

Proof of Theorem fznn0sub
StepHypRef Expression
1 elfzuz3 13424 . 2 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝐾))
2 uznn0sub 12774 . 2 (𝑁 ∈ (ℤ𝐾) → (𝑁𝐾) ∈ ℕ0)
31, 2syl 17 1 (𝐾 ∈ (𝑀...𝑁) → (𝑁𝐾) ∈ ℕ0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  cfv 6482  (class class class)co 7349  cmin 11347  0cn0 12384  cuz 12735  ...cfz 13410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411
This theorem is referenced by:  fznn0sub2  13538  bcrpcl  14215  bcm1k  14222  bcp1n  14223  bcval5  14225  bcpasc  14228  permnn  14233  swrdlen  14554  swrdwrdsymb  14569  pfxswrd  14612  lenrevpfxcctswrd  14618  binomlem  15736  binom1p  15738  pwdif  15775  mertenslem1  15791  mertens  15793  binomfallfaclem1  15946  binomfallfaclem2  15947  fallfacval4  15950  bcfallfac  15951  bpolycl  15959  bpolysum  15960  bpolydiflem  15961  efaddlem  16000  pcbc  16812  srgbinomlem3  20113  srgbinomlem4  20114  srgbinomlem  20115  freshmansdream  21481  coe1mul2  22153  coe1tmmul2  22160  coe1tmmul  22161  cply1mul  22181  lply1binomsc  22196  decpmatmul  22657  pm2mpmhmlem2  22704  chpscmatgsumbin  22729  chpscmatgsummon  22730  coe1mul3  26002  plymullem1  26117  plymullem  26119  coemullem  26153  coemulhi  26157  coemulc  26158  vieta1lem2  26217  aareccl  26232  aalioulem1  26238  dvntaylp  26277  dvntaylp0  26278  birthdaylem2  26860  basellem3  26991  cycpmco2lem5  33081  plymulx0  34531  jm2.22  42988  jm2.23  42989  dvnmul  45944  ply1mulgsumlem2  48392  ply1mulgsum  48395
  Copyright terms: Public domain W3C validator