| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnfldneg | Structured version Visualization version GIF version | ||
| Description: The additive inverse in the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| Ref | Expression |
|---|---|
| cnfldneg | ⊢ (𝑋 ∈ ℂ → ((invg‘ℂfld)‘𝑋) = -𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negid 11447 | . 2 ⊢ (𝑋 ∈ ℂ → (𝑋 + -𝑋) = 0) | |
| 2 | negcl 11399 | . . 3 ⊢ (𝑋 ∈ ℂ → -𝑋 ∈ ℂ) | |
| 3 | cnring 21333 | . . . . 5 ⊢ ℂfld ∈ Ring | |
| 4 | ringgrp 20159 | . . . . 5 ⊢ (ℂfld ∈ Ring → ℂfld ∈ Grp) | |
| 5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ ℂfld ∈ Grp |
| 6 | cnfldbas 21301 | . . . . 5 ⊢ ℂ = (Base‘ℂfld) | |
| 7 | cnfldadd 21303 | . . . . 5 ⊢ + = (+g‘ℂfld) | |
| 8 | cnfld0 21335 | . . . . 5 ⊢ 0 = (0g‘ℂfld) | |
| 9 | eqid 2729 | . . . . 5 ⊢ (invg‘ℂfld) = (invg‘ℂfld) | |
| 10 | 6, 7, 8, 9 | grpinvid1 18906 | . . . 4 ⊢ ((ℂfld ∈ Grp ∧ 𝑋 ∈ ℂ ∧ -𝑋 ∈ ℂ) → (((invg‘ℂfld)‘𝑋) = -𝑋 ↔ (𝑋 + -𝑋) = 0)) |
| 11 | 5, 10 | mp3an1 1450 | . . 3 ⊢ ((𝑋 ∈ ℂ ∧ -𝑋 ∈ ℂ) → (((invg‘ℂfld)‘𝑋) = -𝑋 ↔ (𝑋 + -𝑋) = 0)) |
| 12 | 2, 11 | mpdan 687 | . 2 ⊢ (𝑋 ∈ ℂ → (((invg‘ℂfld)‘𝑋) = -𝑋 ↔ (𝑋 + -𝑋) = 0)) |
| 13 | 1, 12 | mpbird 257 | 1 ⊢ (𝑋 ∈ ℂ → ((invg‘ℂfld)‘𝑋) = -𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ‘cfv 6499 (class class class)co 7369 ℂcc 11044 0cc0 11046 + caddc 11049 -cneg 11384 Grpcgrp 18848 invgcminusg 18849 Ringcrg 20154 ℂfldccnfld 21297 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11102 ax-resscn 11103 ax-1cn 11104 ax-icn 11105 ax-addcl 11106 ax-addrcl 11107 ax-mulcl 11108 ax-mulrcl 11109 ax-mulcom 11110 ax-addass 11111 ax-mulass 11112 ax-distr 11113 ax-i2m1 11114 ax-1ne0 11115 ax-1rid 11116 ax-rnegex 11117 ax-rrecex 11118 ax-cnre 11119 ax-pre-lttri 11120 ax-pre-lttrn 11121 ax-pre-ltadd 11122 ax-pre-mulgt0 11123 ax-addf 11125 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-pnf 11188 df-mnf 11189 df-xr 11190 df-ltxr 11191 df-le 11192 df-sub 11385 df-neg 11386 df-nn 12165 df-2 12227 df-3 12228 df-4 12229 df-5 12230 df-6 12231 df-7 12232 df-8 12233 df-9 12234 df-n0 12421 df-z 12508 df-dec 12628 df-uz 12772 df-fz 13447 df-struct 17094 df-sets 17111 df-slot 17129 df-ndx 17141 df-base 17157 df-plusg 17210 df-mulr 17211 df-starv 17212 df-tset 17216 df-ple 17217 df-ds 17219 df-unif 17220 df-0g 17381 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-grp 18851 df-minusg 18852 df-cmn 19697 df-mgp 20062 df-ring 20156 df-cring 20157 df-cnfld 21298 |
| This theorem is referenced by: cnfldsub 21340 cnfldmulg 21346 cnsubglem 21358 zringlpirlem1 21405 prmirred 21417 clmneg 25015 cnncvsabsnegdemo 25099 cphsqrtcl3 25121 taylply2 26309 taylply2OLD 26310 qrngneg 27568 constrsdrg 33759 rngunsnply 43152 |
| Copyright terms: Public domain | W3C validator |