| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmodindp1 | Structured version Visualization version GIF version | ||
| Description: Two independent (non-colinear) vectors have nonzero sum. (Contributed by NM, 22-Apr-2015.) |
| Ref | Expression |
|---|---|
| lmodindp1.v | ⊢ 𝑉 = (Base‘𝑊) |
| lmodindp1.p | ⊢ + = (+g‘𝑊) |
| lmodindp1.o | ⊢ 0 = (0g‘𝑊) |
| lmodindp1.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| lmodindp1.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lmodindp1.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| lmodindp1.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| lmodindp1.q | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
| Ref | Expression |
|---|---|
| lmodindp1 | ⊢ (𝜑 → (𝑋 + 𝑌) ≠ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodindp1.q | . 2 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
| 2 | lmodindp1.w | . . . . . . . 8 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 3 | lmodindp1.x | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 4 | lmodindp1.v | . . . . . . . . 9 ⊢ 𝑉 = (Base‘𝑊) | |
| 5 | eqid 2729 | . . . . . . . . 9 ⊢ (invg‘𝑊) = (invg‘𝑊) | |
| 6 | lmodindp1.n | . . . . . . . . 9 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 7 | 4, 5, 6 | lspsnneg 20909 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{((invg‘𝑊)‘𝑋)}) = (𝑁‘{𝑋})) |
| 8 | 2, 3, 7 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → (𝑁‘{((invg‘𝑊)‘𝑋)}) = (𝑁‘{𝑋})) |
| 9 | 8 | eqcomd 2735 | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{((invg‘𝑊)‘𝑋)})) |
| 10 | 9 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) = 0 ) → (𝑁‘{𝑋}) = (𝑁‘{((invg‘𝑊)‘𝑋)})) |
| 11 | lmodgrp 20770 | . . . . . . . . . 10 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) | |
| 12 | 2, 11 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑊 ∈ Grp) |
| 13 | lmodindp1.y | . . . . . . . . 9 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
| 14 | lmodindp1.p | . . . . . . . . . 10 ⊢ + = (+g‘𝑊) | |
| 15 | lmodindp1.o | . . . . . . . . . 10 ⊢ 0 = (0g‘𝑊) | |
| 16 | 4, 14, 15, 5 | grpinvid1 18870 | . . . . . . . . 9 ⊢ ((𝑊 ∈ Grp ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (((invg‘𝑊)‘𝑋) = 𝑌 ↔ (𝑋 + 𝑌) = 0 )) |
| 17 | 12, 3, 13, 16 | syl3anc 1373 | . . . . . . . 8 ⊢ (𝜑 → (((invg‘𝑊)‘𝑋) = 𝑌 ↔ (𝑋 + 𝑌) = 0 )) |
| 18 | 17 | biimpar 477 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) = 0 ) → ((invg‘𝑊)‘𝑋) = 𝑌) |
| 19 | 18 | sneqd 4589 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) = 0 ) → {((invg‘𝑊)‘𝑋)} = {𝑌}) |
| 20 | 19 | fveq2d 6826 | . . . . 5 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) = 0 ) → (𝑁‘{((invg‘𝑊)‘𝑋)}) = (𝑁‘{𝑌})) |
| 21 | 10, 20 | eqtrd 2764 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) = 0 ) → (𝑁‘{𝑋}) = (𝑁‘{𝑌})) |
| 22 | 21 | ex 412 | . . 3 ⊢ (𝜑 → ((𝑋 + 𝑌) = 0 → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))) |
| 23 | 22 | necon3d 2946 | . 2 ⊢ (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) → (𝑋 + 𝑌) ≠ 0 )) |
| 24 | 1, 23 | mpd 15 | 1 ⊢ (𝜑 → (𝑋 + 𝑌) ≠ 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 {csn 4577 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 +gcplusg 17161 0gc0g 17343 Grpcgrp 18812 invgcminusg 18813 LModclmod 20763 LSpanclspn 20874 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-0g 17345 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-grp 18815 df-minusg 18816 df-sbg 18817 df-mgp 20026 df-ur 20067 df-ring 20120 df-lmod 20765 df-lss 20835 df-lsp 20875 |
| This theorem is referenced by: lcfrlem17 41538 mapdh6aN 41714 mapdh6eN 41719 hdmap1l6a 41788 hdmap1l6e 41793 hdmaprnlem3eN 41837 |
| Copyright terms: Public domain | W3C validator |