MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodindp1 Structured version   Visualization version   GIF version

Theorem lmodindp1 20917
Description: Two independent (non-colinear) vectors have nonzero sum. (Contributed by NM, 22-Apr-2015.)
Hypotheses
Ref Expression
lmodindp1.v 𝑉 = (Base‘𝑊)
lmodindp1.p + = (+g𝑊)
lmodindp1.o 0 = (0g𝑊)
lmodindp1.n 𝑁 = (LSpan‘𝑊)
lmodindp1.w (𝜑𝑊 ∈ LMod)
lmodindp1.x (𝜑𝑋𝑉)
lmodindp1.y (𝜑𝑌𝑉)
lmodindp1.q (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
Assertion
Ref Expression
lmodindp1 (𝜑 → (𝑋 + 𝑌) ≠ 0 )

Proof of Theorem lmodindp1
StepHypRef Expression
1 lmodindp1.q . 2 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
2 lmodindp1.w . . . . . . . 8 (𝜑𝑊 ∈ LMod)
3 lmodindp1.x . . . . . . . 8 (𝜑𝑋𝑉)
4 lmodindp1.v . . . . . . . . 9 𝑉 = (Base‘𝑊)
5 eqid 2729 . . . . . . . . 9 (invg𝑊) = (invg𝑊)
6 lmodindp1.n . . . . . . . . 9 𝑁 = (LSpan‘𝑊)
74, 5, 6lspsnneg 20909 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{((invg𝑊)‘𝑋)}) = (𝑁‘{𝑋}))
82, 3, 7syl2anc 584 . . . . . . 7 (𝜑 → (𝑁‘{((invg𝑊)‘𝑋)}) = (𝑁‘{𝑋}))
98eqcomd 2735 . . . . . 6 (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{((invg𝑊)‘𝑋)}))
109adantr 480 . . . . 5 ((𝜑 ∧ (𝑋 + 𝑌) = 0 ) → (𝑁‘{𝑋}) = (𝑁‘{((invg𝑊)‘𝑋)}))
11 lmodgrp 20770 . . . . . . . . . 10 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
122, 11syl 17 . . . . . . . . 9 (𝜑𝑊 ∈ Grp)
13 lmodindp1.y . . . . . . . . 9 (𝜑𝑌𝑉)
14 lmodindp1.p . . . . . . . . . 10 + = (+g𝑊)
15 lmodindp1.o . . . . . . . . . 10 0 = (0g𝑊)
164, 14, 15, 5grpinvid1 18870 . . . . . . . . 9 ((𝑊 ∈ Grp ∧ 𝑋𝑉𝑌𝑉) → (((invg𝑊)‘𝑋) = 𝑌 ↔ (𝑋 + 𝑌) = 0 ))
1712, 3, 13, 16syl3anc 1373 . . . . . . . 8 (𝜑 → (((invg𝑊)‘𝑋) = 𝑌 ↔ (𝑋 + 𝑌) = 0 ))
1817biimpar 477 . . . . . . 7 ((𝜑 ∧ (𝑋 + 𝑌) = 0 ) → ((invg𝑊)‘𝑋) = 𝑌)
1918sneqd 4589 . . . . . 6 ((𝜑 ∧ (𝑋 + 𝑌) = 0 ) → {((invg𝑊)‘𝑋)} = {𝑌})
2019fveq2d 6826 . . . . 5 ((𝜑 ∧ (𝑋 + 𝑌) = 0 ) → (𝑁‘{((invg𝑊)‘𝑋)}) = (𝑁‘{𝑌}))
2110, 20eqtrd 2764 . . . 4 ((𝜑 ∧ (𝑋 + 𝑌) = 0 ) → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))
2221ex 412 . . 3 (𝜑 → ((𝑋 + 𝑌) = 0 → (𝑁‘{𝑋}) = (𝑁‘{𝑌})))
2322necon3d 2946 . 2 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) → (𝑋 + 𝑌) ≠ 0 ))
241, 23mpd 15 1 (𝜑 → (𝑋 + 𝑌) ≠ 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  {csn 4577  cfv 6482  (class class class)co 7349  Basecbs 17120  +gcplusg 17161  0gc0g 17343  Grpcgrp 18812  invgcminusg 18813  LModclmod 20763  LSpanclspn 20874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-0g 17345  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-grp 18815  df-minusg 18816  df-sbg 18817  df-mgp 20026  df-ur 20067  df-ring 20120  df-lmod 20765  df-lss 20835  df-lsp 20875
This theorem is referenced by:  lcfrlem17  41538  mapdh6aN  41714  mapdh6eN  41719  hdmap1l6a  41788  hdmap1l6e  41793  hdmaprnlem3eN  41837
  Copyright terms: Public domain W3C validator