![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmodindp1 | Structured version Visualization version GIF version |
Description: Two independent (non-colinear) vectors have nonzero sum. (Contributed by NM, 22-Apr-2015.) |
Ref | Expression |
---|---|
lmodindp1.v | ⊢ 𝑉 = (Base‘𝑊) |
lmodindp1.p | ⊢ + = (+g‘𝑊) |
lmodindp1.o | ⊢ 0 = (0g‘𝑊) |
lmodindp1.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lmodindp1.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lmodindp1.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
lmodindp1.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
lmodindp1.q | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
Ref | Expression |
---|---|
lmodindp1 | ⊢ (𝜑 → (𝑋 + 𝑌) ≠ 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodindp1.q | . 2 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
2 | lmodindp1.w | . . . . . . . 8 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
3 | lmodindp1.x | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
4 | lmodindp1.v | . . . . . . . . 9 ⊢ 𝑉 = (Base‘𝑊) | |
5 | eqid 2728 | . . . . . . . . 9 ⊢ (invg‘𝑊) = (invg‘𝑊) | |
6 | lmodindp1.n | . . . . . . . . 9 ⊢ 𝑁 = (LSpan‘𝑊) | |
7 | 4, 5, 6 | lspsnneg 20889 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{((invg‘𝑊)‘𝑋)}) = (𝑁‘{𝑋})) |
8 | 2, 3, 7 | syl2anc 583 | . . . . . . 7 ⊢ (𝜑 → (𝑁‘{((invg‘𝑊)‘𝑋)}) = (𝑁‘{𝑋})) |
9 | 8 | eqcomd 2734 | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{((invg‘𝑊)‘𝑋)})) |
10 | 9 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) = 0 ) → (𝑁‘{𝑋}) = (𝑁‘{((invg‘𝑊)‘𝑋)})) |
11 | lmodgrp 20749 | . . . . . . . . . 10 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) | |
12 | 2, 11 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑊 ∈ Grp) |
13 | lmodindp1.y | . . . . . . . . 9 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
14 | lmodindp1.p | . . . . . . . . . 10 ⊢ + = (+g‘𝑊) | |
15 | lmodindp1.o | . . . . . . . . . 10 ⊢ 0 = (0g‘𝑊) | |
16 | 4, 14, 15, 5 | grpinvid1 18947 | . . . . . . . . 9 ⊢ ((𝑊 ∈ Grp ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (((invg‘𝑊)‘𝑋) = 𝑌 ↔ (𝑋 + 𝑌) = 0 )) |
17 | 12, 3, 13, 16 | syl3anc 1369 | . . . . . . . 8 ⊢ (𝜑 → (((invg‘𝑊)‘𝑋) = 𝑌 ↔ (𝑋 + 𝑌) = 0 )) |
18 | 17 | biimpar 477 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) = 0 ) → ((invg‘𝑊)‘𝑋) = 𝑌) |
19 | 18 | sneqd 4641 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) = 0 ) → {((invg‘𝑊)‘𝑋)} = {𝑌}) |
20 | 19 | fveq2d 6901 | . . . . 5 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) = 0 ) → (𝑁‘{((invg‘𝑊)‘𝑋)}) = (𝑁‘{𝑌})) |
21 | 10, 20 | eqtrd 2768 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) = 0 ) → (𝑁‘{𝑋}) = (𝑁‘{𝑌})) |
22 | 21 | ex 412 | . . 3 ⊢ (𝜑 → ((𝑋 + 𝑌) = 0 → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))) |
23 | 22 | necon3d 2958 | . 2 ⊢ (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) → (𝑋 + 𝑌) ≠ 0 )) |
24 | 1, 23 | mpd 15 | 1 ⊢ (𝜑 → (𝑋 + 𝑌) ≠ 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ≠ wne 2937 {csn 4629 ‘cfv 6548 (class class class)co 7420 Basecbs 17179 +gcplusg 17232 0gc0g 17420 Grpcgrp 18889 invgcminusg 18890 LModclmod 20742 LSpanclspn 20854 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-er 8724 df-en 8964 df-dom 8965 df-sdom 8966 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-2 12305 df-sets 17132 df-slot 17150 df-ndx 17162 df-base 17180 df-plusg 17245 df-0g 17422 df-mgm 18599 df-sgrp 18678 df-mnd 18694 df-grp 18892 df-minusg 18893 df-sbg 18894 df-mgp 20074 df-ur 20121 df-ring 20174 df-lmod 20744 df-lss 20815 df-lsp 20855 |
This theorem is referenced by: lcfrlem17 41032 mapdh6aN 41208 mapdh6eN 41213 hdmap1l6a 41282 hdmap1l6e 41287 hdmaprnlem3eN 41331 |
Copyright terms: Public domain | W3C validator |