| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmodindp1 | Structured version Visualization version GIF version | ||
| Description: Two independent (non-colinear) vectors have nonzero sum. (Contributed by NM, 22-Apr-2015.) |
| Ref | Expression |
|---|---|
| lmodindp1.v | ⊢ 𝑉 = (Base‘𝑊) |
| lmodindp1.p | ⊢ + = (+g‘𝑊) |
| lmodindp1.o | ⊢ 0 = (0g‘𝑊) |
| lmodindp1.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| lmodindp1.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lmodindp1.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| lmodindp1.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| lmodindp1.q | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
| Ref | Expression |
|---|---|
| lmodindp1 | ⊢ (𝜑 → (𝑋 + 𝑌) ≠ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodindp1.q | . 2 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
| 2 | lmodindp1.w | . . . . . . . 8 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 3 | lmodindp1.x | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 4 | lmodindp1.v | . . . . . . . . 9 ⊢ 𝑉 = (Base‘𝑊) | |
| 5 | eqid 2735 | . . . . . . . . 9 ⊢ (invg‘𝑊) = (invg‘𝑊) | |
| 6 | lmodindp1.n | . . . . . . . . 9 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 7 | 4, 5, 6 | lspsnneg 20963 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{((invg‘𝑊)‘𝑋)}) = (𝑁‘{𝑋})) |
| 8 | 2, 3, 7 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → (𝑁‘{((invg‘𝑊)‘𝑋)}) = (𝑁‘{𝑋})) |
| 9 | 8 | eqcomd 2741 | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{((invg‘𝑊)‘𝑋)})) |
| 10 | 9 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) = 0 ) → (𝑁‘{𝑋}) = (𝑁‘{((invg‘𝑊)‘𝑋)})) |
| 11 | lmodgrp 20824 | . . . . . . . . . 10 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) | |
| 12 | 2, 11 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑊 ∈ Grp) |
| 13 | lmodindp1.y | . . . . . . . . 9 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
| 14 | lmodindp1.p | . . . . . . . . . 10 ⊢ + = (+g‘𝑊) | |
| 15 | lmodindp1.o | . . . . . . . . . 10 ⊢ 0 = (0g‘𝑊) | |
| 16 | 4, 14, 15, 5 | grpinvid1 18974 | . . . . . . . . 9 ⊢ ((𝑊 ∈ Grp ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (((invg‘𝑊)‘𝑋) = 𝑌 ↔ (𝑋 + 𝑌) = 0 )) |
| 17 | 12, 3, 13, 16 | syl3anc 1373 | . . . . . . . 8 ⊢ (𝜑 → (((invg‘𝑊)‘𝑋) = 𝑌 ↔ (𝑋 + 𝑌) = 0 )) |
| 18 | 17 | biimpar 477 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) = 0 ) → ((invg‘𝑊)‘𝑋) = 𝑌) |
| 19 | 18 | sneqd 4613 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) = 0 ) → {((invg‘𝑊)‘𝑋)} = {𝑌}) |
| 20 | 19 | fveq2d 6880 | . . . . 5 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) = 0 ) → (𝑁‘{((invg‘𝑊)‘𝑋)}) = (𝑁‘{𝑌})) |
| 21 | 10, 20 | eqtrd 2770 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) = 0 ) → (𝑁‘{𝑋}) = (𝑁‘{𝑌})) |
| 22 | 21 | ex 412 | . . 3 ⊢ (𝜑 → ((𝑋 + 𝑌) = 0 → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))) |
| 23 | 22 | necon3d 2953 | . 2 ⊢ (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) → (𝑋 + 𝑌) ≠ 0 )) |
| 24 | 1, 23 | mpd 15 | 1 ⊢ (𝜑 → (𝑋 + 𝑌) ≠ 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 {csn 4601 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 +gcplusg 17271 0gc0g 17453 Grpcgrp 18916 invgcminusg 18917 LModclmod 20817 LSpanclspn 20928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-plusg 17284 df-0g 17455 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-grp 18919 df-minusg 18920 df-sbg 18921 df-mgp 20101 df-ur 20142 df-ring 20195 df-lmod 20819 df-lss 20889 df-lsp 20929 |
| This theorem is referenced by: lcfrlem17 41578 mapdh6aN 41754 mapdh6eN 41759 hdmap1l6a 41828 hdmap1l6e 41833 hdmaprnlem3eN 41877 |
| Copyright terms: Public domain | W3C validator |