MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodindp1 Structured version   Visualization version   GIF version

Theorem lmodindp1 19409
Description: Two independent (non-colinear) vectors have nonzero sum. (Contributed by NM, 22-Apr-2015.)
Hypotheses
Ref Expression
lmodindp1.v 𝑉 = (Base‘𝑊)
lmodindp1.p + = (+g𝑊)
lmodindp1.o 0 = (0g𝑊)
lmodindp1.n 𝑁 = (LSpan‘𝑊)
lmodindp1.w (𝜑𝑊 ∈ LMod)
lmodindp1.x (𝜑𝑋𝑉)
lmodindp1.y (𝜑𝑌𝑉)
lmodindp1.q (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
Assertion
Ref Expression
lmodindp1 (𝜑 → (𝑋 + 𝑌) ≠ 0 )

Proof of Theorem lmodindp1
StepHypRef Expression
1 lmodindp1.q . 2 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
2 lmodindp1.w . . . . . . . 8 (𝜑𝑊 ∈ LMod)
3 lmodindp1.x . . . . . . . 8 (𝜑𝑋𝑉)
4 lmodindp1.v . . . . . . . . 9 𝑉 = (Base‘𝑊)
5 eqid 2778 . . . . . . . . 9 (invg𝑊) = (invg𝑊)
6 lmodindp1.n . . . . . . . . 9 𝑁 = (LSpan‘𝑊)
74, 5, 6lspsnneg 19401 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{((invg𝑊)‘𝑋)}) = (𝑁‘{𝑋}))
82, 3, 7syl2anc 579 . . . . . . 7 (𝜑 → (𝑁‘{((invg𝑊)‘𝑋)}) = (𝑁‘{𝑋}))
98eqcomd 2784 . . . . . 6 (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{((invg𝑊)‘𝑋)}))
109adantr 474 . . . . 5 ((𝜑 ∧ (𝑋 + 𝑌) = 0 ) → (𝑁‘{𝑋}) = (𝑁‘{((invg𝑊)‘𝑋)}))
11 lmodgrp 19262 . . . . . . . . . 10 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
122, 11syl 17 . . . . . . . . 9 (𝜑𝑊 ∈ Grp)
13 lmodindp1.y . . . . . . . . 9 (𝜑𝑌𝑉)
14 lmodindp1.p . . . . . . . . . 10 + = (+g𝑊)
15 lmodindp1.o . . . . . . . . . 10 0 = (0g𝑊)
164, 14, 15, 5grpinvid1 17857 . . . . . . . . 9 ((𝑊 ∈ Grp ∧ 𝑋𝑉𝑌𝑉) → (((invg𝑊)‘𝑋) = 𝑌 ↔ (𝑋 + 𝑌) = 0 ))
1712, 3, 13, 16syl3anc 1439 . . . . . . . 8 (𝜑 → (((invg𝑊)‘𝑋) = 𝑌 ↔ (𝑋 + 𝑌) = 0 ))
1817biimpar 471 . . . . . . 7 ((𝜑 ∧ (𝑋 + 𝑌) = 0 ) → ((invg𝑊)‘𝑋) = 𝑌)
1918sneqd 4410 . . . . . 6 ((𝜑 ∧ (𝑋 + 𝑌) = 0 ) → {((invg𝑊)‘𝑋)} = {𝑌})
2019fveq2d 6450 . . . . 5 ((𝜑 ∧ (𝑋 + 𝑌) = 0 ) → (𝑁‘{((invg𝑊)‘𝑋)}) = (𝑁‘{𝑌}))
2110, 20eqtrd 2814 . . . 4 ((𝜑 ∧ (𝑋 + 𝑌) = 0 ) → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))
2221ex 403 . . 3 (𝜑 → ((𝑋 + 𝑌) = 0 → (𝑁‘{𝑋}) = (𝑁‘{𝑌})))
2322necon3d 2990 . 2 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) → (𝑋 + 𝑌) ≠ 0 ))
241, 23mpd 15 1 (𝜑 → (𝑋 + 𝑌) ≠ 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1601  wcel 2107  wne 2969  {csn 4398  cfv 6135  (class class class)co 6922  Basecbs 16255  +gcplusg 16338  0gc0g 16486  Grpcgrp 17809  invgcminusg 17810  LModclmod 19255  LSpanclspn 19366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-nn 11375  df-2 11438  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-plusg 16351  df-0g 16488  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-grp 17812  df-minusg 17813  df-sbg 17814  df-mgp 18877  df-ur 18889  df-ring 18936  df-lmod 19257  df-lss 19325  df-lsp 19367
This theorem is referenced by:  lcfrlem17  37713  mapdh6aN  37889  mapdh6eN  37894  hdmap1l6a  37963  hdmap1l6e  37968  hdmaprnlem3eN  38012
  Copyright terms: Public domain W3C validator