MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodindp1 Structured version   Visualization version   GIF version

Theorem lmodindp1 19789
Description: Two independent (non-colinear) vectors have nonzero sum. (Contributed by NM, 22-Apr-2015.)
Hypotheses
Ref Expression
lmodindp1.v 𝑉 = (Base‘𝑊)
lmodindp1.p + = (+g𝑊)
lmodindp1.o 0 = (0g𝑊)
lmodindp1.n 𝑁 = (LSpan‘𝑊)
lmodindp1.w (𝜑𝑊 ∈ LMod)
lmodindp1.x (𝜑𝑋𝑉)
lmodindp1.y (𝜑𝑌𝑉)
lmodindp1.q (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
Assertion
Ref Expression
lmodindp1 (𝜑 → (𝑋 + 𝑌) ≠ 0 )

Proof of Theorem lmodindp1
StepHypRef Expression
1 lmodindp1.q . 2 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
2 lmodindp1.w . . . . . . . 8 (𝜑𝑊 ∈ LMod)
3 lmodindp1.x . . . . . . . 8 (𝜑𝑋𝑉)
4 lmodindp1.v . . . . . . . . 9 𝑉 = (Base‘𝑊)
5 eqid 2824 . . . . . . . . 9 (invg𝑊) = (invg𝑊)
6 lmodindp1.n . . . . . . . . 9 𝑁 = (LSpan‘𝑊)
74, 5, 6lspsnneg 19781 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{((invg𝑊)‘𝑋)}) = (𝑁‘{𝑋}))
82, 3, 7syl2anc 587 . . . . . . 7 (𝜑 → (𝑁‘{((invg𝑊)‘𝑋)}) = (𝑁‘{𝑋}))
98eqcomd 2830 . . . . . 6 (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{((invg𝑊)‘𝑋)}))
109adantr 484 . . . . 5 ((𝜑 ∧ (𝑋 + 𝑌) = 0 ) → (𝑁‘{𝑋}) = (𝑁‘{((invg𝑊)‘𝑋)}))
11 lmodgrp 19644 . . . . . . . . . 10 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
122, 11syl 17 . . . . . . . . 9 (𝜑𝑊 ∈ Grp)
13 lmodindp1.y . . . . . . . . 9 (𝜑𝑌𝑉)
14 lmodindp1.p . . . . . . . . . 10 + = (+g𝑊)
15 lmodindp1.o . . . . . . . . . 10 0 = (0g𝑊)
164, 14, 15, 5grpinvid1 18157 . . . . . . . . 9 ((𝑊 ∈ Grp ∧ 𝑋𝑉𝑌𝑉) → (((invg𝑊)‘𝑋) = 𝑌 ↔ (𝑋 + 𝑌) = 0 ))
1712, 3, 13, 16syl3anc 1368 . . . . . . . 8 (𝜑 → (((invg𝑊)‘𝑋) = 𝑌 ↔ (𝑋 + 𝑌) = 0 ))
1817biimpar 481 . . . . . . 7 ((𝜑 ∧ (𝑋 + 𝑌) = 0 ) → ((invg𝑊)‘𝑋) = 𝑌)
1918sneqd 4563 . . . . . 6 ((𝜑 ∧ (𝑋 + 𝑌) = 0 ) → {((invg𝑊)‘𝑋)} = {𝑌})
2019fveq2d 6666 . . . . 5 ((𝜑 ∧ (𝑋 + 𝑌) = 0 ) → (𝑁‘{((invg𝑊)‘𝑋)}) = (𝑁‘{𝑌}))
2110, 20eqtrd 2859 . . . 4 ((𝜑 ∧ (𝑋 + 𝑌) = 0 ) → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))
2221ex 416 . . 3 (𝜑 → ((𝑋 + 𝑌) = 0 → (𝑁‘{𝑋}) = (𝑁‘{𝑌})))
2322necon3d 3035 . 2 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) → (𝑋 + 𝑌) ≠ 0 ))
241, 23mpd 15 1 (𝜑 → (𝑋 + 𝑌) ≠ 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115  wne 3014  {csn 4551  cfv 6344  (class class class)co 7150  Basecbs 16486  +gcplusg 16568  0gc0g 16716  Grpcgrp 18106  invgcminusg 18107  LModclmod 19637  LSpanclspn 19746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7456  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3483  df-sbc 3760  df-csb 3868  df-dif 3923  df-un 3925  df-in 3927  df-ss 3937  df-pss 3939  df-nul 4278  df-if 4452  df-pw 4525  df-sn 4552  df-pr 4554  df-tp 4556  df-op 4558  df-uni 4826  df-int 4864  df-iun 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6136  df-ord 6182  df-on 6183  df-lim 6184  df-suc 6185  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7576  df-1st 7685  df-2nd 7686  df-wrecs 7944  df-recs 8005  df-rdg 8043  df-er 8286  df-en 8507  df-dom 8508  df-sdom 8509  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-2 11700  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-plusg 16581  df-0g 16718  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-grp 18109  df-minusg 18110  df-sbg 18111  df-mgp 19243  df-ur 19255  df-ring 19302  df-lmod 19639  df-lss 19707  df-lsp 19747
This theorem is referenced by:  lcfrlem17  38801  mapdh6aN  38977  mapdh6eN  38982  hdmap1l6a  39051  hdmap1l6e  39056  hdmaprnlem3eN  39100
  Copyright terms: Public domain W3C validator