MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subginv Structured version   Visualization version   GIF version

Theorem subginv 19065
Description: The inverse of an element in a subgroup is the same as the inverse in the larger group. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
subg0.h 𝐻 = (𝐺s 𝑆)
subginv.i 𝐼 = (invg𝐺)
subginv.j 𝐽 = (invg𝐻)
Assertion
Ref Expression
subginv ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆) → (𝐼𝑋) = (𝐽𝑋))

Proof of Theorem subginv
StepHypRef Expression
1 subg0.h . . . . 5 𝐻 = (𝐺s 𝑆)
21subggrp 19061 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp)
31subgbas 19062 . . . . . 6 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻))
43eleq2d 2814 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → (𝑋𝑆𝑋 ∈ (Base‘𝐻)))
54biimpa 476 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆) → 𝑋 ∈ (Base‘𝐻))
6 eqid 2729 . . . . 5 (Base‘𝐻) = (Base‘𝐻)
7 eqid 2729 . . . . 5 (+g𝐻) = (+g𝐻)
8 eqid 2729 . . . . 5 (0g𝐻) = (0g𝐻)
9 subginv.j . . . . 5 𝐽 = (invg𝐻)
106, 7, 8, 9grprinv 18922 . . . 4 ((𝐻 ∈ Grp ∧ 𝑋 ∈ (Base‘𝐻)) → (𝑋(+g𝐻)(𝐽𝑋)) = (0g𝐻))
112, 5, 10syl2an2r 685 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆) → (𝑋(+g𝐻)(𝐽𝑋)) = (0g𝐻))
12 eqid 2729 . . . . . 6 (+g𝐺) = (+g𝐺)
131, 12ressplusg 17254 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → (+g𝐺) = (+g𝐻))
1413adantr 480 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆) → (+g𝐺) = (+g𝐻))
1514oveqd 7404 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆) → (𝑋(+g𝐺)(𝐽𝑋)) = (𝑋(+g𝐻)(𝐽𝑋)))
16 eqid 2729 . . . . 5 (0g𝐺) = (0g𝐺)
171, 16subg0 19064 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → (0g𝐺) = (0g𝐻))
1817adantr 480 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆) → (0g𝐺) = (0g𝐻))
1911, 15, 183eqtr4d 2774 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆) → (𝑋(+g𝐺)(𝐽𝑋)) = (0g𝐺))
20 subgrcl 19063 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
2120adantr 480 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆) → 𝐺 ∈ Grp)
22 eqid 2729 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
2322subgss 19059 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
2423sselda 3946 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆) → 𝑋 ∈ (Base‘𝐺))
256, 9grpinvcl 18919 . . . . . . . 8 ((𝐻 ∈ Grp ∧ 𝑋 ∈ (Base‘𝐻)) → (𝐽𝑋) ∈ (Base‘𝐻))
2625ex 412 . . . . . . 7 (𝐻 ∈ Grp → (𝑋 ∈ (Base‘𝐻) → (𝐽𝑋) ∈ (Base‘𝐻)))
272, 26syl 17 . . . . . 6 (𝑆 ∈ (SubGrp‘𝐺) → (𝑋 ∈ (Base‘𝐻) → (𝐽𝑋) ∈ (Base‘𝐻)))
283eleq2d 2814 . . . . . 6 (𝑆 ∈ (SubGrp‘𝐺) → ((𝐽𝑋) ∈ 𝑆 ↔ (𝐽𝑋) ∈ (Base‘𝐻)))
2927, 4, 283imtr4d 294 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → (𝑋𝑆 → (𝐽𝑋) ∈ 𝑆))
3029imp 406 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆) → (𝐽𝑋) ∈ 𝑆)
3123sselda 3946 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐽𝑋) ∈ 𝑆) → (𝐽𝑋) ∈ (Base‘𝐺))
3230, 31syldan 591 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆) → (𝐽𝑋) ∈ (Base‘𝐺))
33 subginv.i . . . 4 𝐼 = (invg𝐺)
3422, 12, 16, 33grpinvid1 18923 . . 3 ((𝐺 ∈ Grp ∧ 𝑋 ∈ (Base‘𝐺) ∧ (𝐽𝑋) ∈ (Base‘𝐺)) → ((𝐼𝑋) = (𝐽𝑋) ↔ (𝑋(+g𝐺)(𝐽𝑋)) = (0g𝐺)))
3521, 24, 32, 34syl3anc 1373 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆) → ((𝐼𝑋) = (𝐽𝑋) ↔ (𝑋(+g𝐺)(𝐽𝑋)) = (0g𝐺)))
3619, 35mpbird 257 1 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆) → (𝐼𝑋) = (𝐽𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cfv 6511  (class class class)co 7387  Basecbs 17179  s cress 17200  +gcplusg 17220  0gc0g 17402  Grpcgrp 18865  invgcminusg 18866  SubGrpcsubg 19052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-subg 19055
This theorem is referenced by:  subginvcl  19067  subgsub  19070  subgmulg  19072  zringlpirlem1  21372  prmirred  21384  psgninv  21491  mplneg  21919  subgtgp  23992  clmneg  24981  qrngneg  27534
  Copyright terms: Public domain W3C validator