![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subginv | Structured version Visualization version GIF version |
Description: The inverse of an element in a subgroup is the same as the inverse in the larger group. (Contributed by Mario Carneiro, 2-Dec-2014.) |
Ref | Expression |
---|---|
subg0.h | ⊢ 𝐻 = (𝐺 ↾s 𝑆) |
subginv.i | ⊢ 𝐼 = (invg‘𝐺) |
subginv.j | ⊢ 𝐽 = (invg‘𝐻) |
Ref | Expression |
---|---|
subginv | ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → (𝐼‘𝑋) = (𝐽‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subg0.h | . . . . 5 ⊢ 𝐻 = (𝐺 ↾s 𝑆) | |
2 | 1 | subggrp 19003 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp) |
3 | 1 | subgbas 19004 | . . . . . 6 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻)) |
4 | 3 | eleq2d 2820 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (𝑋 ∈ 𝑆 ↔ 𝑋 ∈ (Base‘𝐻))) |
5 | 4 | biimpa 478 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ (Base‘𝐻)) |
6 | eqid 2733 | . . . . 5 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
7 | eqid 2733 | . . . . 5 ⊢ (+g‘𝐻) = (+g‘𝐻) | |
8 | eqid 2733 | . . . . 5 ⊢ (0g‘𝐻) = (0g‘𝐻) | |
9 | subginv.j | . . . . 5 ⊢ 𝐽 = (invg‘𝐻) | |
10 | 6, 7, 8, 9 | grprinv 18871 | . . . 4 ⊢ ((𝐻 ∈ Grp ∧ 𝑋 ∈ (Base‘𝐻)) → (𝑋(+g‘𝐻)(𝐽‘𝑋)) = (0g‘𝐻)) |
11 | 2, 5, 10 | syl2an2r 684 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → (𝑋(+g‘𝐻)(𝐽‘𝑋)) = (0g‘𝐻)) |
12 | eqid 2733 | . . . . . 6 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
13 | 1, 12 | ressplusg 17231 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (+g‘𝐺) = (+g‘𝐻)) |
14 | 13 | adantr 482 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → (+g‘𝐺) = (+g‘𝐻)) |
15 | 14 | oveqd 7421 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → (𝑋(+g‘𝐺)(𝐽‘𝑋)) = (𝑋(+g‘𝐻)(𝐽‘𝑋))) |
16 | eqid 2733 | . . . . 5 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
17 | 1, 16 | subg0 19006 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (0g‘𝐺) = (0g‘𝐻)) |
18 | 17 | adantr 482 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → (0g‘𝐺) = (0g‘𝐻)) |
19 | 11, 15, 18 | 3eqtr4d 2783 | . 2 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → (𝑋(+g‘𝐺)(𝐽‘𝑋)) = (0g‘𝐺)) |
20 | subgrcl 19005 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | |
21 | 20 | adantr 482 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → 𝐺 ∈ Grp) |
22 | eqid 2733 | . . . . 5 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
23 | 22 | subgss 19001 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺)) |
24 | 23 | sselda 3981 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ (Base‘𝐺)) |
25 | 6, 9 | grpinvcl 18868 | . . . . . . . 8 ⊢ ((𝐻 ∈ Grp ∧ 𝑋 ∈ (Base‘𝐻)) → (𝐽‘𝑋) ∈ (Base‘𝐻)) |
26 | 25 | ex 414 | . . . . . . 7 ⊢ (𝐻 ∈ Grp → (𝑋 ∈ (Base‘𝐻) → (𝐽‘𝑋) ∈ (Base‘𝐻))) |
27 | 2, 26 | syl 17 | . . . . . 6 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (𝑋 ∈ (Base‘𝐻) → (𝐽‘𝑋) ∈ (Base‘𝐻))) |
28 | 3 | eleq2d 2820 | . . . . . 6 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → ((𝐽‘𝑋) ∈ 𝑆 ↔ (𝐽‘𝑋) ∈ (Base‘𝐻))) |
29 | 27, 4, 28 | 3imtr4d 294 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (𝑋 ∈ 𝑆 → (𝐽‘𝑋) ∈ 𝑆)) |
30 | 29 | imp 408 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → (𝐽‘𝑋) ∈ 𝑆) |
31 | 23 | sselda 3981 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐽‘𝑋) ∈ 𝑆) → (𝐽‘𝑋) ∈ (Base‘𝐺)) |
32 | 30, 31 | syldan 592 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → (𝐽‘𝑋) ∈ (Base‘𝐺)) |
33 | subginv.i | . . . 4 ⊢ 𝐼 = (invg‘𝐺) | |
34 | 22, 12, 16, 33 | grpinvid1 18872 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (Base‘𝐺) ∧ (𝐽‘𝑋) ∈ (Base‘𝐺)) → ((𝐼‘𝑋) = (𝐽‘𝑋) ↔ (𝑋(+g‘𝐺)(𝐽‘𝑋)) = (0g‘𝐺))) |
35 | 21, 24, 32, 34 | syl3anc 1372 | . 2 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → ((𝐼‘𝑋) = (𝐽‘𝑋) ↔ (𝑋(+g‘𝐺)(𝐽‘𝑋)) = (0g‘𝐺))) |
36 | 19, 35 | mpbird 257 | 1 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → (𝐼‘𝑋) = (𝐽‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ‘cfv 6540 (class class class)co 7404 Basecbs 17140 ↾s cress 17169 +gcplusg 17193 0gc0g 17381 Grpcgrp 18815 invgcminusg 18816 SubGrpcsubg 18994 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7720 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7851 df-2nd 7971 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-0g 17383 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-grp 18818 df-minusg 18819 df-subg 18997 |
This theorem is referenced by: subginvcl 19009 subgsub 19012 subgmulg 19014 zringlpirlem1 21016 prmirred 21028 psgninv 21119 mplneg 21551 subgtgp 23591 clmneg 24579 qrngneg 27106 |
Copyright terms: Public domain | W3C validator |