![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subginv | Structured version Visualization version GIF version |
Description: The inverse of an element in a subgroup is the same as the inverse in the larger group. (Contributed by Mario Carneiro, 2-Dec-2014.) |
Ref | Expression |
---|---|
subg0.h | ⊢ 𝐻 = (𝐺 ↾s 𝑆) |
subginv.i | ⊢ 𝐼 = (invg‘𝐺) |
subginv.j | ⊢ 𝐽 = (invg‘𝐻) |
Ref | Expression |
---|---|
subginv | ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → (𝐼‘𝑋) = (𝐽‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subg0.h | . . . . . 6 ⊢ 𝐻 = (𝐺 ↾s 𝑆) | |
2 | 1 | subggrp 17907 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp) |
3 | 2 | adantr 473 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → 𝐻 ∈ Grp) |
4 | 1 | subgbas 17908 | . . . . . 6 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻)) |
5 | 4 | eleq2d 2862 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (𝑋 ∈ 𝑆 ↔ 𝑋 ∈ (Base‘𝐻))) |
6 | 5 | biimpa 469 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ (Base‘𝐻)) |
7 | eqid 2797 | . . . . 5 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
8 | eqid 2797 | . . . . 5 ⊢ (+g‘𝐻) = (+g‘𝐻) | |
9 | eqid 2797 | . . . . 5 ⊢ (0g‘𝐻) = (0g‘𝐻) | |
10 | subginv.j | . . . . 5 ⊢ 𝐽 = (invg‘𝐻) | |
11 | 7, 8, 9, 10 | grprinv 17782 | . . . 4 ⊢ ((𝐻 ∈ Grp ∧ 𝑋 ∈ (Base‘𝐻)) → (𝑋(+g‘𝐻)(𝐽‘𝑋)) = (0g‘𝐻)) |
12 | 3, 6, 11 | syl2anc 580 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → (𝑋(+g‘𝐻)(𝐽‘𝑋)) = (0g‘𝐻)) |
13 | eqid 2797 | . . . . . 6 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
14 | 1, 13 | ressplusg 16311 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (+g‘𝐺) = (+g‘𝐻)) |
15 | 14 | adantr 473 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → (+g‘𝐺) = (+g‘𝐻)) |
16 | 15 | oveqd 6893 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → (𝑋(+g‘𝐺)(𝐽‘𝑋)) = (𝑋(+g‘𝐻)(𝐽‘𝑋))) |
17 | eqid 2797 | . . . . 5 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
18 | 1, 17 | subg0 17910 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (0g‘𝐺) = (0g‘𝐻)) |
19 | 18 | adantr 473 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → (0g‘𝐺) = (0g‘𝐻)) |
20 | 12, 16, 19 | 3eqtr4d 2841 | . 2 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → (𝑋(+g‘𝐺)(𝐽‘𝑋)) = (0g‘𝐺)) |
21 | subgrcl 17909 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | |
22 | 21 | adantr 473 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → 𝐺 ∈ Grp) |
23 | eqid 2797 | . . . . 5 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
24 | 23 | subgss 17905 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺)) |
25 | 24 | sselda 3796 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ (Base‘𝐺)) |
26 | 7, 10 | grpinvcl 17780 | . . . . . . . 8 ⊢ ((𝐻 ∈ Grp ∧ 𝑋 ∈ (Base‘𝐻)) → (𝐽‘𝑋) ∈ (Base‘𝐻)) |
27 | 26 | ex 402 | . . . . . . 7 ⊢ (𝐻 ∈ Grp → (𝑋 ∈ (Base‘𝐻) → (𝐽‘𝑋) ∈ (Base‘𝐻))) |
28 | 2, 27 | syl 17 | . . . . . 6 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (𝑋 ∈ (Base‘𝐻) → (𝐽‘𝑋) ∈ (Base‘𝐻))) |
29 | 4 | eleq2d 2862 | . . . . . 6 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → ((𝐽‘𝑋) ∈ 𝑆 ↔ (𝐽‘𝑋) ∈ (Base‘𝐻))) |
30 | 28, 5, 29 | 3imtr4d 286 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (𝑋 ∈ 𝑆 → (𝐽‘𝑋) ∈ 𝑆)) |
31 | 30 | imp 396 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → (𝐽‘𝑋) ∈ 𝑆) |
32 | 24 | sselda 3796 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐽‘𝑋) ∈ 𝑆) → (𝐽‘𝑋) ∈ (Base‘𝐺)) |
33 | 31, 32 | syldan 586 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → (𝐽‘𝑋) ∈ (Base‘𝐺)) |
34 | subginv.i | . . . 4 ⊢ 𝐼 = (invg‘𝐺) | |
35 | 23, 13, 17, 34 | grpinvid1 17783 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (Base‘𝐺) ∧ (𝐽‘𝑋) ∈ (Base‘𝐺)) → ((𝐼‘𝑋) = (𝐽‘𝑋) ↔ (𝑋(+g‘𝐺)(𝐽‘𝑋)) = (0g‘𝐺))) |
36 | 22, 25, 33, 35 | syl3anc 1491 | . 2 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → ((𝐼‘𝑋) = (𝐽‘𝑋) ↔ (𝑋(+g‘𝐺)(𝐽‘𝑋)) = (0g‘𝐺))) |
37 | 20, 36 | mpbird 249 | 1 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → (𝐼‘𝑋) = (𝐽‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ‘cfv 6099 (class class class)co 6876 Basecbs 16181 ↾s cress 16182 +gcplusg 16264 0gc0g 16412 Grpcgrp 17735 invgcminusg 17736 SubGrpcsubg 17898 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-rep 4962 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 ax-cnex 10278 ax-resscn 10279 ax-1cn 10280 ax-icn 10281 ax-addcl 10282 ax-addrcl 10283 ax-mulcl 10284 ax-mulrcl 10285 ax-mulcom 10286 ax-addass 10287 ax-mulass 10288 ax-distr 10289 ax-i2m1 10290 ax-1ne0 10291 ax-1rid 10292 ax-rnegex 10293 ax-rrecex 10294 ax-cnre 10295 ax-pre-lttri 10296 ax-pre-lttrn 10297 ax-pre-ltadd 10298 ax-pre-mulgt0 10299 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-nel 3073 df-ral 3092 df-rex 3093 df-reu 3094 df-rmo 3095 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-pss 3783 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-tp 4371 df-op 4373 df-uni 4627 df-iun 4710 df-br 4842 df-opab 4904 df-mpt 4921 df-tr 4944 df-id 5218 df-eprel 5223 df-po 5231 df-so 5232 df-fr 5269 df-we 5271 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-pred 5896 df-ord 5942 df-on 5943 df-lim 5944 df-suc 5945 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-riota 6837 df-ov 6879 df-oprab 6880 df-mpt2 6881 df-om 7298 df-wrecs 7643 df-recs 7705 df-rdg 7743 df-er 7980 df-en 8194 df-dom 8195 df-sdom 8196 df-pnf 10363 df-mnf 10364 df-xr 10365 df-ltxr 10366 df-le 10367 df-sub 10556 df-neg 10557 df-nn 11311 df-2 11372 df-ndx 16184 df-slot 16185 df-base 16187 df-sets 16188 df-ress 16189 df-plusg 16277 df-0g 16414 df-mgm 17554 df-sgrp 17596 df-mnd 17607 df-grp 17738 df-minusg 17739 df-subg 17901 |
This theorem is referenced by: subginvcl 17913 subgsub 17916 subgmulg 17918 zringlpirlem1 20151 prmirred 20162 psgninv 20246 subgtgp 22234 clmneg 23205 qrngneg 25661 |
Copyright terms: Public domain | W3C validator |