| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subginv | Structured version Visualization version GIF version | ||
| Description: The inverse of an element in a subgroup is the same as the inverse in the larger group. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| Ref | Expression |
|---|---|
| subg0.h | ⊢ 𝐻 = (𝐺 ↾s 𝑆) |
| subginv.i | ⊢ 𝐼 = (invg‘𝐺) |
| subginv.j | ⊢ 𝐽 = (invg‘𝐻) |
| Ref | Expression |
|---|---|
| subginv | ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → (𝐼‘𝑋) = (𝐽‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subg0.h | . . . . 5 ⊢ 𝐻 = (𝐺 ↾s 𝑆) | |
| 2 | 1 | subggrp 19147 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp) |
| 3 | 1 | subgbas 19148 | . . . . . 6 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻)) |
| 4 | 3 | eleq2d 2827 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (𝑋 ∈ 𝑆 ↔ 𝑋 ∈ (Base‘𝐻))) |
| 5 | 4 | biimpa 476 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ (Base‘𝐻)) |
| 6 | eqid 2737 | . . . . 5 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
| 7 | eqid 2737 | . . . . 5 ⊢ (+g‘𝐻) = (+g‘𝐻) | |
| 8 | eqid 2737 | . . . . 5 ⊢ (0g‘𝐻) = (0g‘𝐻) | |
| 9 | subginv.j | . . . . 5 ⊢ 𝐽 = (invg‘𝐻) | |
| 10 | 6, 7, 8, 9 | grprinv 19008 | . . . 4 ⊢ ((𝐻 ∈ Grp ∧ 𝑋 ∈ (Base‘𝐻)) → (𝑋(+g‘𝐻)(𝐽‘𝑋)) = (0g‘𝐻)) |
| 11 | 2, 5, 10 | syl2an2r 685 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → (𝑋(+g‘𝐻)(𝐽‘𝑋)) = (0g‘𝐻)) |
| 12 | eqid 2737 | . . . . . 6 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 13 | 1, 12 | ressplusg 17334 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (+g‘𝐺) = (+g‘𝐻)) |
| 14 | 13 | adantr 480 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → (+g‘𝐺) = (+g‘𝐻)) |
| 15 | 14 | oveqd 7448 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → (𝑋(+g‘𝐺)(𝐽‘𝑋)) = (𝑋(+g‘𝐻)(𝐽‘𝑋))) |
| 16 | eqid 2737 | . . . . 5 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 17 | 1, 16 | subg0 19150 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (0g‘𝐺) = (0g‘𝐻)) |
| 18 | 17 | adantr 480 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → (0g‘𝐺) = (0g‘𝐻)) |
| 19 | 11, 15, 18 | 3eqtr4d 2787 | . 2 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → (𝑋(+g‘𝐺)(𝐽‘𝑋)) = (0g‘𝐺)) |
| 20 | subgrcl 19149 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | |
| 21 | 20 | adantr 480 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → 𝐺 ∈ Grp) |
| 22 | eqid 2737 | . . . . 5 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 23 | 22 | subgss 19145 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺)) |
| 24 | 23 | sselda 3983 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ (Base‘𝐺)) |
| 25 | 6, 9 | grpinvcl 19005 | . . . . . . . 8 ⊢ ((𝐻 ∈ Grp ∧ 𝑋 ∈ (Base‘𝐻)) → (𝐽‘𝑋) ∈ (Base‘𝐻)) |
| 26 | 25 | ex 412 | . . . . . . 7 ⊢ (𝐻 ∈ Grp → (𝑋 ∈ (Base‘𝐻) → (𝐽‘𝑋) ∈ (Base‘𝐻))) |
| 27 | 2, 26 | syl 17 | . . . . . 6 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (𝑋 ∈ (Base‘𝐻) → (𝐽‘𝑋) ∈ (Base‘𝐻))) |
| 28 | 3 | eleq2d 2827 | . . . . . 6 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → ((𝐽‘𝑋) ∈ 𝑆 ↔ (𝐽‘𝑋) ∈ (Base‘𝐻))) |
| 29 | 27, 4, 28 | 3imtr4d 294 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (𝑋 ∈ 𝑆 → (𝐽‘𝑋) ∈ 𝑆)) |
| 30 | 29 | imp 406 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → (𝐽‘𝑋) ∈ 𝑆) |
| 31 | 23 | sselda 3983 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐽‘𝑋) ∈ 𝑆) → (𝐽‘𝑋) ∈ (Base‘𝐺)) |
| 32 | 30, 31 | syldan 591 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → (𝐽‘𝑋) ∈ (Base‘𝐺)) |
| 33 | subginv.i | . . . 4 ⊢ 𝐼 = (invg‘𝐺) | |
| 34 | 22, 12, 16, 33 | grpinvid1 19009 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (Base‘𝐺) ∧ (𝐽‘𝑋) ∈ (Base‘𝐺)) → ((𝐼‘𝑋) = (𝐽‘𝑋) ↔ (𝑋(+g‘𝐺)(𝐽‘𝑋)) = (0g‘𝐺))) |
| 35 | 21, 24, 32, 34 | syl3anc 1373 | . 2 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → ((𝐼‘𝑋) = (𝐽‘𝑋) ↔ (𝑋(+g‘𝐺)(𝐽‘𝑋)) = (0g‘𝐺))) |
| 36 | 19, 35 | mpbird 257 | 1 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → (𝐼‘𝑋) = (𝐽‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ‘cfv 6561 (class class class)co 7431 Basecbs 17247 ↾s cress 17274 +gcplusg 17297 0gc0g 17484 Grpcgrp 18951 invgcminusg 18952 SubGrpcsubg 19138 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-0g 17486 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-grp 18954 df-minusg 18955 df-subg 19141 |
| This theorem is referenced by: subginvcl 19153 subgsub 19156 subgmulg 19158 zringlpirlem1 21473 prmirred 21485 psgninv 21600 mplneg 22030 subgtgp 24113 clmneg 25114 qrngneg 27667 |
| Copyright terms: Public domain | W3C validator |