MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghminv Structured version   Visualization version   GIF version

Theorem ghminv 19155
Description: A homomorphism of groups preserves inverses. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Hypotheses
Ref Expression
ghminv.b 𝐵 = (Base‘𝑆)
ghminv.y 𝑀 = (invg𝑆)
ghminv.z 𝑁 = (invg𝑇)
Assertion
Ref Expression
ghminv ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝐵) → (𝐹‘(𝑀𝑋)) = (𝑁‘(𝐹𝑋)))

Proof of Theorem ghminv
StepHypRef Expression
1 ghmgrp1 19150 . . . . . 6 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp)
2 ghminv.b . . . . . . 7 𝐵 = (Base‘𝑆)
3 eqid 2729 . . . . . . 7 (+g𝑆) = (+g𝑆)
4 eqid 2729 . . . . . . 7 (0g𝑆) = (0g𝑆)
5 ghminv.y . . . . . . 7 𝑀 = (invg𝑆)
62, 3, 4, 5grprinv 18922 . . . . . 6 ((𝑆 ∈ Grp ∧ 𝑋𝐵) → (𝑋(+g𝑆)(𝑀𝑋)) = (0g𝑆))
71, 6sylan 580 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝐵) → (𝑋(+g𝑆)(𝑀𝑋)) = (0g𝑆))
87fveq2d 6862 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝐵) → (𝐹‘(𝑋(+g𝑆)(𝑀𝑋))) = (𝐹‘(0g𝑆)))
92, 5grpinvcl 18919 . . . . . 6 ((𝑆 ∈ Grp ∧ 𝑋𝐵) → (𝑀𝑋) ∈ 𝐵)
101, 9sylan 580 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝐵) → (𝑀𝑋) ∈ 𝐵)
11 eqid 2729 . . . . . 6 (+g𝑇) = (+g𝑇)
122, 3, 11ghmlin 19153 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝐵) → (𝐹‘(𝑋(+g𝑆)(𝑀𝑋))) = ((𝐹𝑋)(+g𝑇)(𝐹‘(𝑀𝑋))))
1310, 12mpd3an3 1464 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝐵) → (𝐹‘(𝑋(+g𝑆)(𝑀𝑋))) = ((𝐹𝑋)(+g𝑇)(𝐹‘(𝑀𝑋))))
14 eqid 2729 . . . . . 6 (0g𝑇) = (0g𝑇)
154, 14ghmid 19154 . . . . 5 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘(0g𝑆)) = (0g𝑇))
1615adantr 480 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝐵) → (𝐹‘(0g𝑆)) = (0g𝑇))
178, 13, 163eqtr3d 2772 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝐵) → ((𝐹𝑋)(+g𝑇)(𝐹‘(𝑀𝑋))) = (0g𝑇))
18 ghmgrp2 19151 . . . . 5 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑇 ∈ Grp)
1918adantr 480 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝐵) → 𝑇 ∈ Grp)
20 eqid 2729 . . . . . 6 (Base‘𝑇) = (Base‘𝑇)
212, 20ghmf 19152 . . . . 5 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝐵⟶(Base‘𝑇))
2221ffvelcdmda 7056 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝐵) → (𝐹𝑋) ∈ (Base‘𝑇))
2321adantr 480 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝐵) → 𝐹:𝐵⟶(Base‘𝑇))
2423, 10ffvelcdmd 7057 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝐵) → (𝐹‘(𝑀𝑋)) ∈ (Base‘𝑇))
25 ghminv.z . . . . 5 𝑁 = (invg𝑇)
2620, 11, 14, 25grpinvid1 18923 . . . 4 ((𝑇 ∈ Grp ∧ (𝐹𝑋) ∈ (Base‘𝑇) ∧ (𝐹‘(𝑀𝑋)) ∈ (Base‘𝑇)) → ((𝑁‘(𝐹𝑋)) = (𝐹‘(𝑀𝑋)) ↔ ((𝐹𝑋)(+g𝑇)(𝐹‘(𝑀𝑋))) = (0g𝑇)))
2719, 22, 24, 26syl3anc 1373 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝐵) → ((𝑁‘(𝐹𝑋)) = (𝐹‘(𝑀𝑋)) ↔ ((𝐹𝑋)(+g𝑇)(𝐹‘(𝑀𝑋))) = (0g𝑇)))
2817, 27mpbird 257 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝐵) → (𝑁‘(𝐹𝑋)) = (𝐹‘(𝑀𝑋)))
2928eqcomd 2735 1 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝐵) → (𝐹‘(𝑀𝑋)) = (𝑁‘(𝐹𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wf 6507  cfv 6511  (class class class)co 7387  Basecbs 17179  +gcplusg 17220  0gc0g 17402  Grpcgrp 18865  invgcminusg 18866   GrpHom cghm 19144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-map 8801  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-ghm 19145
This theorem is referenced by:  ghmsub  19156  ghmmulg  19160  ghmrn  19161  ghmpreima  19170  ghmeql  19171  ghmqusnsglem1  19212  ghmquskerlem1  19215  frgpup3lem  19707  psgninv  21491  zrhpsgnodpm  21501  asclinvg  21798  mplind  21977  cpmatinvcl  22604  sum2dchr  27185  zrhneg  33968  zrhcntr  33969  fldhmf1  42078
  Copyright terms: Public domain W3C validator