MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghminv Structured version   Visualization version   GIF version

Theorem ghminv 18841
Description: A homomorphism of groups preserves inverses. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Hypotheses
Ref Expression
ghminv.b 𝐵 = (Base‘𝑆)
ghminv.y 𝑀 = (invg𝑆)
ghminv.z 𝑁 = (invg𝑇)
Assertion
Ref Expression
ghminv ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝐵) → (𝐹‘(𝑀𝑋)) = (𝑁‘(𝐹𝑋)))

Proof of Theorem ghminv
StepHypRef Expression
1 ghmgrp1 18836 . . . . . 6 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp)
2 ghminv.b . . . . . . 7 𝐵 = (Base‘𝑆)
3 eqid 2738 . . . . . . 7 (+g𝑆) = (+g𝑆)
4 eqid 2738 . . . . . . 7 (0g𝑆) = (0g𝑆)
5 ghminv.y . . . . . . 7 𝑀 = (invg𝑆)
62, 3, 4, 5grprinv 18629 . . . . . 6 ((𝑆 ∈ Grp ∧ 𝑋𝐵) → (𝑋(+g𝑆)(𝑀𝑋)) = (0g𝑆))
71, 6sylan 580 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝐵) → (𝑋(+g𝑆)(𝑀𝑋)) = (0g𝑆))
87fveq2d 6778 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝐵) → (𝐹‘(𝑋(+g𝑆)(𝑀𝑋))) = (𝐹‘(0g𝑆)))
92, 5grpinvcl 18627 . . . . . 6 ((𝑆 ∈ Grp ∧ 𝑋𝐵) → (𝑀𝑋) ∈ 𝐵)
101, 9sylan 580 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝐵) → (𝑀𝑋) ∈ 𝐵)
11 eqid 2738 . . . . . 6 (+g𝑇) = (+g𝑇)
122, 3, 11ghmlin 18839 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝐵) → (𝐹‘(𝑋(+g𝑆)(𝑀𝑋))) = ((𝐹𝑋)(+g𝑇)(𝐹‘(𝑀𝑋))))
1310, 12mpd3an3 1461 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝐵) → (𝐹‘(𝑋(+g𝑆)(𝑀𝑋))) = ((𝐹𝑋)(+g𝑇)(𝐹‘(𝑀𝑋))))
14 eqid 2738 . . . . . 6 (0g𝑇) = (0g𝑇)
154, 14ghmid 18840 . . . . 5 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘(0g𝑆)) = (0g𝑇))
1615adantr 481 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝐵) → (𝐹‘(0g𝑆)) = (0g𝑇))
178, 13, 163eqtr3d 2786 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝐵) → ((𝐹𝑋)(+g𝑇)(𝐹‘(𝑀𝑋))) = (0g𝑇))
18 ghmgrp2 18837 . . . . 5 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑇 ∈ Grp)
1918adantr 481 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝐵) → 𝑇 ∈ Grp)
20 eqid 2738 . . . . . 6 (Base‘𝑇) = (Base‘𝑇)
212, 20ghmf 18838 . . . . 5 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝐵⟶(Base‘𝑇))
2221ffvelrnda 6961 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝐵) → (𝐹𝑋) ∈ (Base‘𝑇))
2321adantr 481 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝐵) → 𝐹:𝐵⟶(Base‘𝑇))
2423, 10ffvelrnd 6962 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝐵) → (𝐹‘(𝑀𝑋)) ∈ (Base‘𝑇))
25 ghminv.z . . . . 5 𝑁 = (invg𝑇)
2620, 11, 14, 25grpinvid1 18630 . . . 4 ((𝑇 ∈ Grp ∧ (𝐹𝑋) ∈ (Base‘𝑇) ∧ (𝐹‘(𝑀𝑋)) ∈ (Base‘𝑇)) → ((𝑁‘(𝐹𝑋)) = (𝐹‘(𝑀𝑋)) ↔ ((𝐹𝑋)(+g𝑇)(𝐹‘(𝑀𝑋))) = (0g𝑇)))
2719, 22, 24, 26syl3anc 1370 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝐵) → ((𝑁‘(𝐹𝑋)) = (𝐹‘(𝑀𝑋)) ↔ ((𝐹𝑋)(+g𝑇)(𝐹‘(𝑀𝑋))) = (0g𝑇)))
2817, 27mpbird 256 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝐵) → (𝑁‘(𝐹𝑋)) = (𝐹‘(𝑀𝑋)))
2928eqcomd 2744 1 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝐵) → (𝐹‘(𝑀𝑋)) = (𝑁‘(𝐹𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wf 6429  cfv 6433  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  0gc0g 17150  Grpcgrp 18577  invgcminusg 18578   GrpHom cghm 18831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-ghm 18832
This theorem is referenced by:  ghmsub  18842  ghmmulg  18846  ghmrn  18847  ghmpreima  18856  ghmeql  18857  frgpup3lem  19383  psgninv  20787  zrhpsgnodpm  20797  asclinvg  21093  mplind  21278  cpmatinvcl  21866  sum2dchr  26422
  Copyright terms: Public domain W3C validator