MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghminv Structured version   Visualization version   GIF version

Theorem ghminv 19263
Description: A homomorphism of groups preserves inverses. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Hypotheses
Ref Expression
ghminv.b 𝐵 = (Base‘𝑆)
ghminv.y 𝑀 = (invg𝑆)
ghminv.z 𝑁 = (invg𝑇)
Assertion
Ref Expression
ghminv ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝐵) → (𝐹‘(𝑀𝑋)) = (𝑁‘(𝐹𝑋)))

Proof of Theorem ghminv
StepHypRef Expression
1 ghmgrp1 19258 . . . . . 6 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp)
2 ghminv.b . . . . . . 7 𝐵 = (Base‘𝑆)
3 eqid 2740 . . . . . . 7 (+g𝑆) = (+g𝑆)
4 eqid 2740 . . . . . . 7 (0g𝑆) = (0g𝑆)
5 ghminv.y . . . . . . 7 𝑀 = (invg𝑆)
62, 3, 4, 5grprinv 19030 . . . . . 6 ((𝑆 ∈ Grp ∧ 𝑋𝐵) → (𝑋(+g𝑆)(𝑀𝑋)) = (0g𝑆))
71, 6sylan 579 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝐵) → (𝑋(+g𝑆)(𝑀𝑋)) = (0g𝑆))
87fveq2d 6924 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝐵) → (𝐹‘(𝑋(+g𝑆)(𝑀𝑋))) = (𝐹‘(0g𝑆)))
92, 5grpinvcl 19027 . . . . . 6 ((𝑆 ∈ Grp ∧ 𝑋𝐵) → (𝑀𝑋) ∈ 𝐵)
101, 9sylan 579 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝐵) → (𝑀𝑋) ∈ 𝐵)
11 eqid 2740 . . . . . 6 (+g𝑇) = (+g𝑇)
122, 3, 11ghmlin 19261 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝐵) → (𝐹‘(𝑋(+g𝑆)(𝑀𝑋))) = ((𝐹𝑋)(+g𝑇)(𝐹‘(𝑀𝑋))))
1310, 12mpd3an3 1462 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝐵) → (𝐹‘(𝑋(+g𝑆)(𝑀𝑋))) = ((𝐹𝑋)(+g𝑇)(𝐹‘(𝑀𝑋))))
14 eqid 2740 . . . . . 6 (0g𝑇) = (0g𝑇)
154, 14ghmid 19262 . . . . 5 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘(0g𝑆)) = (0g𝑇))
1615adantr 480 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝐵) → (𝐹‘(0g𝑆)) = (0g𝑇))
178, 13, 163eqtr3d 2788 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝐵) → ((𝐹𝑋)(+g𝑇)(𝐹‘(𝑀𝑋))) = (0g𝑇))
18 ghmgrp2 19259 . . . . 5 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑇 ∈ Grp)
1918adantr 480 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝐵) → 𝑇 ∈ Grp)
20 eqid 2740 . . . . . 6 (Base‘𝑇) = (Base‘𝑇)
212, 20ghmf 19260 . . . . 5 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝐵⟶(Base‘𝑇))
2221ffvelcdmda 7118 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝐵) → (𝐹𝑋) ∈ (Base‘𝑇))
2321adantr 480 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝐵) → 𝐹:𝐵⟶(Base‘𝑇))
2423, 10ffvelcdmd 7119 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝐵) → (𝐹‘(𝑀𝑋)) ∈ (Base‘𝑇))
25 ghminv.z . . . . 5 𝑁 = (invg𝑇)
2620, 11, 14, 25grpinvid1 19031 . . . 4 ((𝑇 ∈ Grp ∧ (𝐹𝑋) ∈ (Base‘𝑇) ∧ (𝐹‘(𝑀𝑋)) ∈ (Base‘𝑇)) → ((𝑁‘(𝐹𝑋)) = (𝐹‘(𝑀𝑋)) ↔ ((𝐹𝑋)(+g𝑇)(𝐹‘(𝑀𝑋))) = (0g𝑇)))
2719, 22, 24, 26syl3anc 1371 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝐵) → ((𝑁‘(𝐹𝑋)) = (𝐹‘(𝑀𝑋)) ↔ ((𝐹𝑋)(+g𝑇)(𝐹‘(𝑀𝑋))) = (0g𝑇)))
2817, 27mpbird 257 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝐵) → (𝑁‘(𝐹𝑋)) = (𝐹‘(𝑀𝑋)))
2928eqcomd 2746 1 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝐵) → (𝐹‘(𝑀𝑋)) = (𝑁‘(𝐹𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wf 6569  cfv 6573  (class class class)co 7448  Basecbs 17258  +gcplusg 17311  0gc0g 17499  Grpcgrp 18973  invgcminusg 18974   GrpHom cghm 19252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-map 8886  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-ghm 19253
This theorem is referenced by:  ghmsub  19264  ghmmulg  19268  ghmrn  19269  ghmpreima  19278  ghmeql  19279  ghmqusnsglem1  19320  ghmquskerlem1  19323  frgpup3lem  19819  psgninv  21623  zrhpsgnodpm  21633  asclinvg  21932  mplind  22117  cpmatinvcl  22744  sum2dchr  27336  fldhmf1  42047
  Copyright terms: Public domain W3C validator