MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrinv Structured version   Visualization version   GIF version

Theorem dchrinv 27192
Description: The inverse of a Dirichlet character is the conjugate (which is also the multiplicative inverse, because the values of 𝑋 are unimodular). (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
dchrabs.g 𝐺 = (DChr‘𝑁)
dchrabs.d 𝐷 = (Base‘𝐺)
dchrabs.x (𝜑𝑋𝐷)
dchrinv.i 𝐼 = (invg𝐺)
Assertion
Ref Expression
dchrinv (𝜑 → (𝐼𝑋) = (∗ ∘ 𝑋))

Proof of Theorem dchrinv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dchrabs.g . . . . . . . 8 𝐺 = (DChr‘𝑁)
2 eqid 2730 . . . . . . . 8 (ℤ/nℤ‘𝑁) = (ℤ/nℤ‘𝑁)
3 dchrabs.d . . . . . . . 8 𝐷 = (Base‘𝐺)
4 eqid 2730 . . . . . . . 8 (+g𝐺) = (+g𝐺)
5 dchrabs.x . . . . . . . 8 (𝜑𝑋𝐷)
6 cjf 15003 . . . . . . . . . 10 ∗:ℂ⟶ℂ
7 eqid 2730 . . . . . . . . . . 11 (Base‘(ℤ/nℤ‘𝑁)) = (Base‘(ℤ/nℤ‘𝑁))
81, 2, 3, 7, 5dchrf 27173 . . . . . . . . . 10 (𝜑𝑋:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ)
9 fco 6671 . . . . . . . . . 10 ((∗:ℂ⟶ℂ ∧ 𝑋:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ) → (∗ ∘ 𝑋):(Base‘(ℤ/nℤ‘𝑁))⟶ℂ)
106, 8, 9sylancr 587 . . . . . . . . 9 (𝜑 → (∗ ∘ 𝑋):(Base‘(ℤ/nℤ‘𝑁))⟶ℂ)
11 eqid 2730 . . . . . . . . . . . . . . . . . . . . 21 (Unit‘(ℤ/nℤ‘𝑁)) = (Unit‘(ℤ/nℤ‘𝑁))
121, 3dchrrcl 27171 . . . . . . . . . . . . . . . . . . . . . 22 (𝑋𝐷𝑁 ∈ ℕ)
135, 12syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑁 ∈ ℕ)
141, 2, 7, 11, 13, 3dchrelbas3 27169 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑋𝐷 ↔ (𝑋:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ ∧ (∀𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))∀𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁))(𝑋‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r‘(ℤ/nℤ‘𝑁))) = 1 ∧ ∀𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)))))))
155, 14mpbid 232 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑋:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ ∧ (∀𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))∀𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁))(𝑋‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r‘(ℤ/nℤ‘𝑁))) = 1 ∧ ∀𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))))))
1615simprd 495 . . . . . . . . . . . . . . . . . 18 (𝜑 → (∀𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))∀𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁))(𝑋‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r‘(ℤ/nℤ‘𝑁))) = 1 ∧ ∀𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)))))
1716simp1d 1142 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))∀𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁))(𝑋‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))
1817r19.21bi 3222 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → ∀𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁))(𝑋‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))
1918r19.21bi 3222 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → (𝑋‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))
2019anasss 466 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → (𝑋‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))
2120fveq2d 6821 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → (∗‘(𝑋‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦))) = (∗‘((𝑋𝑥) · (𝑋𝑦))))
228adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → 𝑋:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ)
237, 11unitss 20287 . . . . . . . . . . . . . . . 16 (Unit‘(ℤ/nℤ‘𝑁)) ⊆ (Base‘(ℤ/nℤ‘𝑁))
24 simprl 770 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)))
2523, 24sselid 3930 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → 𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)))
2622, 25ffvelcdmd 7013 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → (𝑋𝑥) ∈ ℂ)
27 simprr 772 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))
2823, 27sselid 3930 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → 𝑦 ∈ (Base‘(ℤ/nℤ‘𝑁)))
2922, 28ffvelcdmd 7013 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → (𝑋𝑦) ∈ ℂ)
3026, 29cjmuld 15120 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → (∗‘((𝑋𝑥) · (𝑋𝑦))) = ((∗‘(𝑋𝑥)) · (∗‘(𝑋𝑦))))
3121, 30eqtrd 2765 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → (∗‘(𝑋‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦))) = ((∗‘(𝑋𝑥)) · (∗‘(𝑋𝑦))))
3213nnnn0d 12434 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℕ0)
332zncrng 21474 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ0 → (ℤ/nℤ‘𝑁) ∈ CRing)
34 crngring 20156 . . . . . . . . . . . . . . . 16 ((ℤ/nℤ‘𝑁) ∈ CRing → (ℤ/nℤ‘𝑁) ∈ Ring)
3532, 33, 343syl 18 . . . . . . . . . . . . . . 15 (𝜑 → (ℤ/nℤ‘𝑁) ∈ Ring)
3635adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → (ℤ/nℤ‘𝑁) ∈ Ring)
37 eqid 2730 . . . . . . . . . . . . . . 15 (.r‘(ℤ/nℤ‘𝑁)) = (.r‘(ℤ/nℤ‘𝑁))
387, 37ringcl 20161 . . . . . . . . . . . . . 14 (((ℤ/nℤ‘𝑁) ∈ Ring ∧ 𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Base‘(ℤ/nℤ‘𝑁))) → (𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦) ∈ (Base‘(ℤ/nℤ‘𝑁)))
3936, 25, 28, 38syl3anc 1373 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → (𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦) ∈ (Base‘(ℤ/nℤ‘𝑁)))
40 fvco3 6916 . . . . . . . . . . . . 13 ((𝑋:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ ∧ (𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦) ∈ (Base‘(ℤ/nℤ‘𝑁))) → ((∗ ∘ 𝑋)‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = (∗‘(𝑋‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦))))
4122, 39, 40syl2anc 584 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → ((∗ ∘ 𝑋)‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = (∗‘(𝑋‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦))))
42 fvco3 6916 . . . . . . . . . . . . . 14 ((𝑋:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ ∧ 𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))) → ((∗ ∘ 𝑋)‘𝑥) = (∗‘(𝑋𝑥)))
4322, 25, 42syl2anc 584 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → ((∗ ∘ 𝑋)‘𝑥) = (∗‘(𝑋𝑥)))
44 fvco3 6916 . . . . . . . . . . . . . 14 ((𝑋:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ ∧ 𝑦 ∈ (Base‘(ℤ/nℤ‘𝑁))) → ((∗ ∘ 𝑋)‘𝑦) = (∗‘(𝑋𝑦)))
4522, 28, 44syl2anc 584 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → ((∗ ∘ 𝑋)‘𝑦) = (∗‘(𝑋𝑦)))
4643, 45oveq12d 7359 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → (((∗ ∘ 𝑋)‘𝑥) · ((∗ ∘ 𝑋)‘𝑦)) = ((∗‘(𝑋𝑥)) · (∗‘(𝑋𝑦))))
4731, 41, 463eqtr4d 2775 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → ((∗ ∘ 𝑋)‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = (((∗ ∘ 𝑋)‘𝑥) · ((∗ ∘ 𝑋)‘𝑦)))
4847ralrimivva 3173 . . . . . . . . . 10 (𝜑 → ∀𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))∀𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁))((∗ ∘ 𝑋)‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = (((∗ ∘ 𝑋)‘𝑥) · ((∗ ∘ 𝑋)‘𝑦)))
49 eqid 2730 . . . . . . . . . . . . . 14 (1r‘(ℤ/nℤ‘𝑁)) = (1r‘(ℤ/nℤ‘𝑁))
507, 49ringidcl 20176 . . . . . . . . . . . . 13 ((ℤ/nℤ‘𝑁) ∈ Ring → (1r‘(ℤ/nℤ‘𝑁)) ∈ (Base‘(ℤ/nℤ‘𝑁)))
5135, 50syl 17 . . . . . . . . . . . 12 (𝜑 → (1r‘(ℤ/nℤ‘𝑁)) ∈ (Base‘(ℤ/nℤ‘𝑁)))
52 fvco3 6916 . . . . . . . . . . . 12 ((𝑋:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ ∧ (1r‘(ℤ/nℤ‘𝑁)) ∈ (Base‘(ℤ/nℤ‘𝑁))) → ((∗ ∘ 𝑋)‘(1r‘(ℤ/nℤ‘𝑁))) = (∗‘(𝑋‘(1r‘(ℤ/nℤ‘𝑁)))))
538, 51, 52syl2anc 584 . . . . . . . . . . 11 (𝜑 → ((∗ ∘ 𝑋)‘(1r‘(ℤ/nℤ‘𝑁))) = (∗‘(𝑋‘(1r‘(ℤ/nℤ‘𝑁)))))
5416simp2d 1143 . . . . . . . . . . . . 13 (𝜑 → (𝑋‘(1r‘(ℤ/nℤ‘𝑁))) = 1)
5554fveq2d 6821 . . . . . . . . . . . 12 (𝜑 → (∗‘(𝑋‘(1r‘(ℤ/nℤ‘𝑁)))) = (∗‘1))
56 1re 11104 . . . . . . . . . . . . 13 1 ∈ ℝ
57 cjre 15038 . . . . . . . . . . . . 13 (1 ∈ ℝ → (∗‘1) = 1)
5856, 57ax-mp 5 . . . . . . . . . . . 12 (∗‘1) = 1
5955, 58eqtrdi 2781 . . . . . . . . . . 11 (𝜑 → (∗‘(𝑋‘(1r‘(ℤ/nℤ‘𝑁)))) = 1)
6053, 59eqtrd 2765 . . . . . . . . . 10 (𝜑 → ((∗ ∘ 𝑋)‘(1r‘(ℤ/nℤ‘𝑁))) = 1)
6116simp3d 1144 . . . . . . . . . . 11 (𝜑 → ∀𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))))
628, 42sylan 580 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))) → ((∗ ∘ 𝑋)‘𝑥) = (∗‘(𝑋𝑥)))
63 cj0 15057 . . . . . . . . . . . . . . . . . 18 (∗‘0) = 0
6463eqcomi 2739 . . . . . . . . . . . . . . . . 17 0 = (∗‘0)
6564a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))) → 0 = (∗‘0))
6662, 65eqeq12d 2746 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))) → (((∗ ∘ 𝑋)‘𝑥) = 0 ↔ (∗‘(𝑋𝑥)) = (∗‘0)))
678ffvelcdmda 7012 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))) → (𝑋𝑥) ∈ ℂ)
68 0cn 11096 . . . . . . . . . . . . . . . 16 0 ∈ ℂ
69 cj11 15061 . . . . . . . . . . . . . . . 16 (((𝑋𝑥) ∈ ℂ ∧ 0 ∈ ℂ) → ((∗‘(𝑋𝑥)) = (∗‘0) ↔ (𝑋𝑥) = 0))
7067, 68, 69sylancl 586 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))) → ((∗‘(𝑋𝑥)) = (∗‘0) ↔ (𝑋𝑥) = 0))
7166, 70bitrd 279 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))) → (((∗ ∘ 𝑋)‘𝑥) = 0 ↔ (𝑋𝑥) = 0))
7271necon3bid 2970 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))) → (((∗ ∘ 𝑋)‘𝑥) ≠ 0 ↔ (𝑋𝑥) ≠ 0))
7372imbi1d 341 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))) → ((((∗ ∘ 𝑋)‘𝑥) ≠ 0 → 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) ↔ ((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)))))
7473ralbidva 3151 . . . . . . . . . . 11 (𝜑 → (∀𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))(((∗ ∘ 𝑋)‘𝑥) ≠ 0 → 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) ↔ ∀𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)))))
7561, 74mpbird 257 . . . . . . . . . 10 (𝜑 → ∀𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))(((∗ ∘ 𝑋)‘𝑥) ≠ 0 → 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))))
7648, 60, 753jca 1128 . . . . . . . . 9 (𝜑 → (∀𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))∀𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁))((∗ ∘ 𝑋)‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = (((∗ ∘ 𝑋)‘𝑥) · ((∗ ∘ 𝑋)‘𝑦)) ∧ ((∗ ∘ 𝑋)‘(1r‘(ℤ/nℤ‘𝑁))) = 1 ∧ ∀𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))(((∗ ∘ 𝑋)‘𝑥) ≠ 0 → 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)))))
771, 2, 7, 11, 13, 3dchrelbas3 27169 . . . . . . . . 9 (𝜑 → ((∗ ∘ 𝑋) ∈ 𝐷 ↔ ((∗ ∘ 𝑋):(Base‘(ℤ/nℤ‘𝑁))⟶ℂ ∧ (∀𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))∀𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁))((∗ ∘ 𝑋)‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = (((∗ ∘ 𝑋)‘𝑥) · ((∗ ∘ 𝑋)‘𝑦)) ∧ ((∗ ∘ 𝑋)‘(1r‘(ℤ/nℤ‘𝑁))) = 1 ∧ ∀𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))(((∗ ∘ 𝑋)‘𝑥) ≠ 0 → 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)))))))
7810, 76, 77mpbir2and 713 . . . . . . . 8 (𝜑 → (∗ ∘ 𝑋) ∈ 𝐷)
791, 2, 3, 4, 5, 78dchrmul 27179 . . . . . . 7 (𝜑 → (𝑋(+g𝐺)(∗ ∘ 𝑋)) = (𝑋f · (∗ ∘ 𝑋)))
8079adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → (𝑋(+g𝐺)(∗ ∘ 𝑋)) = (𝑋f · (∗ ∘ 𝑋)))
8180fveq1d 6819 . . . . 5 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → ((𝑋(+g𝐺)(∗ ∘ 𝑋))‘𝑥) = ((𝑋f · (∗ ∘ 𝑋))‘𝑥))
8223sseli 3928 . . . . . . . . 9 (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) → 𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)))
8382, 62sylan2 593 . . . . . . . 8 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → ((∗ ∘ 𝑋)‘𝑥) = (∗‘(𝑋𝑥)))
8483oveq2d 7357 . . . . . . 7 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → ((𝑋𝑥) · ((∗ ∘ 𝑋)‘𝑥)) = ((𝑋𝑥) · (∗‘(𝑋𝑥))))
8582, 67sylan2 593 . . . . . . . 8 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → (𝑋𝑥) ∈ ℂ)
8685absvalsqd 15344 . . . . . . 7 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → ((abs‘(𝑋𝑥))↑2) = ((𝑋𝑥) · (∗‘(𝑋𝑥))))
875adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → 𝑋𝐷)
88 simpr 484 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)))
891, 3, 87, 2, 11, 88dchrabs 27191 . . . . . . . . 9 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → (abs‘(𝑋𝑥)) = 1)
9089oveq1d 7356 . . . . . . . 8 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → ((abs‘(𝑋𝑥))↑2) = (1↑2))
91 sq1 14094 . . . . . . . 8 (1↑2) = 1
9290, 91eqtrdi 2781 . . . . . . 7 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → ((abs‘(𝑋𝑥))↑2) = 1)
9384, 86, 923eqtr2d 2771 . . . . . 6 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → ((𝑋𝑥) · ((∗ ∘ 𝑋)‘𝑥)) = 1)
948adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → 𝑋:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ)
9594ffnd 6648 . . . . . . 7 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → 𝑋 Fn (Base‘(ℤ/nℤ‘𝑁)))
9610ffnd 6648 . . . . . . . 8 (𝜑 → (∗ ∘ 𝑋) Fn (Base‘(ℤ/nℤ‘𝑁)))
9796adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → (∗ ∘ 𝑋) Fn (Base‘(ℤ/nℤ‘𝑁)))
98 fvexd 6832 . . . . . . 7 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → (Base‘(ℤ/nℤ‘𝑁)) ∈ V)
9982adantl 481 . . . . . . 7 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → 𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)))
100 fnfvof 7622 . . . . . . 7 (((𝑋 Fn (Base‘(ℤ/nℤ‘𝑁)) ∧ (∗ ∘ 𝑋) Fn (Base‘(ℤ/nℤ‘𝑁))) ∧ ((Base‘(ℤ/nℤ‘𝑁)) ∈ V ∧ 𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)))) → ((𝑋f · (∗ ∘ 𝑋))‘𝑥) = ((𝑋𝑥) · ((∗ ∘ 𝑋)‘𝑥)))
10195, 97, 98, 99, 100syl22anc 838 . . . . . 6 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → ((𝑋f · (∗ ∘ 𝑋))‘𝑥) = ((𝑋𝑥) · ((∗ ∘ 𝑋)‘𝑥)))
102 eqid 2730 . . . . . . 7 (0g𝐺) = (0g𝐺)
10313adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → 𝑁 ∈ ℕ)
1041, 2, 102, 11, 103, 88dchr1 27188 . . . . . 6 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → ((0g𝐺)‘𝑥) = 1)
10593, 101, 1043eqtr4d 2775 . . . . 5 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → ((𝑋f · (∗ ∘ 𝑋))‘𝑥) = ((0g𝐺)‘𝑥))
10681, 105eqtrd 2765 . . . 4 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → ((𝑋(+g𝐺)(∗ ∘ 𝑋))‘𝑥) = ((0g𝐺)‘𝑥))
107106ralrimiva 3122 . . 3 (𝜑 → ∀𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))((𝑋(+g𝐺)(∗ ∘ 𝑋))‘𝑥) = ((0g𝐺)‘𝑥))
1081, 2, 3, 4, 5, 78dchrmulcl 27180 . . . 4 (𝜑 → (𝑋(+g𝐺)(∗ ∘ 𝑋)) ∈ 𝐷)
1091dchrabl 27185 . . . . . 6 (𝑁 ∈ ℕ → 𝐺 ∈ Abel)
110 ablgrp 19690 . . . . . 6 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
11113, 109, 1103syl 18 . . . . 5 (𝜑𝐺 ∈ Grp)
1123, 102grpidcl 18870 . . . . 5 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝐷)
113111, 112syl 17 . . . 4 (𝜑 → (0g𝐺) ∈ 𝐷)
1141, 2, 3, 11, 108, 113dchreq 27189 . . 3 (𝜑 → ((𝑋(+g𝐺)(∗ ∘ 𝑋)) = (0g𝐺) ↔ ∀𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))((𝑋(+g𝐺)(∗ ∘ 𝑋))‘𝑥) = ((0g𝐺)‘𝑥)))
115107, 114mpbird 257 . 2 (𝜑 → (𝑋(+g𝐺)(∗ ∘ 𝑋)) = (0g𝐺))
116 dchrinv.i . . . 4 𝐼 = (invg𝐺)
1173, 4, 102, 116grpinvid1 18896 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐷 ∧ (∗ ∘ 𝑋) ∈ 𝐷) → ((𝐼𝑋) = (∗ ∘ 𝑋) ↔ (𝑋(+g𝐺)(∗ ∘ 𝑋)) = (0g𝐺)))
118111, 5, 78, 117syl3anc 1373 . 2 (𝜑 → ((𝐼𝑋) = (∗ ∘ 𝑋) ↔ (𝑋(+g𝐺)(∗ ∘ 𝑋)) = (0g𝐺)))
119115, 118mpbird 257 1 (𝜑 → (𝐼𝑋) = (∗ ∘ 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2110  wne 2926  wral 3045  Vcvv 3434  ccom 5618   Fn wfn 6472  wf 6473  cfv 6477  (class class class)co 7341  f cof 7603  cc 10996  cr 10997  0cc0 10998  1c1 10999   · cmul 11003  cn 12117  2c2 12172  0cn0 12373  cexp 13960  ccj 14995  abscabs 15133  Basecbs 17112  +gcplusg 17153  .rcmulr 17154  0gc0g 17335  Grpcgrp 18838  invgcminusg 18839  Abelcabl 19686  1rcur 20092  Ringcrg 20144  CRingccrg 20145  Unitcui 20266  ℤ/nczn 21432  DChrcdchr 27163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-inf2 9526  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-pre-sup 11076  ax-addf 11077  ax-mulf 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-iin 4942  df-disj 5057  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-tpos 8151  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-oadd 8384  df-omul 8385  df-er 8617  df-ec 8619  df-qs 8623  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-fi 9290  df-sup 9321  df-inf 9322  df-oi 9391  df-card 9824  df-acn 9827  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-div 11767  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-5 12183  df-6 12184  df-7 12185  df-8 12186  df-9 12187  df-n0 12374  df-z 12461  df-dec 12581  df-uz 12725  df-q 12839  df-rp 12883  df-xneg 13003  df-xadd 13004  df-xmul 13005  df-ioo 13241  df-ioc 13242  df-ico 13243  df-icc 13244  df-fz 13400  df-fzo 13547  df-fl 13688  df-mod 13766  df-seq 13901  df-exp 13961  df-fac 14173  df-bc 14202  df-hash 14230  df-shft 14966  df-cj 14998  df-re 14999  df-im 15000  df-sqrt 15134  df-abs 15135  df-limsup 15370  df-clim 15387  df-rlim 15388  df-sum 15586  df-ef 15966  df-sin 15968  df-cos 15969  df-pi 15971  df-dvds 16156  df-struct 17050  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-ress 17134  df-plusg 17166  df-mulr 17167  df-starv 17168  df-sca 17169  df-vsca 17170  df-ip 17171  df-tset 17172  df-ple 17173  df-ds 17175  df-unif 17176  df-hom 17177  df-cco 17178  df-rest 17318  df-topn 17319  df-0g 17337  df-gsum 17338  df-topgen 17339  df-pt 17340  df-prds 17343  df-xrs 17398  df-qtop 17403  df-imas 17404  df-qus 17405  df-xps 17406  df-mre 17480  df-mrc 17481  df-acs 17483  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-mhm 18683  df-submnd 18684  df-grp 18841  df-minusg 18842  df-sbg 18843  df-mulg 18973  df-subg 19028  df-nsg 19029  df-eqg 19030  df-ghm 19118  df-cntz 19222  df-od 19433  df-cmn 19687  df-abl 19688  df-mgp 20052  df-rng 20064  df-ur 20093  df-ring 20146  df-cring 20147  df-oppr 20248  df-dvdsr 20268  df-unit 20269  df-invr 20299  df-dvr 20312  df-rhm 20383  df-subrng 20454  df-subrg 20478  df-drng 20639  df-lmod 20788  df-lss 20858  df-lsp 20898  df-sra 21100  df-rgmod 21101  df-lidl 21138  df-rsp 21139  df-2idl 21180  df-psmet 21276  df-xmet 21277  df-met 21278  df-bl 21279  df-mopn 21280  df-fbas 21281  df-fg 21282  df-cnfld 21285  df-zring 21377  df-zrh 21433  df-zn 21436  df-top 22802  df-topon 22819  df-topsp 22841  df-bases 22854  df-cld 22927  df-ntr 22928  df-cls 22929  df-nei 23006  df-lp 23044  df-perf 23045  df-cn 23135  df-cnp 23136  df-haus 23223  df-tx 23470  df-hmeo 23663  df-fil 23754  df-fm 23846  df-flim 23847  df-flf 23848  df-xms 24228  df-ms 24229  df-tms 24230  df-cncf 24791  df-limc 25787  df-dv 25788  df-log 26485  df-cxp 26486  df-dchr 27164
This theorem is referenced by:  dchr2sum  27204  dchrisum0re  27444
  Copyright terms: Public domain W3C validator