MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrinv Structured version   Visualization version   GIF version

Theorem dchrinv 26409
Description: The inverse of a Dirichlet character is the conjugate (which is also the multiplicative inverse, because the values of 𝑋 are unimodular). (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
dchrabs.g 𝐺 = (DChr‘𝑁)
dchrabs.d 𝐷 = (Base‘𝐺)
dchrabs.x (𝜑𝑋𝐷)
dchrinv.i 𝐼 = (invg𝐺)
Assertion
Ref Expression
dchrinv (𝜑 → (𝐼𝑋) = (∗ ∘ 𝑋))

Proof of Theorem dchrinv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dchrabs.g . . . . . . . 8 𝐺 = (DChr‘𝑁)
2 eqid 2738 . . . . . . . 8 (ℤ/nℤ‘𝑁) = (ℤ/nℤ‘𝑁)
3 dchrabs.d . . . . . . . 8 𝐷 = (Base‘𝐺)
4 eqid 2738 . . . . . . . 8 (+g𝐺) = (+g𝐺)
5 dchrabs.x . . . . . . . 8 (𝜑𝑋𝐷)
6 cjf 14815 . . . . . . . . . 10 ∗:ℂ⟶ℂ
7 eqid 2738 . . . . . . . . . . 11 (Base‘(ℤ/nℤ‘𝑁)) = (Base‘(ℤ/nℤ‘𝑁))
81, 2, 3, 7, 5dchrf 26390 . . . . . . . . . 10 (𝜑𝑋:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ)
9 fco 6624 . . . . . . . . . 10 ((∗:ℂ⟶ℂ ∧ 𝑋:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ) → (∗ ∘ 𝑋):(Base‘(ℤ/nℤ‘𝑁))⟶ℂ)
106, 8, 9sylancr 587 . . . . . . . . 9 (𝜑 → (∗ ∘ 𝑋):(Base‘(ℤ/nℤ‘𝑁))⟶ℂ)
11 eqid 2738 . . . . . . . . . . . . . . . . . . . . 21 (Unit‘(ℤ/nℤ‘𝑁)) = (Unit‘(ℤ/nℤ‘𝑁))
121, 3dchrrcl 26388 . . . . . . . . . . . . . . . . . . . . . 22 (𝑋𝐷𝑁 ∈ ℕ)
135, 12syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑁 ∈ ℕ)
141, 2, 7, 11, 13, 3dchrelbas3 26386 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑋𝐷 ↔ (𝑋:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ ∧ (∀𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))∀𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁))(𝑋‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r‘(ℤ/nℤ‘𝑁))) = 1 ∧ ∀𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)))))))
155, 14mpbid 231 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑋:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ ∧ (∀𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))∀𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁))(𝑋‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r‘(ℤ/nℤ‘𝑁))) = 1 ∧ ∀𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))))))
1615simprd 496 . . . . . . . . . . . . . . . . . 18 (𝜑 → (∀𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))∀𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁))(𝑋‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r‘(ℤ/nℤ‘𝑁))) = 1 ∧ ∀𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)))))
1716simp1d 1141 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))∀𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁))(𝑋‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))
1817r19.21bi 3134 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → ∀𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁))(𝑋‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))
1918r19.21bi 3134 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → (𝑋‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))
2019anasss 467 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → (𝑋‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))
2120fveq2d 6778 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → (∗‘(𝑋‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦))) = (∗‘((𝑋𝑥) · (𝑋𝑦))))
228adantr 481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → 𝑋:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ)
237, 11unitss 19902 . . . . . . . . . . . . . . . 16 (Unit‘(ℤ/nℤ‘𝑁)) ⊆ (Base‘(ℤ/nℤ‘𝑁))
24 simprl 768 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)))
2523, 24sselid 3919 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → 𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)))
2622, 25ffvelrnd 6962 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → (𝑋𝑥) ∈ ℂ)
27 simprr 770 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))
2823, 27sselid 3919 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → 𝑦 ∈ (Base‘(ℤ/nℤ‘𝑁)))
2922, 28ffvelrnd 6962 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → (𝑋𝑦) ∈ ℂ)
3026, 29cjmuld 14932 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → (∗‘((𝑋𝑥) · (𝑋𝑦))) = ((∗‘(𝑋𝑥)) · (∗‘(𝑋𝑦))))
3121, 30eqtrd 2778 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → (∗‘(𝑋‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦))) = ((∗‘(𝑋𝑥)) · (∗‘(𝑋𝑦))))
3213nnnn0d 12293 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℕ0)
332zncrng 20752 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ0 → (ℤ/nℤ‘𝑁) ∈ CRing)
34 crngring 19795 . . . . . . . . . . . . . . . 16 ((ℤ/nℤ‘𝑁) ∈ CRing → (ℤ/nℤ‘𝑁) ∈ Ring)
3532, 33, 343syl 18 . . . . . . . . . . . . . . 15 (𝜑 → (ℤ/nℤ‘𝑁) ∈ Ring)
3635adantr 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → (ℤ/nℤ‘𝑁) ∈ Ring)
37 eqid 2738 . . . . . . . . . . . . . . 15 (.r‘(ℤ/nℤ‘𝑁)) = (.r‘(ℤ/nℤ‘𝑁))
387, 37ringcl 19800 . . . . . . . . . . . . . 14 (((ℤ/nℤ‘𝑁) ∈ Ring ∧ 𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Base‘(ℤ/nℤ‘𝑁))) → (𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦) ∈ (Base‘(ℤ/nℤ‘𝑁)))
3936, 25, 28, 38syl3anc 1370 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → (𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦) ∈ (Base‘(ℤ/nℤ‘𝑁)))
40 fvco3 6867 . . . . . . . . . . . . 13 ((𝑋:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ ∧ (𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦) ∈ (Base‘(ℤ/nℤ‘𝑁))) → ((∗ ∘ 𝑋)‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = (∗‘(𝑋‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦))))
4122, 39, 40syl2anc 584 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → ((∗ ∘ 𝑋)‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = (∗‘(𝑋‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦))))
42 fvco3 6867 . . . . . . . . . . . . . 14 ((𝑋:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ ∧ 𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))) → ((∗ ∘ 𝑋)‘𝑥) = (∗‘(𝑋𝑥)))
4322, 25, 42syl2anc 584 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → ((∗ ∘ 𝑋)‘𝑥) = (∗‘(𝑋𝑥)))
44 fvco3 6867 . . . . . . . . . . . . . 14 ((𝑋:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ ∧ 𝑦 ∈ (Base‘(ℤ/nℤ‘𝑁))) → ((∗ ∘ 𝑋)‘𝑦) = (∗‘(𝑋𝑦)))
4522, 28, 44syl2anc 584 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → ((∗ ∘ 𝑋)‘𝑦) = (∗‘(𝑋𝑦)))
4643, 45oveq12d 7293 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → (((∗ ∘ 𝑋)‘𝑥) · ((∗ ∘ 𝑋)‘𝑦)) = ((∗‘(𝑋𝑥)) · (∗‘(𝑋𝑦))))
4731, 41, 463eqtr4d 2788 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → ((∗ ∘ 𝑋)‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = (((∗ ∘ 𝑋)‘𝑥) · ((∗ ∘ 𝑋)‘𝑦)))
4847ralrimivva 3123 . . . . . . . . . 10 (𝜑 → ∀𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))∀𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁))((∗ ∘ 𝑋)‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = (((∗ ∘ 𝑋)‘𝑥) · ((∗ ∘ 𝑋)‘𝑦)))
49 eqid 2738 . . . . . . . . . . . . . 14 (1r‘(ℤ/nℤ‘𝑁)) = (1r‘(ℤ/nℤ‘𝑁))
507, 49ringidcl 19807 . . . . . . . . . . . . 13 ((ℤ/nℤ‘𝑁) ∈ Ring → (1r‘(ℤ/nℤ‘𝑁)) ∈ (Base‘(ℤ/nℤ‘𝑁)))
5135, 50syl 17 . . . . . . . . . . . 12 (𝜑 → (1r‘(ℤ/nℤ‘𝑁)) ∈ (Base‘(ℤ/nℤ‘𝑁)))
52 fvco3 6867 . . . . . . . . . . . 12 ((𝑋:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ ∧ (1r‘(ℤ/nℤ‘𝑁)) ∈ (Base‘(ℤ/nℤ‘𝑁))) → ((∗ ∘ 𝑋)‘(1r‘(ℤ/nℤ‘𝑁))) = (∗‘(𝑋‘(1r‘(ℤ/nℤ‘𝑁)))))
538, 51, 52syl2anc 584 . . . . . . . . . . 11 (𝜑 → ((∗ ∘ 𝑋)‘(1r‘(ℤ/nℤ‘𝑁))) = (∗‘(𝑋‘(1r‘(ℤ/nℤ‘𝑁)))))
5416simp2d 1142 . . . . . . . . . . . . 13 (𝜑 → (𝑋‘(1r‘(ℤ/nℤ‘𝑁))) = 1)
5554fveq2d 6778 . . . . . . . . . . . 12 (𝜑 → (∗‘(𝑋‘(1r‘(ℤ/nℤ‘𝑁)))) = (∗‘1))
56 1re 10975 . . . . . . . . . . . . 13 1 ∈ ℝ
57 cjre 14850 . . . . . . . . . . . . 13 (1 ∈ ℝ → (∗‘1) = 1)
5856, 57ax-mp 5 . . . . . . . . . . . 12 (∗‘1) = 1
5955, 58eqtrdi 2794 . . . . . . . . . . 11 (𝜑 → (∗‘(𝑋‘(1r‘(ℤ/nℤ‘𝑁)))) = 1)
6053, 59eqtrd 2778 . . . . . . . . . 10 (𝜑 → ((∗ ∘ 𝑋)‘(1r‘(ℤ/nℤ‘𝑁))) = 1)
6116simp3d 1143 . . . . . . . . . . 11 (𝜑 → ∀𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))))
628, 42sylan 580 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))) → ((∗ ∘ 𝑋)‘𝑥) = (∗‘(𝑋𝑥)))
63 cj0 14869 . . . . . . . . . . . . . . . . . 18 (∗‘0) = 0
6463eqcomi 2747 . . . . . . . . . . . . . . . . 17 0 = (∗‘0)
6564a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))) → 0 = (∗‘0))
6662, 65eqeq12d 2754 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))) → (((∗ ∘ 𝑋)‘𝑥) = 0 ↔ (∗‘(𝑋𝑥)) = (∗‘0)))
678ffvelrnda 6961 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))) → (𝑋𝑥) ∈ ℂ)
68 0cn 10967 . . . . . . . . . . . . . . . 16 0 ∈ ℂ
69 cj11 14873 . . . . . . . . . . . . . . . 16 (((𝑋𝑥) ∈ ℂ ∧ 0 ∈ ℂ) → ((∗‘(𝑋𝑥)) = (∗‘0) ↔ (𝑋𝑥) = 0))
7067, 68, 69sylancl 586 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))) → ((∗‘(𝑋𝑥)) = (∗‘0) ↔ (𝑋𝑥) = 0))
7166, 70bitrd 278 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))) → (((∗ ∘ 𝑋)‘𝑥) = 0 ↔ (𝑋𝑥) = 0))
7271necon3bid 2988 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))) → (((∗ ∘ 𝑋)‘𝑥) ≠ 0 ↔ (𝑋𝑥) ≠ 0))
7372imbi1d 342 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))) → ((((∗ ∘ 𝑋)‘𝑥) ≠ 0 → 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) ↔ ((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)))))
7473ralbidva 3111 . . . . . . . . . . 11 (𝜑 → (∀𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))(((∗ ∘ 𝑋)‘𝑥) ≠ 0 → 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) ↔ ∀𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)))))
7561, 74mpbird 256 . . . . . . . . . 10 (𝜑 → ∀𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))(((∗ ∘ 𝑋)‘𝑥) ≠ 0 → 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))))
7648, 60, 753jca 1127 . . . . . . . . 9 (𝜑 → (∀𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))∀𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁))((∗ ∘ 𝑋)‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = (((∗ ∘ 𝑋)‘𝑥) · ((∗ ∘ 𝑋)‘𝑦)) ∧ ((∗ ∘ 𝑋)‘(1r‘(ℤ/nℤ‘𝑁))) = 1 ∧ ∀𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))(((∗ ∘ 𝑋)‘𝑥) ≠ 0 → 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)))))
771, 2, 7, 11, 13, 3dchrelbas3 26386 . . . . . . . . 9 (𝜑 → ((∗ ∘ 𝑋) ∈ 𝐷 ↔ ((∗ ∘ 𝑋):(Base‘(ℤ/nℤ‘𝑁))⟶ℂ ∧ (∀𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))∀𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁))((∗ ∘ 𝑋)‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = (((∗ ∘ 𝑋)‘𝑥) · ((∗ ∘ 𝑋)‘𝑦)) ∧ ((∗ ∘ 𝑋)‘(1r‘(ℤ/nℤ‘𝑁))) = 1 ∧ ∀𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))(((∗ ∘ 𝑋)‘𝑥) ≠ 0 → 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)))))))
7810, 76, 77mpbir2and 710 . . . . . . . 8 (𝜑 → (∗ ∘ 𝑋) ∈ 𝐷)
791, 2, 3, 4, 5, 78dchrmul 26396 . . . . . . 7 (𝜑 → (𝑋(+g𝐺)(∗ ∘ 𝑋)) = (𝑋f · (∗ ∘ 𝑋)))
8079adantr 481 . . . . . 6 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → (𝑋(+g𝐺)(∗ ∘ 𝑋)) = (𝑋f · (∗ ∘ 𝑋)))
8180fveq1d 6776 . . . . 5 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → ((𝑋(+g𝐺)(∗ ∘ 𝑋))‘𝑥) = ((𝑋f · (∗ ∘ 𝑋))‘𝑥))
8223sseli 3917 . . . . . . . . 9 (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) → 𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)))
8382, 62sylan2 593 . . . . . . . 8 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → ((∗ ∘ 𝑋)‘𝑥) = (∗‘(𝑋𝑥)))
8483oveq2d 7291 . . . . . . 7 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → ((𝑋𝑥) · ((∗ ∘ 𝑋)‘𝑥)) = ((𝑋𝑥) · (∗‘(𝑋𝑥))))
8582, 67sylan2 593 . . . . . . . 8 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → (𝑋𝑥) ∈ ℂ)
8685absvalsqd 15154 . . . . . . 7 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → ((abs‘(𝑋𝑥))↑2) = ((𝑋𝑥) · (∗‘(𝑋𝑥))))
875adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → 𝑋𝐷)
88 simpr 485 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)))
891, 3, 87, 2, 11, 88dchrabs 26408 . . . . . . . . 9 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → (abs‘(𝑋𝑥)) = 1)
9089oveq1d 7290 . . . . . . . 8 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → ((abs‘(𝑋𝑥))↑2) = (1↑2))
91 sq1 13912 . . . . . . . 8 (1↑2) = 1
9290, 91eqtrdi 2794 . . . . . . 7 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → ((abs‘(𝑋𝑥))↑2) = 1)
9384, 86, 923eqtr2d 2784 . . . . . 6 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → ((𝑋𝑥) · ((∗ ∘ 𝑋)‘𝑥)) = 1)
948adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → 𝑋:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ)
9594ffnd 6601 . . . . . . 7 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → 𝑋 Fn (Base‘(ℤ/nℤ‘𝑁)))
9610ffnd 6601 . . . . . . . 8 (𝜑 → (∗ ∘ 𝑋) Fn (Base‘(ℤ/nℤ‘𝑁)))
9796adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → (∗ ∘ 𝑋) Fn (Base‘(ℤ/nℤ‘𝑁)))
98 fvexd 6789 . . . . . . 7 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → (Base‘(ℤ/nℤ‘𝑁)) ∈ V)
9982adantl 482 . . . . . . 7 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → 𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)))
100 fnfvof 7550 . . . . . . 7 (((𝑋 Fn (Base‘(ℤ/nℤ‘𝑁)) ∧ (∗ ∘ 𝑋) Fn (Base‘(ℤ/nℤ‘𝑁))) ∧ ((Base‘(ℤ/nℤ‘𝑁)) ∈ V ∧ 𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)))) → ((𝑋f · (∗ ∘ 𝑋))‘𝑥) = ((𝑋𝑥) · ((∗ ∘ 𝑋)‘𝑥)))
10195, 97, 98, 99, 100syl22anc 836 . . . . . 6 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → ((𝑋f · (∗ ∘ 𝑋))‘𝑥) = ((𝑋𝑥) · ((∗ ∘ 𝑋)‘𝑥)))
102 eqid 2738 . . . . . . 7 (0g𝐺) = (0g𝐺)
10313adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → 𝑁 ∈ ℕ)
1041, 2, 102, 11, 103, 88dchr1 26405 . . . . . 6 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → ((0g𝐺)‘𝑥) = 1)
10593, 101, 1043eqtr4d 2788 . . . . 5 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → ((𝑋f · (∗ ∘ 𝑋))‘𝑥) = ((0g𝐺)‘𝑥))
10681, 105eqtrd 2778 . . . 4 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → ((𝑋(+g𝐺)(∗ ∘ 𝑋))‘𝑥) = ((0g𝐺)‘𝑥))
107106ralrimiva 3103 . . 3 (𝜑 → ∀𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))((𝑋(+g𝐺)(∗ ∘ 𝑋))‘𝑥) = ((0g𝐺)‘𝑥))
1081, 2, 3, 4, 5, 78dchrmulcl 26397 . . . 4 (𝜑 → (𝑋(+g𝐺)(∗ ∘ 𝑋)) ∈ 𝐷)
1091dchrabl 26402 . . . . . 6 (𝑁 ∈ ℕ → 𝐺 ∈ Abel)
110 ablgrp 19391 . . . . . 6 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
11113, 109, 1103syl 18 . . . . 5 (𝜑𝐺 ∈ Grp)
1123, 102grpidcl 18607 . . . . 5 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝐷)
113111, 112syl 17 . . . 4 (𝜑 → (0g𝐺) ∈ 𝐷)
1141, 2, 3, 11, 108, 113dchreq 26406 . . 3 (𝜑 → ((𝑋(+g𝐺)(∗ ∘ 𝑋)) = (0g𝐺) ↔ ∀𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))((𝑋(+g𝐺)(∗ ∘ 𝑋))‘𝑥) = ((0g𝐺)‘𝑥)))
115107, 114mpbird 256 . 2 (𝜑 → (𝑋(+g𝐺)(∗ ∘ 𝑋)) = (0g𝐺))
116 dchrinv.i . . . 4 𝐼 = (invg𝐺)
1173, 4, 102, 116grpinvid1 18630 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐷 ∧ (∗ ∘ 𝑋) ∈ 𝐷) → ((𝐼𝑋) = (∗ ∘ 𝑋) ↔ (𝑋(+g𝐺)(∗ ∘ 𝑋)) = (0g𝐺)))
118111, 5, 78, 117syl3anc 1370 . 2 (𝜑 → ((𝐼𝑋) = (∗ ∘ 𝑋) ↔ (𝑋(+g𝐺)(∗ ∘ 𝑋)) = (0g𝐺)))
119115, 118mpbird 256 1 (𝜑 → (𝐼𝑋) = (∗ ∘ 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  Vcvv 3432  ccom 5593   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  f cof 7531  cc 10869  cr 10870  0cc0 10871  1c1 10872   · cmul 10876  cn 11973  2c2 12028  0cn0 12233  cexp 13782  ccj 14807  abscabs 14945  Basecbs 16912  +gcplusg 16962  .rcmulr 16963  0gc0g 17150  Grpcgrp 18577  invgcminusg 18578  Abelcabl 19387  1rcur 19737  Ringcrg 19783  CRingccrg 19784  Unitcui 19881  ℤ/nczn 20704  DChrcdchr 26380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-disj 5040  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-omul 8302  df-er 8498  df-ec 8500  df-qs 8504  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-acn 9700  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398  df-ef 15777  df-sin 15779  df-cos 15780  df-pi 15782  df-dvds 15964  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-qus 17220  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-submnd 18431  df-grp 18580  df-minusg 18581  df-sbg 18582  df-mulg 18701  df-subg 18752  df-nsg 18753  df-eqg 18754  df-ghm 18832  df-cntz 18923  df-od 19136  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-cring 19786  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-dvr 19925  df-rnghom 19959  df-drng 19993  df-subrg 20022  df-lmod 20125  df-lss 20194  df-lsp 20234  df-sra 20434  df-rgmod 20435  df-lidl 20436  df-rsp 20437  df-2idl 20503  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-zring 20671  df-zrh 20705  df-zn 20708  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-limc 25030  df-dv 25031  df-log 25712  df-cxp 25713  df-dchr 26381
This theorem is referenced by:  dchr2sum  26421  dchrisum0re  26661
  Copyright terms: Public domain W3C validator