Step | Hyp | Ref
| Expression |
1 | | dchrabs.g |
. . . . . . . 8
⊢ 𝐺 = (DChr‘𝑁) |
2 | | eqid 2740 |
. . . . . . . 8
⊢
(ℤ/nℤ‘𝑁) = (ℤ/nℤ‘𝑁) |
3 | | dchrabs.d |
. . . . . . . 8
⊢ 𝐷 = (Base‘𝐺) |
4 | | eqid 2740 |
. . . . . . . 8
⊢
(+g‘𝐺) = (+g‘𝐺) |
5 | | dchrabs.x |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ∈ 𝐷) |
6 | | cjf 14826 |
. . . . . . . . . 10
⊢
∗:ℂ⟶ℂ |
7 | | eqid 2740 |
. . . . . . . . . . 11
⊢
(Base‘(ℤ/nℤ‘𝑁)) =
(Base‘(ℤ/nℤ‘𝑁)) |
8 | 1, 2, 3, 7, 5 | dchrf 26401 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ) |
9 | | fco 6622 |
. . . . . . . . . 10
⊢
((∗:ℂ⟶ℂ ∧ 𝑋:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ) → (∗
∘ 𝑋):(Base‘(ℤ/nℤ‘𝑁))⟶ℂ) |
10 | 6, 8, 9 | sylancr 587 |
. . . . . . . . 9
⊢ (𝜑 → (∗ ∘ 𝑋):(Base‘(ℤ/nℤ‘𝑁))⟶ℂ) |
11 | | eqid 2740 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(Unit‘(ℤ/nℤ‘𝑁)) =
(Unit‘(ℤ/nℤ‘𝑁)) |
12 | 1, 3 | dchrrcl 26399 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑋 ∈ 𝐷 → 𝑁 ∈ ℕ) |
13 | 5, 12 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝑁 ∈ ℕ) |
14 | 1, 2, 7, 11, 13, 3 | dchrelbas3 26397 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑋 ∈ 𝐷 ↔ (𝑋:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ ∧
(∀𝑥 ∈
(Unit‘(ℤ/nℤ‘𝑁))∀𝑦 ∈
(Unit‘(ℤ/nℤ‘𝑁))(𝑋‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = ((𝑋‘𝑥) · (𝑋‘𝑦)) ∧ (𝑋‘(1r‘(ℤ/nℤ‘𝑁))) = 1 ∧ ∀𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))((𝑋‘𝑥)
≠ 0 → 𝑥 ∈
(Unit‘(ℤ/nℤ‘𝑁))))))) |
15 | 5, 14 | mpbid 231 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑋:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ ∧
(∀𝑥 ∈
(Unit‘(ℤ/nℤ‘𝑁))∀𝑦 ∈
(Unit‘(ℤ/nℤ‘𝑁))(𝑋‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = ((𝑋‘𝑥) · (𝑋‘𝑦)) ∧ (𝑋‘(1r‘(ℤ/nℤ‘𝑁))) = 1 ∧ ∀𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))((𝑋‘𝑥)
≠ 0 → 𝑥 ∈
(Unit‘(ℤ/nℤ‘𝑁)))))) |
16 | 15 | simprd 496 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (∀𝑥 ∈
(Unit‘(ℤ/nℤ‘𝑁))∀𝑦 ∈
(Unit‘(ℤ/nℤ‘𝑁))(𝑋‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = ((𝑋‘𝑥) · (𝑋‘𝑦)) ∧ (𝑋‘(1r‘(ℤ/nℤ‘𝑁))) = 1 ∧ ∀𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))((𝑋‘𝑥)
≠ 0 → 𝑥 ∈
(Unit‘(ℤ/nℤ‘𝑁))))) |
17 | 16 | simp1d 1141 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ∀𝑥 ∈
(Unit‘(ℤ/nℤ‘𝑁))∀𝑦 ∈
(Unit‘(ℤ/nℤ‘𝑁))(𝑋‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = ((𝑋‘𝑥) · (𝑋‘𝑦))) |
18 | 17 | r19.21bi 3135 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈
(Unit‘(ℤ/nℤ‘𝑁))) → ∀𝑦 ∈
(Unit‘(ℤ/nℤ‘𝑁))(𝑋‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = ((𝑋‘𝑥) · (𝑋‘𝑦))) |
19 | 18 | r19.21bi 3135 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈
(Unit‘(ℤ/nℤ‘𝑁))) ∧ 𝑦 ∈
(Unit‘(ℤ/nℤ‘𝑁))) → (𝑋‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = ((𝑋‘𝑥) · (𝑋‘𝑦))) |
20 | 19 | anasss 467 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈
(Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈
(Unit‘(ℤ/nℤ‘𝑁)))) → (𝑋‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = ((𝑋‘𝑥) · (𝑋‘𝑦))) |
21 | 20 | fveq2d 6775 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈
(Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈
(Unit‘(ℤ/nℤ‘𝑁)))) → (∗‘(𝑋‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦))) = (∗‘((𝑋‘𝑥) · (𝑋‘𝑦)))) |
22 | 8 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈
(Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈
(Unit‘(ℤ/nℤ‘𝑁)))) → 𝑋:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ) |
23 | 7, 11 | unitss 19913 |
. . . . . . . . . . . . . . . 16
⊢
(Unit‘(ℤ/nℤ‘𝑁)) ⊆
(Base‘(ℤ/nℤ‘𝑁)) |
24 | | simprl 768 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑥 ∈
(Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈
(Unit‘(ℤ/nℤ‘𝑁)))) → 𝑥 ∈
(Unit‘(ℤ/nℤ‘𝑁))) |
25 | 23, 24 | sselid 3924 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈
(Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈
(Unit‘(ℤ/nℤ‘𝑁)))) → 𝑥 ∈
(Base‘(ℤ/nℤ‘𝑁))) |
26 | 22, 25 | ffvelrnd 6959 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈
(Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈
(Unit‘(ℤ/nℤ‘𝑁)))) → (𝑋‘𝑥) ∈ ℂ) |
27 | | simprr 770 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑥 ∈
(Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈
(Unit‘(ℤ/nℤ‘𝑁)))) → 𝑦 ∈
(Unit‘(ℤ/nℤ‘𝑁))) |
28 | 23, 27 | sselid 3924 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈
(Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈
(Unit‘(ℤ/nℤ‘𝑁)))) → 𝑦 ∈
(Base‘(ℤ/nℤ‘𝑁))) |
29 | 22, 28 | ffvelrnd 6959 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈
(Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈
(Unit‘(ℤ/nℤ‘𝑁)))) → (𝑋‘𝑦) ∈ ℂ) |
30 | 26, 29 | cjmuld 14943 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈
(Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈
(Unit‘(ℤ/nℤ‘𝑁)))) → (∗‘((𝑋‘𝑥) · (𝑋‘𝑦))) = ((∗‘(𝑋‘𝑥)) · (∗‘(𝑋‘𝑦)))) |
31 | 21, 30 | eqtrd 2780 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈
(Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈
(Unit‘(ℤ/nℤ‘𝑁)))) → (∗‘(𝑋‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦))) = ((∗‘(𝑋‘𝑥)) · (∗‘(𝑋‘𝑦)))) |
32 | 13 | nnnn0d 12304 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
33 | 2 | zncrng 20763 |
. . . . . . . . . . . . . . . 16
⊢ (𝑁 ∈ ℕ0
→ (ℤ/nℤ‘𝑁) ∈ CRing) |
34 | | crngring 19806 |
. . . . . . . . . . . . . . . 16
⊢
((ℤ/nℤ‘𝑁) ∈ CRing →
(ℤ/nℤ‘𝑁) ∈ Ring) |
35 | 32, 33, 34 | 3syl 18 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 →
(ℤ/nℤ‘𝑁) ∈ Ring) |
36 | 35 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈
(Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈
(Unit‘(ℤ/nℤ‘𝑁)))) →
(ℤ/nℤ‘𝑁) ∈ Ring) |
37 | | eqid 2740 |
. . . . . . . . . . . . . . 15
⊢
(.r‘(ℤ/nℤ‘𝑁)) =
(.r‘(ℤ/nℤ‘𝑁)) |
38 | 7, 37 | ringcl 19811 |
. . . . . . . . . . . . . 14
⊢
(((ℤ/nℤ‘𝑁) ∈ Ring ∧ 𝑥 ∈
(Base‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈
(Base‘(ℤ/nℤ‘𝑁))) → (𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦) ∈ (Base‘(ℤ/nℤ‘𝑁))) |
39 | 36, 25, 28, 38 | syl3anc 1370 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈
(Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈
(Unit‘(ℤ/nℤ‘𝑁)))) → (𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦) ∈ (Base‘(ℤ/nℤ‘𝑁))) |
40 | | fvco3 6864 |
. . . . . . . . . . . . 13
⊢ ((𝑋:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ ∧ (𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦) ∈ (Base‘(ℤ/nℤ‘𝑁))) → ((∗ ∘ 𝑋)‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = (∗‘(𝑋‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)))) |
41 | 22, 39, 40 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈
(Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈
(Unit‘(ℤ/nℤ‘𝑁)))) → ((∗ ∘ 𝑋)‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = (∗‘(𝑋‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)))) |
42 | | fvco3 6864 |
. . . . . . . . . . . . . 14
⊢ ((𝑋:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ ∧ 𝑥 ∈
(Base‘(ℤ/nℤ‘𝑁))) → ((∗ ∘ 𝑋)‘𝑥) = (∗‘(𝑋‘𝑥))) |
43 | 22, 25, 42 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈
(Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈
(Unit‘(ℤ/nℤ‘𝑁)))) → ((∗ ∘ 𝑋)‘𝑥) = (∗‘(𝑋‘𝑥))) |
44 | | fvco3 6864 |
. . . . . . . . . . . . . 14
⊢ ((𝑋:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ ∧ 𝑦 ∈
(Base‘(ℤ/nℤ‘𝑁))) → ((∗ ∘ 𝑋)‘𝑦) = (∗‘(𝑋‘𝑦))) |
45 | 22, 28, 44 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈
(Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈
(Unit‘(ℤ/nℤ‘𝑁)))) → ((∗ ∘ 𝑋)‘𝑦) = (∗‘(𝑋‘𝑦))) |
46 | 43, 45 | oveq12d 7290 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈
(Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈
(Unit‘(ℤ/nℤ‘𝑁)))) → (((∗ ∘ 𝑋)‘𝑥) · ((∗ ∘ 𝑋)‘𝑦)) = ((∗‘(𝑋‘𝑥)) · (∗‘(𝑋‘𝑦)))) |
47 | 31, 41, 46 | 3eqtr4d 2790 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈
(Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈
(Unit‘(ℤ/nℤ‘𝑁)))) → ((∗ ∘ 𝑋)‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = (((∗ ∘ 𝑋)‘𝑥) · ((∗ ∘ 𝑋)‘𝑦))) |
48 | 47 | ralrimivva 3117 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑥 ∈
(Unit‘(ℤ/nℤ‘𝑁))∀𝑦 ∈
(Unit‘(ℤ/nℤ‘𝑁))((∗ ∘ 𝑋)‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = (((∗ ∘ 𝑋)‘𝑥) · ((∗ ∘ 𝑋)‘𝑦))) |
49 | | eqid 2740 |
. . . . . . . . . . . . . 14
⊢
(1r‘(ℤ/nℤ‘𝑁)) =
(1r‘(ℤ/nℤ‘𝑁)) |
50 | 7, 49 | ringidcl 19818 |
. . . . . . . . . . . . 13
⊢
((ℤ/nℤ‘𝑁) ∈ Ring →
(1r‘(ℤ/nℤ‘𝑁)) ∈
(Base‘(ℤ/nℤ‘𝑁))) |
51 | 35, 50 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 →
(1r‘(ℤ/nℤ‘𝑁)) ∈
(Base‘(ℤ/nℤ‘𝑁))) |
52 | | fvco3 6864 |
. . . . . . . . . . . 12
⊢ ((𝑋:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ ∧
(1r‘(ℤ/nℤ‘𝑁)) ∈
(Base‘(ℤ/nℤ‘𝑁))) → ((∗ ∘ 𝑋)‘(1r‘(ℤ/nℤ‘𝑁))) = (∗‘(𝑋‘(1r‘(ℤ/nℤ‘𝑁))))) |
53 | 8, 51, 52 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (𝜑 → ((∗ ∘ 𝑋)‘(1r‘(ℤ/nℤ‘𝑁))) = (∗‘(𝑋‘(1r‘(ℤ/nℤ‘𝑁))))) |
54 | 16 | simp2d 1142 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑋‘(1r‘(ℤ/nℤ‘𝑁))) = 1) |
55 | 54 | fveq2d 6775 |
. . . . . . . . . . . 12
⊢ (𝜑 → (∗‘(𝑋‘(1r‘(ℤ/nℤ‘𝑁)))) = (∗‘1)) |
56 | | 1re 10986 |
. . . . . . . . . . . . 13
⊢ 1 ∈
ℝ |
57 | | cjre 14861 |
. . . . . . . . . . . . 13
⊢ (1 ∈
ℝ → (∗‘1) = 1) |
58 | 56, 57 | ax-mp 5 |
. . . . . . . . . . . 12
⊢
(∗‘1) = 1 |
59 | 55, 58 | eqtrdi 2796 |
. . . . . . . . . . 11
⊢ (𝜑 → (∗‘(𝑋‘(1r‘(ℤ/nℤ‘𝑁)))) = 1) |
60 | 53, 59 | eqtrd 2780 |
. . . . . . . . . 10
⊢ (𝜑 → ((∗ ∘ 𝑋)‘(1r‘(ℤ/nℤ‘𝑁))) = 1) |
61 | 16 | simp3d 1143 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑥 ∈
(Base‘(ℤ/nℤ‘𝑁))((𝑋‘𝑥) ≠ 0 → 𝑥 ∈
(Unit‘(ℤ/nℤ‘𝑁)))) |
62 | 8, 42 | sylan 580 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈
(Base‘(ℤ/nℤ‘𝑁))) → ((∗ ∘ 𝑋)‘𝑥) = (∗‘(𝑋‘𝑥))) |
63 | | cj0 14880 |
. . . . . . . . . . . . . . . . . 18
⊢
(∗‘0) = 0 |
64 | 63 | eqcomi 2749 |
. . . . . . . . . . . . . . . . 17
⊢ 0 =
(∗‘0) |
65 | 64 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈
(Base‘(ℤ/nℤ‘𝑁))) → 0 =
(∗‘0)) |
66 | 62, 65 | eqeq12d 2756 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈
(Base‘(ℤ/nℤ‘𝑁))) → (((∗ ∘ 𝑋)‘𝑥) = 0 ↔ (∗‘(𝑋‘𝑥)) = (∗‘0))) |
67 | 8 | ffvelrnda 6958 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈
(Base‘(ℤ/nℤ‘𝑁))) → (𝑋‘𝑥) ∈ ℂ) |
68 | | 0cn 10978 |
. . . . . . . . . . . . . . . 16
⊢ 0 ∈
ℂ |
69 | | cj11 14884 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑋‘𝑥) ∈ ℂ ∧ 0 ∈ ℂ)
→ ((∗‘(𝑋‘𝑥)) = (∗‘0) ↔ (𝑋‘𝑥) = 0)) |
70 | 67, 68, 69 | sylancl 586 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈
(Base‘(ℤ/nℤ‘𝑁))) → ((∗‘(𝑋‘𝑥)) = (∗‘0) ↔ (𝑋‘𝑥) = 0)) |
71 | 66, 70 | bitrd 278 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈
(Base‘(ℤ/nℤ‘𝑁))) → (((∗ ∘ 𝑋)‘𝑥) = 0 ↔ (𝑋‘𝑥) = 0)) |
72 | 71 | necon3bid 2990 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈
(Base‘(ℤ/nℤ‘𝑁))) → (((∗ ∘ 𝑋)‘𝑥) ≠ 0 ↔ (𝑋‘𝑥) ≠ 0)) |
73 | 72 | imbi1d 342 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈
(Base‘(ℤ/nℤ‘𝑁))) → ((((∗ ∘ 𝑋)‘𝑥) ≠ 0 → 𝑥 ∈
(Unit‘(ℤ/nℤ‘𝑁))) ↔ ((𝑋‘𝑥) ≠ 0 → 𝑥 ∈
(Unit‘(ℤ/nℤ‘𝑁))))) |
74 | 73 | ralbidva 3122 |
. . . . . . . . . . 11
⊢ (𝜑 → (∀𝑥 ∈
(Base‘(ℤ/nℤ‘𝑁))(((∗ ∘ 𝑋)‘𝑥) ≠ 0 → 𝑥 ∈
(Unit‘(ℤ/nℤ‘𝑁))) ↔ ∀𝑥 ∈
(Base‘(ℤ/nℤ‘𝑁))((𝑋‘𝑥) ≠ 0 → 𝑥 ∈
(Unit‘(ℤ/nℤ‘𝑁))))) |
75 | 61, 74 | mpbird 256 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑥 ∈
(Base‘(ℤ/nℤ‘𝑁))(((∗ ∘ 𝑋)‘𝑥) ≠ 0 → 𝑥 ∈
(Unit‘(ℤ/nℤ‘𝑁)))) |
76 | 48, 60, 75 | 3jca 1127 |
. . . . . . . . 9
⊢ (𝜑 → (∀𝑥 ∈
(Unit‘(ℤ/nℤ‘𝑁))∀𝑦 ∈
(Unit‘(ℤ/nℤ‘𝑁))((∗ ∘ 𝑋)‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = (((∗ ∘ 𝑋)‘𝑥) · ((∗ ∘ 𝑋)‘𝑦)) ∧ ((∗ ∘ 𝑋)‘(1r‘(ℤ/nℤ‘𝑁))) = 1 ∧ ∀𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))(((∗ ∘ 𝑋)‘𝑥)
≠ 0 → 𝑥 ∈
(Unit‘(ℤ/nℤ‘𝑁))))) |
77 | 1, 2, 7, 11, 13, 3 | dchrelbas3 26397 |
. . . . . . . . 9
⊢ (𝜑 → ((∗ ∘ 𝑋) ∈ 𝐷 ↔ ((∗ ∘ 𝑋):(Base‘(ℤ/nℤ‘𝑁))⟶ℂ ∧ (∀𝑥 ∈
(Unit‘(ℤ/nℤ‘𝑁))∀𝑦 ∈
(Unit‘(ℤ/nℤ‘𝑁))((∗ ∘ 𝑋)‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = (((∗ ∘ 𝑋)‘𝑥) · ((∗ ∘ 𝑋)‘𝑦)) ∧ ((∗ ∘ 𝑋)‘(1r‘(ℤ/nℤ‘𝑁))) = 1 ∧ ∀𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))(((∗ ∘ 𝑋)‘𝑥)
≠ 0 → 𝑥 ∈
(Unit‘(ℤ/nℤ‘𝑁))))))) |
78 | 10, 76, 77 | mpbir2and 710 |
. . . . . . . 8
⊢ (𝜑 → (∗ ∘ 𝑋) ∈ 𝐷) |
79 | 1, 2, 3, 4, 5, 78 | dchrmul 26407 |
. . . . . . 7
⊢ (𝜑 → (𝑋(+g‘𝐺)(∗ ∘ 𝑋)) = (𝑋 ∘f · (∗
∘ 𝑋))) |
80 | 79 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈
(Unit‘(ℤ/nℤ‘𝑁))) → (𝑋(+g‘𝐺)(∗ ∘ 𝑋)) = (𝑋 ∘f · (∗
∘ 𝑋))) |
81 | 80 | fveq1d 6773 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈
(Unit‘(ℤ/nℤ‘𝑁))) → ((𝑋(+g‘𝐺)(∗ ∘ 𝑋))‘𝑥) = ((𝑋 ∘f · (∗
∘ 𝑋))‘𝑥)) |
82 | 23 | sseli 3922 |
. . . . . . . . 9
⊢ (𝑥 ∈
(Unit‘(ℤ/nℤ‘𝑁)) → 𝑥 ∈
(Base‘(ℤ/nℤ‘𝑁))) |
83 | 82, 62 | sylan2 593 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈
(Unit‘(ℤ/nℤ‘𝑁))) → ((∗ ∘ 𝑋)‘𝑥) = (∗‘(𝑋‘𝑥))) |
84 | 83 | oveq2d 7288 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈
(Unit‘(ℤ/nℤ‘𝑁))) → ((𝑋‘𝑥) · ((∗ ∘ 𝑋)‘𝑥)) = ((𝑋‘𝑥) · (∗‘(𝑋‘𝑥)))) |
85 | 82, 67 | sylan2 593 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈
(Unit‘(ℤ/nℤ‘𝑁))) → (𝑋‘𝑥) ∈ ℂ) |
86 | 85 | absvalsqd 15165 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈
(Unit‘(ℤ/nℤ‘𝑁))) → ((abs‘(𝑋‘𝑥))↑2) = ((𝑋‘𝑥) · (∗‘(𝑋‘𝑥)))) |
87 | 5 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈
(Unit‘(ℤ/nℤ‘𝑁))) → 𝑋 ∈ 𝐷) |
88 | | simpr 485 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈
(Unit‘(ℤ/nℤ‘𝑁))) → 𝑥 ∈
(Unit‘(ℤ/nℤ‘𝑁))) |
89 | 1, 3, 87, 2, 11, 88 | dchrabs 26419 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈
(Unit‘(ℤ/nℤ‘𝑁))) → (abs‘(𝑋‘𝑥)) = 1) |
90 | 89 | oveq1d 7287 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈
(Unit‘(ℤ/nℤ‘𝑁))) → ((abs‘(𝑋‘𝑥))↑2) = (1↑2)) |
91 | | sq1 13923 |
. . . . . . . 8
⊢
(1↑2) = 1 |
92 | 90, 91 | eqtrdi 2796 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈
(Unit‘(ℤ/nℤ‘𝑁))) → ((abs‘(𝑋‘𝑥))↑2) = 1) |
93 | 84, 86, 92 | 3eqtr2d 2786 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈
(Unit‘(ℤ/nℤ‘𝑁))) → ((𝑋‘𝑥) · ((∗ ∘ 𝑋)‘𝑥)) = 1) |
94 | 8 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈
(Unit‘(ℤ/nℤ‘𝑁))) → 𝑋:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ) |
95 | 94 | ffnd 6599 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈
(Unit‘(ℤ/nℤ‘𝑁))) → 𝑋 Fn
(Base‘(ℤ/nℤ‘𝑁))) |
96 | 10 | ffnd 6599 |
. . . . . . . 8
⊢ (𝜑 → (∗ ∘ 𝑋) Fn
(Base‘(ℤ/nℤ‘𝑁))) |
97 | 96 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈
(Unit‘(ℤ/nℤ‘𝑁))) → (∗ ∘ 𝑋) Fn
(Base‘(ℤ/nℤ‘𝑁))) |
98 | | fvexd 6786 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈
(Unit‘(ℤ/nℤ‘𝑁))) →
(Base‘(ℤ/nℤ‘𝑁)) ∈ V) |
99 | 82 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈
(Unit‘(ℤ/nℤ‘𝑁))) → 𝑥 ∈
(Base‘(ℤ/nℤ‘𝑁))) |
100 | | fnfvof 7545 |
. . . . . . 7
⊢ (((𝑋 Fn
(Base‘(ℤ/nℤ‘𝑁)) ∧ (∗ ∘ 𝑋) Fn
(Base‘(ℤ/nℤ‘𝑁))) ∧
((Base‘(ℤ/nℤ‘𝑁)) ∈ V ∧ 𝑥 ∈
(Base‘(ℤ/nℤ‘𝑁)))) → ((𝑋 ∘f · (∗
∘ 𝑋))‘𝑥) = ((𝑋‘𝑥) · ((∗ ∘ 𝑋)‘𝑥))) |
101 | 95, 97, 98, 99, 100 | syl22anc 836 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈
(Unit‘(ℤ/nℤ‘𝑁))) → ((𝑋 ∘f · (∗
∘ 𝑋))‘𝑥) = ((𝑋‘𝑥) · ((∗ ∘ 𝑋)‘𝑥))) |
102 | | eqid 2740 |
. . . . . . 7
⊢
(0g‘𝐺) = (0g‘𝐺) |
103 | 13 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈
(Unit‘(ℤ/nℤ‘𝑁))) → 𝑁 ∈ ℕ) |
104 | 1, 2, 102, 11, 103, 88 | dchr1 26416 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈
(Unit‘(ℤ/nℤ‘𝑁))) → ((0g‘𝐺)‘𝑥) = 1) |
105 | 93, 101, 104 | 3eqtr4d 2790 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈
(Unit‘(ℤ/nℤ‘𝑁))) → ((𝑋 ∘f · (∗
∘ 𝑋))‘𝑥) = ((0g‘𝐺)‘𝑥)) |
106 | 81, 105 | eqtrd 2780 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈
(Unit‘(ℤ/nℤ‘𝑁))) → ((𝑋(+g‘𝐺)(∗ ∘ 𝑋))‘𝑥) = ((0g‘𝐺)‘𝑥)) |
107 | 106 | ralrimiva 3110 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈
(Unit‘(ℤ/nℤ‘𝑁))((𝑋(+g‘𝐺)(∗ ∘ 𝑋))‘𝑥) = ((0g‘𝐺)‘𝑥)) |
108 | 1, 2, 3, 4, 5, 78 | dchrmulcl 26408 |
. . . 4
⊢ (𝜑 → (𝑋(+g‘𝐺)(∗ ∘ 𝑋)) ∈ 𝐷) |
109 | 1 | dchrabl 26413 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → 𝐺 ∈ Abel) |
110 | | ablgrp 19402 |
. . . . . 6
⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) |
111 | 13, 109, 110 | 3syl 18 |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ Grp) |
112 | 3, 102 | grpidcl 18618 |
. . . . 5
⊢ (𝐺 ∈ Grp →
(0g‘𝐺)
∈ 𝐷) |
113 | 111, 112 | syl 17 |
. . . 4
⊢ (𝜑 → (0g‘𝐺) ∈ 𝐷) |
114 | 1, 2, 3, 11, 108, 113 | dchreq 26417 |
. . 3
⊢ (𝜑 → ((𝑋(+g‘𝐺)(∗ ∘ 𝑋)) = (0g‘𝐺) ↔ ∀𝑥 ∈
(Unit‘(ℤ/nℤ‘𝑁))((𝑋(+g‘𝐺)(∗ ∘ 𝑋))‘𝑥) = ((0g‘𝐺)‘𝑥))) |
115 | 107, 114 | mpbird 256 |
. 2
⊢ (𝜑 → (𝑋(+g‘𝐺)(∗ ∘ 𝑋)) = (0g‘𝐺)) |
116 | | dchrinv.i |
. . . 4
⊢ 𝐼 = (invg‘𝐺) |
117 | 3, 4, 102, 116 | grpinvid1 18641 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐷 ∧ (∗ ∘ 𝑋) ∈ 𝐷) → ((𝐼‘𝑋) = (∗ ∘ 𝑋) ↔ (𝑋(+g‘𝐺)(∗ ∘ 𝑋)) = (0g‘𝐺))) |
118 | 111, 5, 78, 117 | syl3anc 1370 |
. 2
⊢ (𝜑 → ((𝐼‘𝑋) = (∗ ∘ 𝑋) ↔ (𝑋(+g‘𝐺)(∗ ∘ 𝑋)) = (0g‘𝐺))) |
119 | 115, 118 | mpbird 256 |
1
⊢ (𝜑 → (𝐼‘𝑋) = (∗ ∘ 𝑋)) |