MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrinv Structured version   Visualization version   GIF version

Theorem dchrinv 27214
Description: The inverse of a Dirichlet character is the conjugate (which is also the multiplicative inverse, because the values of 𝑋 are unimodular). (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
dchrabs.g 𝐺 = (DChr‘𝑁)
dchrabs.d 𝐷 = (Base‘𝐺)
dchrabs.x (𝜑𝑋𝐷)
dchrinv.i 𝐼 = (invg𝐺)
Assertion
Ref Expression
dchrinv (𝜑 → (𝐼𝑋) = (∗ ∘ 𝑋))

Proof of Theorem dchrinv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dchrabs.g . . . . . . . 8 𝐺 = (DChr‘𝑁)
2 eqid 2728 . . . . . . . 8 (ℤ/nℤ‘𝑁) = (ℤ/nℤ‘𝑁)
3 dchrabs.d . . . . . . . 8 𝐷 = (Base‘𝐺)
4 eqid 2728 . . . . . . . 8 (+g𝐺) = (+g𝐺)
5 dchrabs.x . . . . . . . 8 (𝜑𝑋𝐷)
6 cjf 15091 . . . . . . . . . 10 ∗:ℂ⟶ℂ
7 eqid 2728 . . . . . . . . . . 11 (Base‘(ℤ/nℤ‘𝑁)) = (Base‘(ℤ/nℤ‘𝑁))
81, 2, 3, 7, 5dchrf 27195 . . . . . . . . . 10 (𝜑𝑋:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ)
9 fco 6752 . . . . . . . . . 10 ((∗:ℂ⟶ℂ ∧ 𝑋:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ) → (∗ ∘ 𝑋):(Base‘(ℤ/nℤ‘𝑁))⟶ℂ)
106, 8, 9sylancr 585 . . . . . . . . 9 (𝜑 → (∗ ∘ 𝑋):(Base‘(ℤ/nℤ‘𝑁))⟶ℂ)
11 eqid 2728 . . . . . . . . . . . . . . . . . . . . 21 (Unit‘(ℤ/nℤ‘𝑁)) = (Unit‘(ℤ/nℤ‘𝑁))
121, 3dchrrcl 27193 . . . . . . . . . . . . . . . . . . . . . 22 (𝑋𝐷𝑁 ∈ ℕ)
135, 12syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑁 ∈ ℕ)
141, 2, 7, 11, 13, 3dchrelbas3 27191 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑋𝐷 ↔ (𝑋:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ ∧ (∀𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))∀𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁))(𝑋‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r‘(ℤ/nℤ‘𝑁))) = 1 ∧ ∀𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)))))))
155, 14mpbid 231 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑋:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ ∧ (∀𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))∀𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁))(𝑋‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r‘(ℤ/nℤ‘𝑁))) = 1 ∧ ∀𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))))))
1615simprd 494 . . . . . . . . . . . . . . . . . 18 (𝜑 → (∀𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))∀𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁))(𝑋‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r‘(ℤ/nℤ‘𝑁))) = 1 ∧ ∀𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)))))
1716simp1d 1139 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))∀𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁))(𝑋‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))
1817r19.21bi 3246 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → ∀𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁))(𝑋‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))
1918r19.21bi 3246 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → (𝑋‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))
2019anasss 465 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → (𝑋‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))
2120fveq2d 6906 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → (∗‘(𝑋‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦))) = (∗‘((𝑋𝑥) · (𝑋𝑦))))
228adantr 479 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → 𝑋:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ)
237, 11unitss 20322 . . . . . . . . . . . . . . . 16 (Unit‘(ℤ/nℤ‘𝑁)) ⊆ (Base‘(ℤ/nℤ‘𝑁))
24 simprl 769 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)))
2523, 24sselid 3980 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → 𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)))
2622, 25ffvelcdmd 7100 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → (𝑋𝑥) ∈ ℂ)
27 simprr 771 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))
2823, 27sselid 3980 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → 𝑦 ∈ (Base‘(ℤ/nℤ‘𝑁)))
2922, 28ffvelcdmd 7100 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → (𝑋𝑦) ∈ ℂ)
3026, 29cjmuld 15208 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → (∗‘((𝑋𝑥) · (𝑋𝑦))) = ((∗‘(𝑋𝑥)) · (∗‘(𝑋𝑦))))
3121, 30eqtrd 2768 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → (∗‘(𝑋‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦))) = ((∗‘(𝑋𝑥)) · (∗‘(𝑋𝑦))))
3213nnnn0d 12570 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℕ0)
332zncrng 21485 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ0 → (ℤ/nℤ‘𝑁) ∈ CRing)
34 crngring 20192 . . . . . . . . . . . . . . . 16 ((ℤ/nℤ‘𝑁) ∈ CRing → (ℤ/nℤ‘𝑁) ∈ Ring)
3532, 33, 343syl 18 . . . . . . . . . . . . . . 15 (𝜑 → (ℤ/nℤ‘𝑁) ∈ Ring)
3635adantr 479 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → (ℤ/nℤ‘𝑁) ∈ Ring)
37 eqid 2728 . . . . . . . . . . . . . . 15 (.r‘(ℤ/nℤ‘𝑁)) = (.r‘(ℤ/nℤ‘𝑁))
387, 37ringcl 20197 . . . . . . . . . . . . . 14 (((ℤ/nℤ‘𝑁) ∈ Ring ∧ 𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Base‘(ℤ/nℤ‘𝑁))) → (𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦) ∈ (Base‘(ℤ/nℤ‘𝑁)))
3936, 25, 28, 38syl3anc 1368 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → (𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦) ∈ (Base‘(ℤ/nℤ‘𝑁)))
40 fvco3 7002 . . . . . . . . . . . . 13 ((𝑋:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ ∧ (𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦) ∈ (Base‘(ℤ/nℤ‘𝑁))) → ((∗ ∘ 𝑋)‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = (∗‘(𝑋‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦))))
4122, 39, 40syl2anc 582 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → ((∗ ∘ 𝑋)‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = (∗‘(𝑋‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦))))
42 fvco3 7002 . . . . . . . . . . . . . 14 ((𝑋:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ ∧ 𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))) → ((∗ ∘ 𝑋)‘𝑥) = (∗‘(𝑋𝑥)))
4322, 25, 42syl2anc 582 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → ((∗ ∘ 𝑋)‘𝑥) = (∗‘(𝑋𝑥)))
44 fvco3 7002 . . . . . . . . . . . . . 14 ((𝑋:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ ∧ 𝑦 ∈ (Base‘(ℤ/nℤ‘𝑁))) → ((∗ ∘ 𝑋)‘𝑦) = (∗‘(𝑋𝑦)))
4522, 28, 44syl2anc 582 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → ((∗ ∘ 𝑋)‘𝑦) = (∗‘(𝑋𝑦)))
4643, 45oveq12d 7444 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → (((∗ ∘ 𝑋)‘𝑥) · ((∗ ∘ 𝑋)‘𝑦)) = ((∗‘(𝑋𝑥)) · (∗‘(𝑋𝑦))))
4731, 41, 463eqtr4d 2778 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → ((∗ ∘ 𝑋)‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = (((∗ ∘ 𝑋)‘𝑥) · ((∗ ∘ 𝑋)‘𝑦)))
4847ralrimivva 3198 . . . . . . . . . 10 (𝜑 → ∀𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))∀𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁))((∗ ∘ 𝑋)‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = (((∗ ∘ 𝑋)‘𝑥) · ((∗ ∘ 𝑋)‘𝑦)))
49 eqid 2728 . . . . . . . . . . . . . 14 (1r‘(ℤ/nℤ‘𝑁)) = (1r‘(ℤ/nℤ‘𝑁))
507, 49ringidcl 20209 . . . . . . . . . . . . 13 ((ℤ/nℤ‘𝑁) ∈ Ring → (1r‘(ℤ/nℤ‘𝑁)) ∈ (Base‘(ℤ/nℤ‘𝑁)))
5135, 50syl 17 . . . . . . . . . . . 12 (𝜑 → (1r‘(ℤ/nℤ‘𝑁)) ∈ (Base‘(ℤ/nℤ‘𝑁)))
52 fvco3 7002 . . . . . . . . . . . 12 ((𝑋:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ ∧ (1r‘(ℤ/nℤ‘𝑁)) ∈ (Base‘(ℤ/nℤ‘𝑁))) → ((∗ ∘ 𝑋)‘(1r‘(ℤ/nℤ‘𝑁))) = (∗‘(𝑋‘(1r‘(ℤ/nℤ‘𝑁)))))
538, 51, 52syl2anc 582 . . . . . . . . . . 11 (𝜑 → ((∗ ∘ 𝑋)‘(1r‘(ℤ/nℤ‘𝑁))) = (∗‘(𝑋‘(1r‘(ℤ/nℤ‘𝑁)))))
5416simp2d 1140 . . . . . . . . . . . . 13 (𝜑 → (𝑋‘(1r‘(ℤ/nℤ‘𝑁))) = 1)
5554fveq2d 6906 . . . . . . . . . . . 12 (𝜑 → (∗‘(𝑋‘(1r‘(ℤ/nℤ‘𝑁)))) = (∗‘1))
56 1re 11252 . . . . . . . . . . . . 13 1 ∈ ℝ
57 cjre 15126 . . . . . . . . . . . . 13 (1 ∈ ℝ → (∗‘1) = 1)
5856, 57ax-mp 5 . . . . . . . . . . . 12 (∗‘1) = 1
5955, 58eqtrdi 2784 . . . . . . . . . . 11 (𝜑 → (∗‘(𝑋‘(1r‘(ℤ/nℤ‘𝑁)))) = 1)
6053, 59eqtrd 2768 . . . . . . . . . 10 (𝜑 → ((∗ ∘ 𝑋)‘(1r‘(ℤ/nℤ‘𝑁))) = 1)
6116simp3d 1141 . . . . . . . . . . 11 (𝜑 → ∀𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))))
628, 42sylan 578 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))) → ((∗ ∘ 𝑋)‘𝑥) = (∗‘(𝑋𝑥)))
63 cj0 15145 . . . . . . . . . . . . . . . . . 18 (∗‘0) = 0
6463eqcomi 2737 . . . . . . . . . . . . . . . . 17 0 = (∗‘0)
6564a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))) → 0 = (∗‘0))
6662, 65eqeq12d 2744 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))) → (((∗ ∘ 𝑋)‘𝑥) = 0 ↔ (∗‘(𝑋𝑥)) = (∗‘0)))
678ffvelcdmda 7099 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))) → (𝑋𝑥) ∈ ℂ)
68 0cn 11244 . . . . . . . . . . . . . . . 16 0 ∈ ℂ
69 cj11 15149 . . . . . . . . . . . . . . . 16 (((𝑋𝑥) ∈ ℂ ∧ 0 ∈ ℂ) → ((∗‘(𝑋𝑥)) = (∗‘0) ↔ (𝑋𝑥) = 0))
7067, 68, 69sylancl 584 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))) → ((∗‘(𝑋𝑥)) = (∗‘0) ↔ (𝑋𝑥) = 0))
7166, 70bitrd 278 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))) → (((∗ ∘ 𝑋)‘𝑥) = 0 ↔ (𝑋𝑥) = 0))
7271necon3bid 2982 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))) → (((∗ ∘ 𝑋)‘𝑥) ≠ 0 ↔ (𝑋𝑥) ≠ 0))
7372imbi1d 340 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))) → ((((∗ ∘ 𝑋)‘𝑥) ≠ 0 → 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) ↔ ((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)))))
7473ralbidva 3173 . . . . . . . . . . 11 (𝜑 → (∀𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))(((∗ ∘ 𝑋)‘𝑥) ≠ 0 → 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) ↔ ∀𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)))))
7561, 74mpbird 256 . . . . . . . . . 10 (𝜑 → ∀𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))(((∗ ∘ 𝑋)‘𝑥) ≠ 0 → 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))))
7648, 60, 753jca 1125 . . . . . . . . 9 (𝜑 → (∀𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))∀𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁))((∗ ∘ 𝑋)‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = (((∗ ∘ 𝑋)‘𝑥) · ((∗ ∘ 𝑋)‘𝑦)) ∧ ((∗ ∘ 𝑋)‘(1r‘(ℤ/nℤ‘𝑁))) = 1 ∧ ∀𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))(((∗ ∘ 𝑋)‘𝑥) ≠ 0 → 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)))))
771, 2, 7, 11, 13, 3dchrelbas3 27191 . . . . . . . . 9 (𝜑 → ((∗ ∘ 𝑋) ∈ 𝐷 ↔ ((∗ ∘ 𝑋):(Base‘(ℤ/nℤ‘𝑁))⟶ℂ ∧ (∀𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))∀𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁))((∗ ∘ 𝑋)‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = (((∗ ∘ 𝑋)‘𝑥) · ((∗ ∘ 𝑋)‘𝑦)) ∧ ((∗ ∘ 𝑋)‘(1r‘(ℤ/nℤ‘𝑁))) = 1 ∧ ∀𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))(((∗ ∘ 𝑋)‘𝑥) ≠ 0 → 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)))))))
7810, 76, 77mpbir2and 711 . . . . . . . 8 (𝜑 → (∗ ∘ 𝑋) ∈ 𝐷)
791, 2, 3, 4, 5, 78dchrmul 27201 . . . . . . 7 (𝜑 → (𝑋(+g𝐺)(∗ ∘ 𝑋)) = (𝑋f · (∗ ∘ 𝑋)))
8079adantr 479 . . . . . 6 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → (𝑋(+g𝐺)(∗ ∘ 𝑋)) = (𝑋f · (∗ ∘ 𝑋)))
8180fveq1d 6904 . . . . 5 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → ((𝑋(+g𝐺)(∗ ∘ 𝑋))‘𝑥) = ((𝑋f · (∗ ∘ 𝑋))‘𝑥))
8223sseli 3978 . . . . . . . . 9 (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) → 𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)))
8382, 62sylan2 591 . . . . . . . 8 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → ((∗ ∘ 𝑋)‘𝑥) = (∗‘(𝑋𝑥)))
8483oveq2d 7442 . . . . . . 7 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → ((𝑋𝑥) · ((∗ ∘ 𝑋)‘𝑥)) = ((𝑋𝑥) · (∗‘(𝑋𝑥))))
8582, 67sylan2 591 . . . . . . . 8 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → (𝑋𝑥) ∈ ℂ)
8685absvalsqd 15429 . . . . . . 7 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → ((abs‘(𝑋𝑥))↑2) = ((𝑋𝑥) · (∗‘(𝑋𝑥))))
875adantr 479 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → 𝑋𝐷)
88 simpr 483 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)))
891, 3, 87, 2, 11, 88dchrabs 27213 . . . . . . . . 9 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → (abs‘(𝑋𝑥)) = 1)
9089oveq1d 7441 . . . . . . . 8 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → ((abs‘(𝑋𝑥))↑2) = (1↑2))
91 sq1 14198 . . . . . . . 8 (1↑2) = 1
9290, 91eqtrdi 2784 . . . . . . 7 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → ((abs‘(𝑋𝑥))↑2) = 1)
9384, 86, 923eqtr2d 2774 . . . . . 6 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → ((𝑋𝑥) · ((∗ ∘ 𝑋)‘𝑥)) = 1)
948adantr 479 . . . . . . . 8 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → 𝑋:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ)
9594ffnd 6728 . . . . . . 7 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → 𝑋 Fn (Base‘(ℤ/nℤ‘𝑁)))
9610ffnd 6728 . . . . . . . 8 (𝜑 → (∗ ∘ 𝑋) Fn (Base‘(ℤ/nℤ‘𝑁)))
9796adantr 479 . . . . . . 7 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → (∗ ∘ 𝑋) Fn (Base‘(ℤ/nℤ‘𝑁)))
98 fvexd 6917 . . . . . . 7 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → (Base‘(ℤ/nℤ‘𝑁)) ∈ V)
9982adantl 480 . . . . . . 7 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → 𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)))
100 fnfvof 7708 . . . . . . 7 (((𝑋 Fn (Base‘(ℤ/nℤ‘𝑁)) ∧ (∗ ∘ 𝑋) Fn (Base‘(ℤ/nℤ‘𝑁))) ∧ ((Base‘(ℤ/nℤ‘𝑁)) ∈ V ∧ 𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)))) → ((𝑋f · (∗ ∘ 𝑋))‘𝑥) = ((𝑋𝑥) · ((∗ ∘ 𝑋)‘𝑥)))
10195, 97, 98, 99, 100syl22anc 837 . . . . . 6 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → ((𝑋f · (∗ ∘ 𝑋))‘𝑥) = ((𝑋𝑥) · ((∗ ∘ 𝑋)‘𝑥)))
102 eqid 2728 . . . . . . 7 (0g𝐺) = (0g𝐺)
10313adantr 479 . . . . . . 7 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → 𝑁 ∈ ℕ)
1041, 2, 102, 11, 103, 88dchr1 27210 . . . . . 6 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → ((0g𝐺)‘𝑥) = 1)
10593, 101, 1043eqtr4d 2778 . . . . 5 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → ((𝑋f · (∗ ∘ 𝑋))‘𝑥) = ((0g𝐺)‘𝑥))
10681, 105eqtrd 2768 . . . 4 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → ((𝑋(+g𝐺)(∗ ∘ 𝑋))‘𝑥) = ((0g𝐺)‘𝑥))
107106ralrimiva 3143 . . 3 (𝜑 → ∀𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))((𝑋(+g𝐺)(∗ ∘ 𝑋))‘𝑥) = ((0g𝐺)‘𝑥))
1081, 2, 3, 4, 5, 78dchrmulcl 27202 . . . 4 (𝜑 → (𝑋(+g𝐺)(∗ ∘ 𝑋)) ∈ 𝐷)
1091dchrabl 27207 . . . . . 6 (𝑁 ∈ ℕ → 𝐺 ∈ Abel)
110 ablgrp 19747 . . . . . 6 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
11113, 109, 1103syl 18 . . . . 5 (𝜑𝐺 ∈ Grp)
1123, 102grpidcl 18929 . . . . 5 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝐷)
113111, 112syl 17 . . . 4 (𝜑 → (0g𝐺) ∈ 𝐷)
1141, 2, 3, 11, 108, 113dchreq 27211 . . 3 (𝜑 → ((𝑋(+g𝐺)(∗ ∘ 𝑋)) = (0g𝐺) ↔ ∀𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))((𝑋(+g𝐺)(∗ ∘ 𝑋))‘𝑥) = ((0g𝐺)‘𝑥)))
115107, 114mpbird 256 . 2 (𝜑 → (𝑋(+g𝐺)(∗ ∘ 𝑋)) = (0g𝐺))
116 dchrinv.i . . . 4 𝐼 = (invg𝐺)
1173, 4, 102, 116grpinvid1 18955 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐷 ∧ (∗ ∘ 𝑋) ∈ 𝐷) → ((𝐼𝑋) = (∗ ∘ 𝑋) ↔ (𝑋(+g𝐺)(∗ ∘ 𝑋)) = (0g𝐺)))
118111, 5, 78, 117syl3anc 1368 . 2 (𝜑 → ((𝐼𝑋) = (∗ ∘ 𝑋) ↔ (𝑋(+g𝐺)(∗ ∘ 𝑋)) = (0g𝐺)))
119115, 118mpbird 256 1 (𝜑 → (𝐼𝑋) = (∗ ∘ 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wne 2937  wral 3058  Vcvv 3473  ccom 5686   Fn wfn 6548  wf 6549  cfv 6553  (class class class)co 7426  f cof 7689  cc 11144  cr 11145  0cc0 11146  1c1 11147   · cmul 11151  cn 12250  2c2 12305  0cn0 12510  cexp 14066  ccj 15083  abscabs 15221  Basecbs 17187  +gcplusg 17240  .rcmulr 17241  0gc0g 17428  Grpcgrp 18897  invgcminusg 18898  Abelcabl 19743  1rcur 20128  Ringcrg 20180  CRingccrg 20181  Unitcui 20301  ℤ/nczn 21435  DChrcdchr 27185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-inf2 9672  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223  ax-pre-sup 11224  ax-addf 11225  ax-mulf 11226
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-tp 4637  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-iin 5003  df-disj 5118  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-isom 6562  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-of 7691  df-om 7877  df-1st 7999  df-2nd 8000  df-supp 8172  df-tpos 8238  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-2o 8494  df-oadd 8497  df-omul 8498  df-er 8731  df-ec 8733  df-qs 8737  df-map 8853  df-pm 8854  df-ixp 8923  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-fsupp 9394  df-fi 9442  df-sup 9473  df-inf 9474  df-oi 9541  df-card 9970  df-acn 9973  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-div 11910  df-nn 12251  df-2 12313  df-3 12314  df-4 12315  df-5 12316  df-6 12317  df-7 12318  df-8 12319  df-9 12320  df-n0 12511  df-z 12597  df-dec 12716  df-uz 12861  df-q 12971  df-rp 13015  df-xneg 13132  df-xadd 13133  df-xmul 13134  df-ioo 13368  df-ioc 13369  df-ico 13370  df-icc 13371  df-fz 13525  df-fzo 13668  df-fl 13797  df-mod 13875  df-seq 14007  df-exp 14067  df-fac 14273  df-bc 14302  df-hash 14330  df-shft 15054  df-cj 15086  df-re 15087  df-im 15088  df-sqrt 15222  df-abs 15223  df-limsup 15455  df-clim 15472  df-rlim 15473  df-sum 15673  df-ef 16051  df-sin 16053  df-cos 16054  df-pi 16056  df-dvds 16239  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17188  df-ress 17217  df-plusg 17253  df-mulr 17254  df-starv 17255  df-sca 17256  df-vsca 17257  df-ip 17258  df-tset 17259  df-ple 17260  df-ds 17262  df-unif 17263  df-hom 17264  df-cco 17265  df-rest 17411  df-topn 17412  df-0g 17430  df-gsum 17431  df-topgen 17432  df-pt 17433  df-prds 17436  df-xrs 17491  df-qtop 17496  df-imas 17497  df-qus 17498  df-xps 17499  df-mre 17573  df-mrc 17574  df-acs 17576  df-mgm 18607  df-sgrp 18686  df-mnd 18702  df-mhm 18747  df-submnd 18748  df-grp 18900  df-minusg 18901  df-sbg 18902  df-mulg 19031  df-subg 19085  df-nsg 19086  df-eqg 19087  df-ghm 19175  df-cntz 19275  df-od 19490  df-cmn 19744  df-abl 19745  df-mgp 20082  df-rng 20100  df-ur 20129  df-ring 20182  df-cring 20183  df-oppr 20280  df-dvdsr 20303  df-unit 20304  df-invr 20334  df-dvr 20347  df-rhm 20418  df-subrng 20490  df-subrg 20515  df-drng 20633  df-lmod 20752  df-lss 20823  df-lsp 20863  df-sra 21065  df-rgmod 21066  df-lidl 21111  df-rsp 21112  df-2idl 21151  df-psmet 21278  df-xmet 21279  df-met 21280  df-bl 21281  df-mopn 21282  df-fbas 21283  df-fg 21284  df-cnfld 21287  df-zring 21380  df-zrh 21436  df-zn 21439  df-top 22816  df-topon 22833  df-topsp 22855  df-bases 22869  df-cld 22943  df-ntr 22944  df-cls 22945  df-nei 23022  df-lp 23060  df-perf 23061  df-cn 23151  df-cnp 23152  df-haus 23239  df-tx 23486  df-hmeo 23679  df-fil 23770  df-fm 23862  df-flim 23863  df-flf 23864  df-xms 24246  df-ms 24247  df-tms 24248  df-cncf 24818  df-limc 25815  df-dv 25816  df-log 26510  df-cxp 26511  df-dchr 27186
This theorem is referenced by:  dchr2sum  27226  dchrisum0re  27466
  Copyright terms: Public domain W3C validator