MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrinv Structured version   Visualization version   GIF version

Theorem dchrinv 27229
Description: The inverse of a Dirichlet character is the conjugate (which is also the multiplicative inverse, because the values of 𝑋 are unimodular). (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
dchrabs.g 𝐺 = (DChr‘𝑁)
dchrabs.d 𝐷 = (Base‘𝐺)
dchrabs.x (𝜑𝑋𝐷)
dchrinv.i 𝐼 = (invg𝐺)
Assertion
Ref Expression
dchrinv (𝜑 → (𝐼𝑋) = (∗ ∘ 𝑋))

Proof of Theorem dchrinv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dchrabs.g . . . . . . . 8 𝐺 = (DChr‘𝑁)
2 eqid 2736 . . . . . . . 8 (ℤ/nℤ‘𝑁) = (ℤ/nℤ‘𝑁)
3 dchrabs.d . . . . . . . 8 𝐷 = (Base‘𝐺)
4 eqid 2736 . . . . . . . 8 (+g𝐺) = (+g𝐺)
5 dchrabs.x . . . . . . . 8 (𝜑𝑋𝐷)
6 cjf 15128 . . . . . . . . . 10 ∗:ℂ⟶ℂ
7 eqid 2736 . . . . . . . . . . 11 (Base‘(ℤ/nℤ‘𝑁)) = (Base‘(ℤ/nℤ‘𝑁))
81, 2, 3, 7, 5dchrf 27210 . . . . . . . . . 10 (𝜑𝑋:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ)
9 fco 6735 . . . . . . . . . 10 ((∗:ℂ⟶ℂ ∧ 𝑋:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ) → (∗ ∘ 𝑋):(Base‘(ℤ/nℤ‘𝑁))⟶ℂ)
106, 8, 9sylancr 587 . . . . . . . . 9 (𝜑 → (∗ ∘ 𝑋):(Base‘(ℤ/nℤ‘𝑁))⟶ℂ)
11 eqid 2736 . . . . . . . . . . . . . . . . . . . . 21 (Unit‘(ℤ/nℤ‘𝑁)) = (Unit‘(ℤ/nℤ‘𝑁))
121, 3dchrrcl 27208 . . . . . . . . . . . . . . . . . . . . . 22 (𝑋𝐷𝑁 ∈ ℕ)
135, 12syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑁 ∈ ℕ)
141, 2, 7, 11, 13, 3dchrelbas3 27206 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑋𝐷 ↔ (𝑋:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ ∧ (∀𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))∀𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁))(𝑋‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r‘(ℤ/nℤ‘𝑁))) = 1 ∧ ∀𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)))))))
155, 14mpbid 232 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑋:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ ∧ (∀𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))∀𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁))(𝑋‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r‘(ℤ/nℤ‘𝑁))) = 1 ∧ ∀𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))))))
1615simprd 495 . . . . . . . . . . . . . . . . . 18 (𝜑 → (∀𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))∀𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁))(𝑋‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = ((𝑋𝑥) · (𝑋𝑦)) ∧ (𝑋‘(1r‘(ℤ/nℤ‘𝑁))) = 1 ∧ ∀𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)))))
1716simp1d 1142 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))∀𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁))(𝑋‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))
1817r19.21bi 3238 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → ∀𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁))(𝑋‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))
1918r19.21bi 3238 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → (𝑋‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))
2019anasss 466 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → (𝑋‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))
2120fveq2d 6885 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → (∗‘(𝑋‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦))) = (∗‘((𝑋𝑥) · (𝑋𝑦))))
228adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → 𝑋:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ)
237, 11unitss 20341 . . . . . . . . . . . . . . . 16 (Unit‘(ℤ/nℤ‘𝑁)) ⊆ (Base‘(ℤ/nℤ‘𝑁))
24 simprl 770 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)))
2523, 24sselid 3961 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → 𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)))
2622, 25ffvelcdmd 7080 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → (𝑋𝑥) ∈ ℂ)
27 simprr 772 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))
2823, 27sselid 3961 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → 𝑦 ∈ (Base‘(ℤ/nℤ‘𝑁)))
2922, 28ffvelcdmd 7080 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → (𝑋𝑦) ∈ ℂ)
3026, 29cjmuld 15245 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → (∗‘((𝑋𝑥) · (𝑋𝑦))) = ((∗‘(𝑋𝑥)) · (∗‘(𝑋𝑦))))
3121, 30eqtrd 2771 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → (∗‘(𝑋‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦))) = ((∗‘(𝑋𝑥)) · (∗‘(𝑋𝑦))))
3213nnnn0d 12567 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℕ0)
332zncrng 21510 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ0 → (ℤ/nℤ‘𝑁) ∈ CRing)
34 crngring 20210 . . . . . . . . . . . . . . . 16 ((ℤ/nℤ‘𝑁) ∈ CRing → (ℤ/nℤ‘𝑁) ∈ Ring)
3532, 33, 343syl 18 . . . . . . . . . . . . . . 15 (𝜑 → (ℤ/nℤ‘𝑁) ∈ Ring)
3635adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → (ℤ/nℤ‘𝑁) ∈ Ring)
37 eqid 2736 . . . . . . . . . . . . . . 15 (.r‘(ℤ/nℤ‘𝑁)) = (.r‘(ℤ/nℤ‘𝑁))
387, 37ringcl 20215 . . . . . . . . . . . . . 14 (((ℤ/nℤ‘𝑁) ∈ Ring ∧ 𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Base‘(ℤ/nℤ‘𝑁))) → (𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦) ∈ (Base‘(ℤ/nℤ‘𝑁)))
3936, 25, 28, 38syl3anc 1373 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → (𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦) ∈ (Base‘(ℤ/nℤ‘𝑁)))
40 fvco3 6983 . . . . . . . . . . . . 13 ((𝑋:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ ∧ (𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦) ∈ (Base‘(ℤ/nℤ‘𝑁))) → ((∗ ∘ 𝑋)‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = (∗‘(𝑋‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦))))
4122, 39, 40syl2anc 584 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → ((∗ ∘ 𝑋)‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = (∗‘(𝑋‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦))))
42 fvco3 6983 . . . . . . . . . . . . . 14 ((𝑋:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ ∧ 𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))) → ((∗ ∘ 𝑋)‘𝑥) = (∗‘(𝑋𝑥)))
4322, 25, 42syl2anc 584 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → ((∗ ∘ 𝑋)‘𝑥) = (∗‘(𝑋𝑥)))
44 fvco3 6983 . . . . . . . . . . . . . 14 ((𝑋:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ ∧ 𝑦 ∈ (Base‘(ℤ/nℤ‘𝑁))) → ((∗ ∘ 𝑋)‘𝑦) = (∗‘(𝑋𝑦)))
4522, 28, 44syl2anc 584 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → ((∗ ∘ 𝑋)‘𝑦) = (∗‘(𝑋𝑦)))
4643, 45oveq12d 7428 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → (((∗ ∘ 𝑋)‘𝑥) · ((∗ ∘ 𝑋)‘𝑦)) = ((∗‘(𝑋𝑥)) · (∗‘(𝑋𝑦))))
4731, 41, 463eqtr4d 2781 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) ∧ 𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁)))) → ((∗ ∘ 𝑋)‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = (((∗ ∘ 𝑋)‘𝑥) · ((∗ ∘ 𝑋)‘𝑦)))
4847ralrimivva 3188 . . . . . . . . . 10 (𝜑 → ∀𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))∀𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁))((∗ ∘ 𝑋)‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = (((∗ ∘ 𝑋)‘𝑥) · ((∗ ∘ 𝑋)‘𝑦)))
49 eqid 2736 . . . . . . . . . . . . . 14 (1r‘(ℤ/nℤ‘𝑁)) = (1r‘(ℤ/nℤ‘𝑁))
507, 49ringidcl 20230 . . . . . . . . . . . . 13 ((ℤ/nℤ‘𝑁) ∈ Ring → (1r‘(ℤ/nℤ‘𝑁)) ∈ (Base‘(ℤ/nℤ‘𝑁)))
5135, 50syl 17 . . . . . . . . . . . 12 (𝜑 → (1r‘(ℤ/nℤ‘𝑁)) ∈ (Base‘(ℤ/nℤ‘𝑁)))
52 fvco3 6983 . . . . . . . . . . . 12 ((𝑋:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ ∧ (1r‘(ℤ/nℤ‘𝑁)) ∈ (Base‘(ℤ/nℤ‘𝑁))) → ((∗ ∘ 𝑋)‘(1r‘(ℤ/nℤ‘𝑁))) = (∗‘(𝑋‘(1r‘(ℤ/nℤ‘𝑁)))))
538, 51, 52syl2anc 584 . . . . . . . . . . 11 (𝜑 → ((∗ ∘ 𝑋)‘(1r‘(ℤ/nℤ‘𝑁))) = (∗‘(𝑋‘(1r‘(ℤ/nℤ‘𝑁)))))
5416simp2d 1143 . . . . . . . . . . . . 13 (𝜑 → (𝑋‘(1r‘(ℤ/nℤ‘𝑁))) = 1)
5554fveq2d 6885 . . . . . . . . . . . 12 (𝜑 → (∗‘(𝑋‘(1r‘(ℤ/nℤ‘𝑁)))) = (∗‘1))
56 1re 11240 . . . . . . . . . . . . 13 1 ∈ ℝ
57 cjre 15163 . . . . . . . . . . . . 13 (1 ∈ ℝ → (∗‘1) = 1)
5856, 57ax-mp 5 . . . . . . . . . . . 12 (∗‘1) = 1
5955, 58eqtrdi 2787 . . . . . . . . . . 11 (𝜑 → (∗‘(𝑋‘(1r‘(ℤ/nℤ‘𝑁)))) = 1)
6053, 59eqtrd 2771 . . . . . . . . . 10 (𝜑 → ((∗ ∘ 𝑋)‘(1r‘(ℤ/nℤ‘𝑁))) = 1)
6116simp3d 1144 . . . . . . . . . . 11 (𝜑 → ∀𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))))
628, 42sylan 580 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))) → ((∗ ∘ 𝑋)‘𝑥) = (∗‘(𝑋𝑥)))
63 cj0 15182 . . . . . . . . . . . . . . . . . 18 (∗‘0) = 0
6463eqcomi 2745 . . . . . . . . . . . . . . . . 17 0 = (∗‘0)
6564a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))) → 0 = (∗‘0))
6662, 65eqeq12d 2752 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))) → (((∗ ∘ 𝑋)‘𝑥) = 0 ↔ (∗‘(𝑋𝑥)) = (∗‘0)))
678ffvelcdmda 7079 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))) → (𝑋𝑥) ∈ ℂ)
68 0cn 11232 . . . . . . . . . . . . . . . 16 0 ∈ ℂ
69 cj11 15186 . . . . . . . . . . . . . . . 16 (((𝑋𝑥) ∈ ℂ ∧ 0 ∈ ℂ) → ((∗‘(𝑋𝑥)) = (∗‘0) ↔ (𝑋𝑥) = 0))
7067, 68, 69sylancl 586 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))) → ((∗‘(𝑋𝑥)) = (∗‘0) ↔ (𝑋𝑥) = 0))
7166, 70bitrd 279 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))) → (((∗ ∘ 𝑋)‘𝑥) = 0 ↔ (𝑋𝑥) = 0))
7271necon3bid 2977 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))) → (((∗ ∘ 𝑋)‘𝑥) ≠ 0 ↔ (𝑋𝑥) ≠ 0))
7372imbi1d 341 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))) → ((((∗ ∘ 𝑋)‘𝑥) ≠ 0 → 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) ↔ ((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)))))
7473ralbidva 3162 . . . . . . . . . . 11 (𝜑 → (∀𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))(((∗ ∘ 𝑋)‘𝑥) ≠ 0 → 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) ↔ ∀𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)))))
7561, 74mpbird 257 . . . . . . . . . 10 (𝜑 → ∀𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))(((∗ ∘ 𝑋)‘𝑥) ≠ 0 → 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))))
7648, 60, 753jca 1128 . . . . . . . . 9 (𝜑 → (∀𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))∀𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁))((∗ ∘ 𝑋)‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = (((∗ ∘ 𝑋)‘𝑥) · ((∗ ∘ 𝑋)‘𝑦)) ∧ ((∗ ∘ 𝑋)‘(1r‘(ℤ/nℤ‘𝑁))) = 1 ∧ ∀𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))(((∗ ∘ 𝑋)‘𝑥) ≠ 0 → 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)))))
771, 2, 7, 11, 13, 3dchrelbas3 27206 . . . . . . . . 9 (𝜑 → ((∗ ∘ 𝑋) ∈ 𝐷 ↔ ((∗ ∘ 𝑋):(Base‘(ℤ/nℤ‘𝑁))⟶ℂ ∧ (∀𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))∀𝑦 ∈ (Unit‘(ℤ/nℤ‘𝑁))((∗ ∘ 𝑋)‘(𝑥(.r‘(ℤ/nℤ‘𝑁))𝑦)) = (((∗ ∘ 𝑋)‘𝑥) · ((∗ ∘ 𝑋)‘𝑦)) ∧ ((∗ ∘ 𝑋)‘(1r‘(ℤ/nℤ‘𝑁))) = 1 ∧ ∀𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁))(((∗ ∘ 𝑋)‘𝑥) ≠ 0 → 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)))))))
7810, 76, 77mpbir2and 713 . . . . . . . 8 (𝜑 → (∗ ∘ 𝑋) ∈ 𝐷)
791, 2, 3, 4, 5, 78dchrmul 27216 . . . . . . 7 (𝜑 → (𝑋(+g𝐺)(∗ ∘ 𝑋)) = (𝑋f · (∗ ∘ 𝑋)))
8079adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → (𝑋(+g𝐺)(∗ ∘ 𝑋)) = (𝑋f · (∗ ∘ 𝑋)))
8180fveq1d 6883 . . . . 5 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → ((𝑋(+g𝐺)(∗ ∘ 𝑋))‘𝑥) = ((𝑋f · (∗ ∘ 𝑋))‘𝑥))
8223sseli 3959 . . . . . . . . 9 (𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)) → 𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)))
8382, 62sylan2 593 . . . . . . . 8 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → ((∗ ∘ 𝑋)‘𝑥) = (∗‘(𝑋𝑥)))
8483oveq2d 7426 . . . . . . 7 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → ((𝑋𝑥) · ((∗ ∘ 𝑋)‘𝑥)) = ((𝑋𝑥) · (∗‘(𝑋𝑥))))
8582, 67sylan2 593 . . . . . . . 8 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → (𝑋𝑥) ∈ ℂ)
8685absvalsqd 15466 . . . . . . 7 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → ((abs‘(𝑋𝑥))↑2) = ((𝑋𝑥) · (∗‘(𝑋𝑥))))
875adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → 𝑋𝐷)
88 simpr 484 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → 𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁)))
891, 3, 87, 2, 11, 88dchrabs 27228 . . . . . . . . 9 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → (abs‘(𝑋𝑥)) = 1)
9089oveq1d 7425 . . . . . . . 8 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → ((abs‘(𝑋𝑥))↑2) = (1↑2))
91 sq1 14218 . . . . . . . 8 (1↑2) = 1
9290, 91eqtrdi 2787 . . . . . . 7 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → ((abs‘(𝑋𝑥))↑2) = 1)
9384, 86, 923eqtr2d 2777 . . . . . 6 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → ((𝑋𝑥) · ((∗ ∘ 𝑋)‘𝑥)) = 1)
948adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → 𝑋:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ)
9594ffnd 6712 . . . . . . 7 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → 𝑋 Fn (Base‘(ℤ/nℤ‘𝑁)))
9610ffnd 6712 . . . . . . . 8 (𝜑 → (∗ ∘ 𝑋) Fn (Base‘(ℤ/nℤ‘𝑁)))
9796adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → (∗ ∘ 𝑋) Fn (Base‘(ℤ/nℤ‘𝑁)))
98 fvexd 6896 . . . . . . 7 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → (Base‘(ℤ/nℤ‘𝑁)) ∈ V)
9982adantl 481 . . . . . . 7 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → 𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)))
100 fnfvof 7693 . . . . . . 7 (((𝑋 Fn (Base‘(ℤ/nℤ‘𝑁)) ∧ (∗ ∘ 𝑋) Fn (Base‘(ℤ/nℤ‘𝑁))) ∧ ((Base‘(ℤ/nℤ‘𝑁)) ∈ V ∧ 𝑥 ∈ (Base‘(ℤ/nℤ‘𝑁)))) → ((𝑋f · (∗ ∘ 𝑋))‘𝑥) = ((𝑋𝑥) · ((∗ ∘ 𝑋)‘𝑥)))
10195, 97, 98, 99, 100syl22anc 838 . . . . . 6 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → ((𝑋f · (∗ ∘ 𝑋))‘𝑥) = ((𝑋𝑥) · ((∗ ∘ 𝑋)‘𝑥)))
102 eqid 2736 . . . . . . 7 (0g𝐺) = (0g𝐺)
10313adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → 𝑁 ∈ ℕ)
1041, 2, 102, 11, 103, 88dchr1 27225 . . . . . 6 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → ((0g𝐺)‘𝑥) = 1)
10593, 101, 1043eqtr4d 2781 . . . . 5 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → ((𝑋f · (∗ ∘ 𝑋))‘𝑥) = ((0g𝐺)‘𝑥))
10681, 105eqtrd 2771 . . . 4 ((𝜑𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))) → ((𝑋(+g𝐺)(∗ ∘ 𝑋))‘𝑥) = ((0g𝐺)‘𝑥))
107106ralrimiva 3133 . . 3 (𝜑 → ∀𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))((𝑋(+g𝐺)(∗ ∘ 𝑋))‘𝑥) = ((0g𝐺)‘𝑥))
1081, 2, 3, 4, 5, 78dchrmulcl 27217 . . . 4 (𝜑 → (𝑋(+g𝐺)(∗ ∘ 𝑋)) ∈ 𝐷)
1091dchrabl 27222 . . . . . 6 (𝑁 ∈ ℕ → 𝐺 ∈ Abel)
110 ablgrp 19771 . . . . . 6 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
11113, 109, 1103syl 18 . . . . 5 (𝜑𝐺 ∈ Grp)
1123, 102grpidcl 18953 . . . . 5 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝐷)
113111, 112syl 17 . . . 4 (𝜑 → (0g𝐺) ∈ 𝐷)
1141, 2, 3, 11, 108, 113dchreq 27226 . . 3 (𝜑 → ((𝑋(+g𝐺)(∗ ∘ 𝑋)) = (0g𝐺) ↔ ∀𝑥 ∈ (Unit‘(ℤ/nℤ‘𝑁))((𝑋(+g𝐺)(∗ ∘ 𝑋))‘𝑥) = ((0g𝐺)‘𝑥)))
115107, 114mpbird 257 . 2 (𝜑 → (𝑋(+g𝐺)(∗ ∘ 𝑋)) = (0g𝐺))
116 dchrinv.i . . . 4 𝐼 = (invg𝐺)
1173, 4, 102, 116grpinvid1 18979 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐷 ∧ (∗ ∘ 𝑋) ∈ 𝐷) → ((𝐼𝑋) = (∗ ∘ 𝑋) ↔ (𝑋(+g𝐺)(∗ ∘ 𝑋)) = (0g𝐺)))
118111, 5, 78, 117syl3anc 1373 . 2 (𝜑 → ((𝐼𝑋) = (∗ ∘ 𝑋) ↔ (𝑋(+g𝐺)(∗ ∘ 𝑋)) = (0g𝐺)))
119115, 118mpbird 257 1 (𝜑 → (𝐼𝑋) = (∗ ∘ 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wral 3052  Vcvv 3464  ccom 5663   Fn wfn 6531  wf 6532  cfv 6536  (class class class)co 7410  f cof 7674  cc 11132  cr 11133  0cc0 11134  1c1 11135   · cmul 11139  cn 12245  2c2 12300  0cn0 12506  cexp 14084  ccj 15120  abscabs 15258  Basecbs 17233  +gcplusg 17276  .rcmulr 17277  0gc0g 17458  Grpcgrp 18921  invgcminusg 18922  Abelcabl 19767  1rcur 20146  Ringcrg 20198  CRingccrg 20199  Unitcui 20320  ℤ/nczn 21468  DChrcdchr 27200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213  ax-mulf 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-disj 5092  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-omul 8490  df-er 8724  df-ec 8726  df-qs 8730  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-acn 9961  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ioo 13371  df-ioc 13372  df-ico 13373  df-icc 13374  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-fac 14297  df-bc 14326  df-hash 14354  df-shft 15091  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-limsup 15492  df-clim 15509  df-rlim 15510  df-sum 15708  df-ef 16088  df-sin 16090  df-cos 16091  df-pi 16093  df-dvds 16278  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-rest 17441  df-topn 17442  df-0g 17460  df-gsum 17461  df-topgen 17462  df-pt 17463  df-prds 17466  df-xrs 17521  df-qtop 17526  df-imas 17527  df-qus 17528  df-xps 17529  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-submnd 18767  df-grp 18924  df-minusg 18925  df-sbg 18926  df-mulg 19056  df-subg 19111  df-nsg 19112  df-eqg 19113  df-ghm 19201  df-cntz 19305  df-od 19514  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-cring 20201  df-oppr 20302  df-dvdsr 20322  df-unit 20323  df-invr 20353  df-dvr 20366  df-rhm 20437  df-subrng 20511  df-subrg 20535  df-drng 20696  df-lmod 20824  df-lss 20894  df-lsp 20934  df-sra 21136  df-rgmod 21137  df-lidl 21174  df-rsp 21175  df-2idl 21216  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-fbas 21317  df-fg 21318  df-cnfld 21321  df-zring 21413  df-zrh 21469  df-zn 21472  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-cld 22962  df-ntr 22963  df-cls 22964  df-nei 23041  df-lp 23079  df-perf 23080  df-cn 23170  df-cnp 23171  df-haus 23258  df-tx 23505  df-hmeo 23698  df-fil 23789  df-fm 23881  df-flim 23882  df-flf 23883  df-xms 24264  df-ms 24265  df-tms 24266  df-cncf 24827  df-limc 25824  df-dv 25825  df-log 26522  df-cxp 26523  df-dchr 27201
This theorem is referenced by:  dchr2sum  27241  dchrisum0re  27481
  Copyright terms: Public domain W3C validator