MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlm0 Structured version   Visualization version   GIF version

Theorem frlm0 20890
Description: Zero in a free module (ring constraint is stronger than necessary, but allows use of frlmlss 20887). (Contributed by Stefan O'Rear, 4-Feb-2015.)
Hypotheses
Ref Expression
frlmval.f 𝐹 = (𝑅 freeLMod 𝐼)
frlm0.z 0 = (0g𝑅)
Assertion
Ref Expression
frlm0 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (𝐼 × { 0 }) = (0g𝐹))

Proof of Theorem frlm0
StepHypRef Expression
1 rlmlmod 19969 . . . . 5 (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod)
2 eqid 2819 . . . . . 6 ((ringLMod‘𝑅) ↑s 𝐼) = ((ringLMod‘𝑅) ↑s 𝐼)
32pwslmod 19734 . . . . 5 (((ringLMod‘𝑅) ∈ LMod ∧ 𝐼𝑊) → ((ringLMod‘𝑅) ↑s 𝐼) ∈ LMod)
41, 3sylan 582 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → ((ringLMod‘𝑅) ↑s 𝐼) ∈ LMod)
5 frlmval.f . . . . 5 𝐹 = (𝑅 freeLMod 𝐼)
6 eqid 2819 . . . . 5 (Base‘𝐹) = (Base‘𝐹)
7 eqid 2819 . . . . 5 (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼)) = (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼))
85, 6, 7frlmlss 20887 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (Base‘𝐹) ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼)))
97lsssubg 19721 . . . 4 ((((ringLMod‘𝑅) ↑s 𝐼) ∈ LMod ∧ (Base‘𝐹) ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼))) → (Base‘𝐹) ∈ (SubGrp‘((ringLMod‘𝑅) ↑s 𝐼)))
104, 8, 9syl2anc 586 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (Base‘𝐹) ∈ (SubGrp‘((ringLMod‘𝑅) ↑s 𝐼)))
11 eqid 2819 . . . 4 (((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝐹)) = (((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝐹))
12 eqid 2819 . . . 4 (0g‘((ringLMod‘𝑅) ↑s 𝐼)) = (0g‘((ringLMod‘𝑅) ↑s 𝐼))
1311, 12subg0 18277 . . 3 ((Base‘𝐹) ∈ (SubGrp‘((ringLMod‘𝑅) ↑s 𝐼)) → (0g‘((ringLMod‘𝑅) ↑s 𝐼)) = (0g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝐹))))
1410, 13syl 17 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (0g‘((ringLMod‘𝑅) ↑s 𝐼)) = (0g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝐹))))
15 lmodgrp 19633 . . . 4 ((ringLMod‘𝑅) ∈ LMod → (ringLMod‘𝑅) ∈ Grp)
16 grpmnd 18102 . . . 4 ((ringLMod‘𝑅) ∈ Grp → (ringLMod‘𝑅) ∈ Mnd)
171, 15, 163syl 18 . . 3 (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ Mnd)
18 frlm0.z . . . . 5 0 = (0g𝑅)
19 rlm0 19961 . . . . 5 (0g𝑅) = (0g‘(ringLMod‘𝑅))
2018, 19eqtri 2842 . . . 4 0 = (0g‘(ringLMod‘𝑅))
212, 20pws0g 17939 . . 3 (((ringLMod‘𝑅) ∈ Mnd ∧ 𝐼𝑊) → (𝐼 × { 0 }) = (0g‘((ringLMod‘𝑅) ↑s 𝐼)))
2217, 21sylan 582 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (𝐼 × { 0 }) = (0g‘((ringLMod‘𝑅) ↑s 𝐼)))
235, 6frlmpws 20886 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝐹 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝐹)))
2423fveq2d 6667 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (0g𝐹) = (0g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝐹))))
2514, 22, 243eqtr4d 2864 1 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (𝐼 × { 0 }) = (0g𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1530  wcel 2107  {csn 4559   × cxp 5546  cfv 6348  (class class class)co 7148  Basecbs 16475  s cress 16476  0gc0g 16705  s cpws 16712  Mndcmnd 17903  Grpcgrp 18095  SubGrpcsubg 18265  Ringcrg 19289  LModclmod 19626  LSubSpclss 19695  ringLModcrglmod 19933   freeLMod cfrlm 20882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-map 8400  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-fz 12885  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-hom 16581  df-cco 16582  df-0g 16707  df-prds 16713  df-pws 16715  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-sbg 18100  df-subg 18268  df-mgp 19232  df-ur 19244  df-ring 19291  df-subrg 19525  df-lmod 19628  df-lss 19696  df-sra 19936  df-rgmod 19937  df-dsmm 20868  df-frlm 20883
This theorem is referenced by:  frlmsslss  20910  islindf5  20975  mat0op  21020  rrxcph  23987  rrx0  23992  matunitlindflem1  34875  uvcn0  39136  zlmodzxz0  44389  aacllem  44887
  Copyright terms: Public domain W3C validator