![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frlm0 | Structured version Visualization version GIF version |
Description: Zero in a free module (ring constraint is stronger than necessary, but allows use of frlmlss 21635). (Contributed by Stefan O'Rear, 4-Feb-2015.) |
Ref | Expression |
---|---|
frlmval.f | ⊢ 𝐹 = (𝑅 freeLMod 𝐼) |
frlm0.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
frlm0 | ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → (𝐼 × { 0 }) = (0g‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rlmlmod 21055 | . . . . 5 ⊢ (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod) | |
2 | eqid 2724 | . . . . . 6 ⊢ ((ringLMod‘𝑅) ↑s 𝐼) = ((ringLMod‘𝑅) ↑s 𝐼) | |
3 | 2 | pwslmod 20813 | . . . . 5 ⊢ (((ringLMod‘𝑅) ∈ LMod ∧ 𝐼 ∈ 𝑊) → ((ringLMod‘𝑅) ↑s 𝐼) ∈ LMod) |
4 | 1, 3 | sylan 579 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → ((ringLMod‘𝑅) ↑s 𝐼) ∈ LMod) |
5 | frlmval.f | . . . . 5 ⊢ 𝐹 = (𝑅 freeLMod 𝐼) | |
6 | eqid 2724 | . . . . 5 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
7 | eqid 2724 | . . . . 5 ⊢ (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼)) = (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼)) | |
8 | 5, 6, 7 | frlmlss 21635 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → (Base‘𝐹) ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼))) |
9 | 7 | lsssubg 20800 | . . . 4 ⊢ ((((ringLMod‘𝑅) ↑s 𝐼) ∈ LMod ∧ (Base‘𝐹) ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼))) → (Base‘𝐹) ∈ (SubGrp‘((ringLMod‘𝑅) ↑s 𝐼))) |
10 | 4, 8, 9 | syl2anc 583 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → (Base‘𝐹) ∈ (SubGrp‘((ringLMod‘𝑅) ↑s 𝐼))) |
11 | eqid 2724 | . . . 4 ⊢ (((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝐹)) = (((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝐹)) | |
12 | eqid 2724 | . . . 4 ⊢ (0g‘((ringLMod‘𝑅) ↑s 𝐼)) = (0g‘((ringLMod‘𝑅) ↑s 𝐼)) | |
13 | 11, 12 | subg0 19055 | . . 3 ⊢ ((Base‘𝐹) ∈ (SubGrp‘((ringLMod‘𝑅) ↑s 𝐼)) → (0g‘((ringLMod‘𝑅) ↑s 𝐼)) = (0g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝐹)))) |
14 | 10, 13 | syl 17 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → (0g‘((ringLMod‘𝑅) ↑s 𝐼)) = (0g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝐹)))) |
15 | lmodgrp 20709 | . . . 4 ⊢ ((ringLMod‘𝑅) ∈ LMod → (ringLMod‘𝑅) ∈ Grp) | |
16 | grpmnd 18866 | . . . 4 ⊢ ((ringLMod‘𝑅) ∈ Grp → (ringLMod‘𝑅) ∈ Mnd) | |
17 | 1, 15, 16 | 3syl 18 | . . 3 ⊢ (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ Mnd) |
18 | frlm0.z | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
19 | rlm0 21047 | . . . . 5 ⊢ (0g‘𝑅) = (0g‘(ringLMod‘𝑅)) | |
20 | 18, 19 | eqtri 2752 | . . . 4 ⊢ 0 = (0g‘(ringLMod‘𝑅)) |
21 | 2, 20 | pws0g 18699 | . . 3 ⊢ (((ringLMod‘𝑅) ∈ Mnd ∧ 𝐼 ∈ 𝑊) → (𝐼 × { 0 }) = (0g‘((ringLMod‘𝑅) ↑s 𝐼))) |
22 | 17, 21 | sylan 579 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → (𝐼 × { 0 }) = (0g‘((ringLMod‘𝑅) ↑s 𝐼))) |
23 | 5, 6 | frlmpws 21634 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝐹 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝐹))) |
24 | 23 | fveq2d 6886 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → (0g‘𝐹) = (0g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝐹)))) |
25 | 14, 22, 24 | 3eqtr4d 2774 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → (𝐼 × { 0 }) = (0g‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 {csn 4621 × cxp 5665 ‘cfv 6534 (class class class)co 7402 Basecbs 17149 ↾s cress 17178 0gc0g 17390 ↑s cpws 17397 Mndcmnd 18663 Grpcgrp 18859 SubGrpcsubg 19043 Ringcrg 20134 LModclmod 20702 LSubSpclss 20774 ringLModcrglmod 21016 freeLMod cfrlm 21630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-tp 4626 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-om 7850 df-1st 7969 df-2nd 7970 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8700 df-map 8819 df-ixp 8889 df-en 8937 df-dom 8938 df-sdom 8939 df-fin 8940 df-sup 9434 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-z 12558 df-dec 12677 df-uz 12822 df-fz 13486 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-mulr 17216 df-sca 17218 df-vsca 17219 df-ip 17220 df-tset 17221 df-ple 17222 df-ds 17224 df-hom 17226 df-cco 17227 df-0g 17392 df-prds 17398 df-pws 17400 df-mgm 18569 df-sgrp 18648 df-mnd 18664 df-grp 18862 df-minusg 18863 df-sbg 18864 df-subg 19046 df-cmn 19698 df-abl 19699 df-mgp 20036 df-rng 20054 df-ur 20083 df-ring 20136 df-subrg 20467 df-lmod 20704 df-lss 20775 df-sra 21017 df-rgmod 21018 df-dsmm 21616 df-frlm 21631 |
This theorem is referenced by: frlmsslss 21658 islindf5 21723 mat0op 22265 rrxcph 25264 rrx0 25269 matunitlindflem1 36988 frlm0vald 41640 mnring0g2d 43529 zlmodzxz0 47282 aacllem 48096 |
Copyright terms: Public domain | W3C validator |