MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlm0 Structured version   Visualization version   GIF version

Theorem frlm0 20462
Description: Zero in a free module (ring constraint is stronger than necessary, but allows use of frlmlss 20459). (Contributed by Stefan O'Rear, 4-Feb-2015.)
Hypotheses
Ref Expression
frlmval.f 𝐹 = (𝑅 freeLMod 𝐼)
frlm0.z 0 = (0g𝑅)
Assertion
Ref Expression
frlm0 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (𝐼 × { 0 }) = (0g𝐹))

Proof of Theorem frlm0
StepHypRef Expression
1 rlmlmod 19567 . . . . 5 (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod)
2 eqid 2826 . . . . . 6 ((ringLMod‘𝑅) ↑s 𝐼) = ((ringLMod‘𝑅) ↑s 𝐼)
32pwslmod 19330 . . . . 5 (((ringLMod‘𝑅) ∈ LMod ∧ 𝐼𝑊) → ((ringLMod‘𝑅) ↑s 𝐼) ∈ LMod)
41, 3sylan 577 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → ((ringLMod‘𝑅) ↑s 𝐼) ∈ LMod)
5 frlmval.f . . . . 5 𝐹 = (𝑅 freeLMod 𝐼)
6 eqid 2826 . . . . 5 (Base‘𝐹) = (Base‘𝐹)
7 eqid 2826 . . . . 5 (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼)) = (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼))
85, 6, 7frlmlss 20459 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (Base‘𝐹) ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼)))
97lsssubg 19317 . . . 4 ((((ringLMod‘𝑅) ↑s 𝐼) ∈ LMod ∧ (Base‘𝐹) ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼))) → (Base‘𝐹) ∈ (SubGrp‘((ringLMod‘𝑅) ↑s 𝐼)))
104, 8, 9syl2anc 581 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (Base‘𝐹) ∈ (SubGrp‘((ringLMod‘𝑅) ↑s 𝐼)))
11 eqid 2826 . . . 4 (((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝐹)) = (((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝐹))
12 eqid 2826 . . . 4 (0g‘((ringLMod‘𝑅) ↑s 𝐼)) = (0g‘((ringLMod‘𝑅) ↑s 𝐼))
1311, 12subg0 17952 . . 3 ((Base‘𝐹) ∈ (SubGrp‘((ringLMod‘𝑅) ↑s 𝐼)) → (0g‘((ringLMod‘𝑅) ↑s 𝐼)) = (0g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝐹))))
1410, 13syl 17 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (0g‘((ringLMod‘𝑅) ↑s 𝐼)) = (0g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝐹))))
15 lmodgrp 19227 . . . 4 ((ringLMod‘𝑅) ∈ LMod → (ringLMod‘𝑅) ∈ Grp)
16 grpmnd 17784 . . . 4 ((ringLMod‘𝑅) ∈ Grp → (ringLMod‘𝑅) ∈ Mnd)
171, 15, 163syl 18 . . 3 (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ Mnd)
18 frlm0.z . . . . 5 0 = (0g𝑅)
19 rlm0 19559 . . . . 5 (0g𝑅) = (0g‘(ringLMod‘𝑅))
2018, 19eqtri 2850 . . . 4 0 = (0g‘(ringLMod‘𝑅))
212, 20pws0g 17680 . . 3 (((ringLMod‘𝑅) ∈ Mnd ∧ 𝐼𝑊) → (𝐼 × { 0 }) = (0g‘((ringLMod‘𝑅) ↑s 𝐼)))
2217, 21sylan 577 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (𝐼 × { 0 }) = (0g‘((ringLMod‘𝑅) ↑s 𝐼)))
235, 6frlmpws 20458 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝐹 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝐹)))
2423fveq2d 6438 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (0g𝐹) = (0g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝐹))))
2514, 22, 243eqtr4d 2872 1 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (𝐼 × { 0 }) = (0g𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1658  wcel 2166  {csn 4398   × cxp 5341  cfv 6124  (class class class)co 6906  Basecbs 16223  s cress 16224  0gc0g 16454  s cpws 16461  Mndcmnd 17648  Grpcgrp 17777  SubGrpcsubg 17940  Ringcrg 18902  LModclmod 19220  LSubSpclss 19289  ringLModcrglmod 19531   freeLMod cfrlm 20454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-rep 4995  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128  ax-un 7210  ax-cnex 10309  ax-resscn 10310  ax-1cn 10311  ax-icn 10312  ax-addcl 10313  ax-addrcl 10314  ax-mulcl 10315  ax-mulrcl 10316  ax-mulcom 10317  ax-addass 10318  ax-mulass 10319  ax-distr 10320  ax-i2m1 10321  ax-1ne0 10322  ax-1rid 10323  ax-rnegex 10324  ax-rrecex 10325  ax-cnre 10326  ax-pre-lttri 10327  ax-pre-lttrn 10328  ax-pre-ltadd 10329  ax-pre-mulgt0 10330
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-nel 3104  df-ral 3123  df-rex 3124  df-reu 3125  df-rmo 3126  df-rab 3127  df-v 3417  df-sbc 3664  df-csb 3759  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-pss 3815  df-nul 4146  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4660  df-int 4699  df-iun 4743  df-br 4875  df-opab 4937  df-mpt 4954  df-tr 4977  df-id 5251  df-eprel 5256  df-po 5264  df-so 5265  df-fr 5302  df-we 5304  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-res 5355  df-ima 5356  df-pred 5921  df-ord 5967  df-on 5968  df-lim 5969  df-suc 5970  df-iota 6087  df-fun 6126  df-fn 6127  df-f 6128  df-f1 6129  df-fo 6130  df-f1o 6131  df-fv 6132  df-riota 6867  df-ov 6909  df-oprab 6910  df-mpt2 6911  df-om 7328  df-1st 7429  df-2nd 7430  df-wrecs 7673  df-recs 7735  df-rdg 7773  df-1o 7827  df-oadd 7831  df-er 8010  df-map 8125  df-ixp 8177  df-en 8224  df-dom 8225  df-sdom 8226  df-fin 8227  df-sup 8618  df-pnf 10394  df-mnf 10395  df-xr 10396  df-ltxr 10397  df-le 10398  df-sub 10588  df-neg 10589  df-nn 11352  df-2 11415  df-3 11416  df-4 11417  df-5 11418  df-6 11419  df-7 11420  df-8 11421  df-9 11422  df-n0 11620  df-z 11706  df-dec 11823  df-uz 11970  df-fz 12621  df-struct 16225  df-ndx 16226  df-slot 16227  df-base 16229  df-sets 16230  df-ress 16231  df-plusg 16319  df-mulr 16320  df-sca 16322  df-vsca 16323  df-ip 16324  df-tset 16325  df-ple 16326  df-ds 16328  df-hom 16330  df-cco 16331  df-0g 16456  df-prds 16462  df-pws 16464  df-mgm 17596  df-sgrp 17638  df-mnd 17649  df-grp 17780  df-minusg 17781  df-sbg 17782  df-subg 17943  df-mgp 18845  df-ur 18857  df-ring 18904  df-subrg 19135  df-lmod 19222  df-lss 19290  df-sra 19534  df-rgmod 19535  df-dsmm 20440  df-frlm 20455
This theorem is referenced by:  frlmsslss  20481  islindf5  20546  mat0op  20593  rrxcph  23561  rrx0  23566  matunitlindflem1  33950  zlmodzxz0  42982  aacllem  43444
  Copyright terms: Public domain W3C validator