MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlm0 Structured version   Visualization version   GIF version

Theorem frlm0 21719
Description: Zero in a free module (ring constraint is stronger than necessary, but allows use of frlmlss 21716). (Contributed by Stefan O'Rear, 4-Feb-2015.)
Hypotheses
Ref Expression
frlmval.f 𝐹 = (𝑅 freeLMod 𝐼)
frlm0.z 0 = (0g𝑅)
Assertion
Ref Expression
frlm0 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (𝐼 × { 0 }) = (0g𝐹))

Proof of Theorem frlm0
StepHypRef Expression
1 rlmlmod 21166 . . . . 5 (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod)
2 eqid 2736 . . . . . 6 ((ringLMod‘𝑅) ↑s 𝐼) = ((ringLMod‘𝑅) ↑s 𝐼)
32pwslmod 20932 . . . . 5 (((ringLMod‘𝑅) ∈ LMod ∧ 𝐼𝑊) → ((ringLMod‘𝑅) ↑s 𝐼) ∈ LMod)
41, 3sylan 580 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → ((ringLMod‘𝑅) ↑s 𝐼) ∈ LMod)
5 frlmval.f . . . . 5 𝐹 = (𝑅 freeLMod 𝐼)
6 eqid 2736 . . . . 5 (Base‘𝐹) = (Base‘𝐹)
7 eqid 2736 . . . . 5 (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼)) = (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼))
85, 6, 7frlmlss 21716 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (Base‘𝐹) ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼)))
97lsssubg 20919 . . . 4 ((((ringLMod‘𝑅) ↑s 𝐼) ∈ LMod ∧ (Base‘𝐹) ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼))) → (Base‘𝐹) ∈ (SubGrp‘((ringLMod‘𝑅) ↑s 𝐼)))
104, 8, 9syl2anc 584 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (Base‘𝐹) ∈ (SubGrp‘((ringLMod‘𝑅) ↑s 𝐼)))
11 eqid 2736 . . . 4 (((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝐹)) = (((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝐹))
12 eqid 2736 . . . 4 (0g‘((ringLMod‘𝑅) ↑s 𝐼)) = (0g‘((ringLMod‘𝑅) ↑s 𝐼))
1311, 12subg0 19120 . . 3 ((Base‘𝐹) ∈ (SubGrp‘((ringLMod‘𝑅) ↑s 𝐼)) → (0g‘((ringLMod‘𝑅) ↑s 𝐼)) = (0g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝐹))))
1410, 13syl 17 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (0g‘((ringLMod‘𝑅) ↑s 𝐼)) = (0g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝐹))))
15 lmodgrp 20829 . . . 4 ((ringLMod‘𝑅) ∈ LMod → (ringLMod‘𝑅) ∈ Grp)
16 grpmnd 18928 . . . 4 ((ringLMod‘𝑅) ∈ Grp → (ringLMod‘𝑅) ∈ Mnd)
171, 15, 163syl 18 . . 3 (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ Mnd)
18 frlm0.z . . . . 5 0 = (0g𝑅)
19 rlm0 21158 . . . . 5 (0g𝑅) = (0g‘(ringLMod‘𝑅))
2018, 19eqtri 2759 . . . 4 0 = (0g‘(ringLMod‘𝑅))
212, 20pws0g 18756 . . 3 (((ringLMod‘𝑅) ∈ Mnd ∧ 𝐼𝑊) → (𝐼 × { 0 }) = (0g‘((ringLMod‘𝑅) ↑s 𝐼)))
2217, 21sylan 580 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (𝐼 × { 0 }) = (0g‘((ringLMod‘𝑅) ↑s 𝐼)))
235, 6frlmpws 21715 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → 𝐹 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝐹)))
2423fveq2d 6885 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (0g𝐹) = (0g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s (Base‘𝐹))))
2514, 22, 243eqtr4d 2781 1 ((𝑅 ∈ Ring ∧ 𝐼𝑊) → (𝐼 × { 0 }) = (0g𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {csn 4606   × cxp 5657  cfv 6536  (class class class)co 7410  Basecbs 17233  s cress 17256  0gc0g 17458  s cpws 17465  Mndcmnd 18717  Grpcgrp 18921  SubGrpcsubg 19108  Ringcrg 20198  LModclmod 20822  LSubSpclss 20893  ringLModcrglmod 21135   freeLMod cfrlm 21711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-fz 13530  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-hom 17300  df-cco 17301  df-0g 17460  df-prds 17466  df-pws 17468  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-grp 18924  df-minusg 18925  df-sbg 18926  df-subg 19111  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-subrg 20535  df-lmod 20824  df-lss 20894  df-sra 21136  df-rgmod 21137  df-dsmm 21697  df-frlm 21712
This theorem is referenced by:  frlmsslss  21739  islindf5  21804  mat0op  22362  rrxcph  25349  rrx0  25354  matunitlindflem1  37645  frlm0vald  42529  mnring0g2d  44213  zlmodzxz0  48298  aacllem  49632
  Copyright terms: Public domain W3C validator