MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgnuni Structured version   Visualization version   GIF version

Theorem psgnuni 18605
Description: If the same permutation can be written in more than one way as a product of transpositions, the parity of those products must agree; otherwise the product of one with the inverse of the other would be an odd representation of the identity. (Contributed by Stefan O'Rear, 27-Aug-2015.)
Hypotheses
Ref Expression
psgnuni.g 𝐺 = (SymGrp‘𝐷)
psgnuni.t 𝑇 = ran (pmTrsp‘𝐷)
psgnuni.d (𝜑𝐷𝑉)
psgnuni.w (𝜑𝑊 ∈ Word 𝑇)
psgnuni.x (𝜑𝑋 ∈ Word 𝑇)
psgnuni.e (𝜑 → (𝐺 Σg 𝑊) = (𝐺 Σg 𝑋))
Assertion
Ref Expression
psgnuni (𝜑 → (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑋)))

Proof of Theorem psgnuni
StepHypRef Expression
1 psgnuni.w . . . . . 6 (𝜑𝑊 ∈ Word 𝑇)
2 lencl 13864 . . . . . 6 (𝑊 ∈ Word 𝑇 → (♯‘𝑊) ∈ ℕ0)
31, 2syl 17 . . . . 5 (𝜑 → (♯‘𝑊) ∈ ℕ0)
43nn0zd 12063 . . . 4 (𝜑 → (♯‘𝑊) ∈ ℤ)
5 m1expcl 13436 . . . 4 ((♯‘𝑊) ∈ ℤ → (-1↑(♯‘𝑊)) ∈ ℤ)
64, 5syl 17 . . 3 (𝜑 → (-1↑(♯‘𝑊)) ∈ ℤ)
76zcnd 12066 . 2 (𝜑 → (-1↑(♯‘𝑊)) ∈ ℂ)
8 psgnuni.x . . . . . 6 (𝜑𝑋 ∈ Word 𝑇)
9 lencl 13864 . . . . . 6 (𝑋 ∈ Word 𝑇 → (♯‘𝑋) ∈ ℕ0)
108, 9syl 17 . . . . 5 (𝜑 → (♯‘𝑋) ∈ ℕ0)
1110nn0zd 12063 . . . 4 (𝜑 → (♯‘𝑋) ∈ ℤ)
12 m1expcl 13436 . . . 4 ((♯‘𝑋) ∈ ℤ → (-1↑(♯‘𝑋)) ∈ ℤ)
1311, 12syl 17 . . 3 (𝜑 → (-1↑(♯‘𝑋)) ∈ ℤ)
1413zcnd 12066 . 2 (𝜑 → (-1↑(♯‘𝑋)) ∈ ℂ)
15 neg1cn 11729 . . 3 -1 ∈ ℂ
16 neg1ne0 11731 . . 3 -1 ≠ 0
17 expne0i 13445 . . 3 ((-1 ∈ ℂ ∧ -1 ≠ 0 ∧ (♯‘𝑋) ∈ ℤ) → (-1↑(♯‘𝑋)) ≠ 0)
1815, 16, 11, 17mp3an12i 1462 . 2 (𝜑 → (-1↑(♯‘𝑋)) ≠ 0)
19 m1expaddsub 18604 . . . 4 (((♯‘𝑊) ∈ ℤ ∧ (♯‘𝑋) ∈ ℤ) → (-1↑((♯‘𝑊) − (♯‘𝑋))) = (-1↑((♯‘𝑊) + (♯‘𝑋))))
204, 11, 19syl2anc 587 . . 3 (𝜑 → (-1↑((♯‘𝑊) − (♯‘𝑋))) = (-1↑((♯‘𝑊) + (♯‘𝑋))))
21 expsub 13461 . . . . 5 (((-1 ∈ ℂ ∧ -1 ≠ 0) ∧ ((♯‘𝑊) ∈ ℤ ∧ (♯‘𝑋) ∈ ℤ)) → (-1↑((♯‘𝑊) − (♯‘𝑋))) = ((-1↑(♯‘𝑊)) / (-1↑(♯‘𝑋))))
2215, 16, 21mpanl12 701 . . . 4 (((♯‘𝑊) ∈ ℤ ∧ (♯‘𝑋) ∈ ℤ) → (-1↑((♯‘𝑊) − (♯‘𝑋))) = ((-1↑(♯‘𝑊)) / (-1↑(♯‘𝑋))))
234, 11, 22syl2anc 587 . . 3 (𝜑 → (-1↑((♯‘𝑊) − (♯‘𝑋))) = ((-1↑(♯‘𝑊)) / (-1↑(♯‘𝑋))))
24 revcl 14102 . . . . . . . 8 (𝑋 ∈ Word 𝑇 → (reverse‘𝑋) ∈ Word 𝑇)
258, 24syl 17 . . . . . . 7 (𝜑 → (reverse‘𝑋) ∈ Word 𝑇)
26 ccatlen 13906 . . . . . . 7 ((𝑊 ∈ Word 𝑇 ∧ (reverse‘𝑋) ∈ Word 𝑇) → (♯‘(𝑊 ++ (reverse‘𝑋))) = ((♯‘𝑊) + (♯‘(reverse‘𝑋))))
271, 25, 26syl2anc 587 . . . . . 6 (𝜑 → (♯‘(𝑊 ++ (reverse‘𝑋))) = ((♯‘𝑊) + (♯‘(reverse‘𝑋))))
28 revlen 14103 . . . . . . . 8 (𝑋 ∈ Word 𝑇 → (♯‘(reverse‘𝑋)) = (♯‘𝑋))
298, 28syl 17 . . . . . . 7 (𝜑 → (♯‘(reverse‘𝑋)) = (♯‘𝑋))
3029oveq2d 7146 . . . . . 6 (𝜑 → ((♯‘𝑊) + (♯‘(reverse‘𝑋))) = ((♯‘𝑊) + (♯‘𝑋)))
3127, 30eqtr2d 2857 . . . . 5 (𝜑 → ((♯‘𝑊) + (♯‘𝑋)) = (♯‘(𝑊 ++ (reverse‘𝑋))))
3231oveq2d 7146 . . . 4 (𝜑 → (-1↑((♯‘𝑊) + (♯‘𝑋))) = (-1↑(♯‘(𝑊 ++ (reverse‘𝑋)))))
33 psgnuni.g . . . . 5 𝐺 = (SymGrp‘𝐷)
34 psgnuni.t . . . . 5 𝑇 = ran (pmTrsp‘𝐷)
35 psgnuni.d . . . . 5 (𝜑𝐷𝑉)
36 ccatcl 13905 . . . . . 6 ((𝑊 ∈ Word 𝑇 ∧ (reverse‘𝑋) ∈ Word 𝑇) → (𝑊 ++ (reverse‘𝑋)) ∈ Word 𝑇)
371, 25, 36syl2anc 587 . . . . 5 (𝜑 → (𝑊 ++ (reverse‘𝑋)) ∈ Word 𝑇)
38 psgnuni.e . . . . . . . . . 10 (𝜑 → (𝐺 Σg 𝑊) = (𝐺 Σg 𝑋))
3938fveq2d 6647 . . . . . . . . 9 (𝜑 → ((invg𝐺)‘(𝐺 Σg 𝑊)) = ((invg𝐺)‘(𝐺 Σg 𝑋)))
40 eqid 2821 . . . . . . . . . . 11 (invg𝐺) = (invg𝐺)
4134, 33, 40symgtrinv 18578 . . . . . . . . . 10 ((𝐷𝑉𝑋 ∈ Word 𝑇) → ((invg𝐺)‘(𝐺 Σg 𝑋)) = (𝐺 Σg (reverse‘𝑋)))
4235, 8, 41syl2anc 587 . . . . . . . . 9 (𝜑 → ((invg𝐺)‘(𝐺 Σg 𝑋)) = (𝐺 Σg (reverse‘𝑋)))
4339, 42eqtr2d 2857 . . . . . . . 8 (𝜑 → (𝐺 Σg (reverse‘𝑋)) = ((invg𝐺)‘(𝐺 Σg 𝑊)))
4443oveq2d 7146 . . . . . . 7 (𝜑 → ((𝐺 Σg 𝑊)(+g𝐺)(𝐺 Σg (reverse‘𝑋))) = ((𝐺 Σg 𝑊)(+g𝐺)((invg𝐺)‘(𝐺 Σg 𝑊))))
4533symggrp 18506 . . . . . . . . 9 (𝐷𝑉𝐺 ∈ Grp)
4635, 45syl 17 . . . . . . . 8 (𝜑𝐺 ∈ Grp)
47 grpmnd 18088 . . . . . . . . . 10 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
4835, 45, 473syl 18 . . . . . . . . 9 (𝜑𝐺 ∈ Mnd)
49 eqid 2821 . . . . . . . . . . . 12 (Base‘𝐺) = (Base‘𝐺)
5034, 33, 49symgtrf 18575 . . . . . . . . . . 11 𝑇 ⊆ (Base‘𝐺)
51 sswrd 13853 . . . . . . . . . . 11 (𝑇 ⊆ (Base‘𝐺) → Word 𝑇 ⊆ Word (Base‘𝐺))
5250, 51ax-mp 5 . . . . . . . . . 10 Word 𝑇 ⊆ Word (Base‘𝐺)
5352, 1sseldi 3941 . . . . . . . . 9 (𝜑𝑊 ∈ Word (Base‘𝐺))
5449gsumwcl 17981 . . . . . . . . 9 ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word (Base‘𝐺)) → (𝐺 Σg 𝑊) ∈ (Base‘𝐺))
5548, 53, 54syl2anc 587 . . . . . . . 8 (𝜑 → (𝐺 Σg 𝑊) ∈ (Base‘𝐺))
56 eqid 2821 . . . . . . . . 9 (+g𝐺) = (+g𝐺)
57 eqid 2821 . . . . . . . . 9 (0g𝐺) = (0g𝐺)
5849, 56, 57, 40grprinv 18131 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝐺 Σg 𝑊) ∈ (Base‘𝐺)) → ((𝐺 Σg 𝑊)(+g𝐺)((invg𝐺)‘(𝐺 Σg 𝑊))) = (0g𝐺))
5946, 55, 58syl2anc 587 . . . . . . 7 (𝜑 → ((𝐺 Σg 𝑊)(+g𝐺)((invg𝐺)‘(𝐺 Σg 𝑊))) = (0g𝐺))
6044, 59eqtrd 2856 . . . . . 6 (𝜑 → ((𝐺 Σg 𝑊)(+g𝐺)(𝐺 Σg (reverse‘𝑋))) = (0g𝐺))
6152, 25sseldi 3941 . . . . . . 7 (𝜑 → (reverse‘𝑋) ∈ Word (Base‘𝐺))
6249, 56gsumccat 17984 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word (Base‘𝐺) ∧ (reverse‘𝑋) ∈ Word (Base‘𝐺)) → (𝐺 Σg (𝑊 ++ (reverse‘𝑋))) = ((𝐺 Σg 𝑊)(+g𝐺)(𝐺 Σg (reverse‘𝑋))))
6348, 53, 61, 62syl3anc 1368 . . . . . 6 (𝜑 → (𝐺 Σg (𝑊 ++ (reverse‘𝑋))) = ((𝐺 Σg 𝑊)(+g𝐺)(𝐺 Σg (reverse‘𝑋))))
6433symgid 18507 . . . . . . 7 (𝐷𝑉 → ( I ↾ 𝐷) = (0g𝐺))
6535, 64syl 17 . . . . . 6 (𝜑 → ( I ↾ 𝐷) = (0g𝐺))
6660, 63, 653eqtr4d 2866 . . . . 5 (𝜑 → (𝐺 Σg (𝑊 ++ (reverse‘𝑋))) = ( I ↾ 𝐷))
6733, 34, 35, 37, 66psgnunilem4 18603 . . . 4 (𝜑 → (-1↑(♯‘(𝑊 ++ (reverse‘𝑋)))) = 1)
6832, 67eqtrd 2856 . . 3 (𝜑 → (-1↑((♯‘𝑊) + (♯‘𝑋))) = 1)
6920, 23, 683eqtr3d 2864 . 2 (𝜑 → ((-1↑(♯‘𝑊)) / (-1↑(♯‘𝑋))) = 1)
707, 14, 18, 69diveq1d 11401 1 (𝜑 → (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115  wne 3007  wss 3910   I cid 5432  ran crn 5529  cres 5530  cfv 6328  (class class class)co 7130  cc 10512  0cc0 10514  1c1 10515   + caddc 10517  cmin 10847  -cneg 10848   / cdiv 11274  0cn0 11875  cz 11959  cexp 13413  chash 13674  Word cword 13845   ++ cconcat 13901  reversecreverse 14099  Basecbs 16461  +gcplusg 16543  0gc0g 16691   Σg cgsu 16692  Mndcmnd 17889  Grpcgrp 18081  invgcminusg 18082  SymGrpcsymg 18473  pmTrspcpmtr 18547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-xor 1503  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-ot 4549  df-uni 4812  df-int 4850  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-se 5488  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-om 7556  df-1st 7664  df-2nd 7665  df-tpos 7867  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-1o 8077  df-2o 8078  df-oadd 8081  df-er 8264  df-map 8383  df-en 8485  df-dom 8486  df-sdom 8487  df-fin 8488  df-card 9344  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-div 11275  df-nn 11616  df-2 11678  df-3 11679  df-4 11680  df-5 11681  df-6 11682  df-7 11683  df-8 11684  df-9 11685  df-n0 11876  df-xnn0 11946  df-z 11960  df-uz 12222  df-rp 12368  df-fz 12876  df-fzo 13017  df-seq 13353  df-exp 13414  df-hash 13675  df-word 13846  df-lsw 13894  df-concat 13902  df-s1 13929  df-substr 13982  df-pfx 14012  df-splice 14091  df-reverse 14100  df-s2 14189  df-struct 16463  df-ndx 16464  df-slot 16465  df-base 16467  df-sets 16468  df-ress 16469  df-plusg 16556  df-tset 16562  df-0g 16693  df-gsum 16694  df-mgm 17830  df-sgrp 17879  df-mnd 17890  df-mhm 17934  df-submnd 17935  df-efmnd 18012  df-grp 18084  df-minusg 18085  df-subg 18254  df-ghm 18334  df-gim 18377  df-oppg 18452  df-symg 18474  df-pmtr 18548
This theorem is referenced by:  psgneu  18612  psgndiflemA  20720
  Copyright terms: Public domain W3C validator