Step | Hyp | Ref
| Expression |
1 | | psgnuni.w |
. . . . . 6
β’ (π β π β Word π) |
2 | | lencl 14483 |
. . . . . 6
β’ (π β Word π β (β―βπ) β
β0) |
3 | 1, 2 | syl 17 |
. . . . 5
β’ (π β (β―βπ) β
β0) |
4 | 3 | nn0zd 12584 |
. . . 4
β’ (π β (β―βπ) β
β€) |
5 | | m1expcl 14052 |
. . . 4
β’
((β―βπ)
β β€ β (-1β(β―βπ)) β β€) |
6 | 4, 5 | syl 17 |
. . 3
β’ (π β
(-1β(β―βπ))
β β€) |
7 | 6 | zcnd 12667 |
. 2
β’ (π β
(-1β(β―βπ))
β β) |
8 | | psgnuni.x |
. . . . . 6
β’ (π β π β Word π) |
9 | | lencl 14483 |
. . . . . 6
β’ (π β Word π β (β―βπ) β
β0) |
10 | 8, 9 | syl 17 |
. . . . 5
β’ (π β (β―βπ) β
β0) |
11 | 10 | nn0zd 12584 |
. . . 4
β’ (π β (β―βπ) β
β€) |
12 | | m1expcl 14052 |
. . . 4
β’
((β―βπ)
β β€ β (-1β(β―βπ)) β β€) |
13 | 11, 12 | syl 17 |
. . 3
β’ (π β
(-1β(β―βπ))
β β€) |
14 | 13 | zcnd 12667 |
. 2
β’ (π β
(-1β(β―βπ))
β β) |
15 | | neg1cn 12326 |
. . 3
β’ -1 β
β |
16 | | neg1ne0 12328 |
. . 3
β’ -1 β
0 |
17 | | expne0i 14060 |
. . 3
β’ ((-1
β β β§ -1 β 0 β§ (β―βπ) β β€) β
(-1β(β―βπ))
β 0) |
18 | 15, 16, 11, 17 | mp3an12i 1466 |
. 2
β’ (π β
(-1β(β―βπ))
β 0) |
19 | | m1expaddsub 19366 |
. . . 4
β’
(((β―βπ)
β β€ β§ (β―βπ) β β€) β
(-1β((β―βπ)
β (β―βπ)))
= (-1β((β―βπ) + (β―βπ)))) |
20 | 4, 11, 19 | syl2anc 585 |
. . 3
β’ (π β
(-1β((β―βπ)
β (β―βπ)))
= (-1β((β―βπ) + (β―βπ)))) |
21 | | expsub 14076 |
. . . . 5
β’ (((-1
β β β§ -1 β 0) β§ ((β―βπ) β β€ β§ (β―βπ) β β€)) β
(-1β((β―βπ)
β (β―βπ)))
= ((-1β(β―βπ)) / (-1β(β―βπ)))) |
22 | 15, 16, 21 | mpanl12 701 |
. . . 4
β’
(((β―βπ)
β β€ β§ (β―βπ) β β€) β
(-1β((β―βπ)
β (β―βπ)))
= ((-1β(β―βπ)) / (-1β(β―βπ)))) |
23 | 4, 11, 22 | syl2anc 585 |
. . 3
β’ (π β
(-1β((β―βπ)
β (β―βπ)))
= ((-1β(β―βπ)) / (-1β(β―βπ)))) |
24 | | revcl 14711 |
. . . . . . . 8
β’ (π β Word π β (reverseβπ) β Word π) |
25 | 8, 24 | syl 17 |
. . . . . . 7
β’ (π β (reverseβπ) β Word π) |
26 | | ccatlen 14525 |
. . . . . . 7
β’ ((π β Word π β§ (reverseβπ) β Word π) β (β―β(π ++ (reverseβπ))) = ((β―βπ) + (β―β(reverseβπ)))) |
27 | 1, 25, 26 | syl2anc 585 |
. . . . . 6
β’ (π β (β―β(π ++ (reverseβπ))) = ((β―βπ) +
(β―β(reverseβπ)))) |
28 | | revlen 14712 |
. . . . . . . 8
β’ (π β Word π β (β―β(reverseβπ)) = (β―βπ)) |
29 | 8, 28 | syl 17 |
. . . . . . 7
β’ (π β
(β―β(reverseβπ)) = (β―βπ)) |
30 | 29 | oveq2d 7425 |
. . . . . 6
β’ (π β ((β―βπ) +
(β―β(reverseβπ))) = ((β―βπ) + (β―βπ))) |
31 | 27, 30 | eqtr2d 2774 |
. . . . 5
β’ (π β ((β―βπ) + (β―βπ)) = (β―β(π ++ (reverseβπ)))) |
32 | 31 | oveq2d 7425 |
. . . 4
β’ (π β
(-1β((β―βπ)
+ (β―βπ))) =
(-1β(β―β(π
++ (reverseβπ))))) |
33 | | psgnuni.g |
. . . . 5
β’ πΊ = (SymGrpβπ·) |
34 | | psgnuni.t |
. . . . 5
β’ π = ran (pmTrspβπ·) |
35 | | psgnuni.d |
. . . . 5
β’ (π β π· β π) |
36 | | ccatcl 14524 |
. . . . . 6
β’ ((π β Word π β§ (reverseβπ) β Word π) β (π ++ (reverseβπ)) β Word π) |
37 | 1, 25, 36 | syl2anc 585 |
. . . . 5
β’ (π β (π ++ (reverseβπ)) β Word π) |
38 | | psgnuni.e |
. . . . . . . . . 10
β’ (π β (πΊ Ξ£g π) = (πΊ Ξ£g π)) |
39 | 38 | fveq2d 6896 |
. . . . . . . . 9
β’ (π β
((invgβπΊ)β(πΊ Ξ£g π)) =
((invgβπΊ)β(πΊ Ξ£g π))) |
40 | | eqid 2733 |
. . . . . . . . . . 11
β’
(invgβπΊ) = (invgβπΊ) |
41 | 34, 33, 40 | symgtrinv 19340 |
. . . . . . . . . 10
β’ ((π· β π β§ π β Word π) β ((invgβπΊ)β(πΊ Ξ£g π)) = (πΊ Ξ£g
(reverseβπ))) |
42 | 35, 8, 41 | syl2anc 585 |
. . . . . . . . 9
β’ (π β
((invgβπΊ)β(πΊ Ξ£g π)) = (πΊ Ξ£g
(reverseβπ))) |
43 | 39, 42 | eqtr2d 2774 |
. . . . . . . 8
β’ (π β (πΊ Ξ£g
(reverseβπ)) =
((invgβπΊ)β(πΊ Ξ£g π))) |
44 | 43 | oveq2d 7425 |
. . . . . . 7
β’ (π β ((πΊ Ξ£g π)(+gβπΊ)(πΊ Ξ£g
(reverseβπ))) =
((πΊ
Ξ£g π)(+gβπΊ)((invgβπΊ)β(πΊ Ξ£g π)))) |
45 | 33 | symggrp 19268 |
. . . . . . . . 9
β’ (π· β π β πΊ β Grp) |
46 | 35, 45 | syl 17 |
. . . . . . . 8
β’ (π β πΊ β Grp) |
47 | | grpmnd 18826 |
. . . . . . . . . 10
β’ (πΊ β Grp β πΊ β Mnd) |
48 | 35, 45, 47 | 3syl 18 |
. . . . . . . . 9
β’ (π β πΊ β Mnd) |
49 | | eqid 2733 |
. . . . . . . . . . . 12
β’
(BaseβπΊ) =
(BaseβπΊ) |
50 | 34, 33, 49 | symgtrf 19337 |
. . . . . . . . . . 11
β’ π β (BaseβπΊ) |
51 | | sswrd 14472 |
. . . . . . . . . . 11
β’ (π β (BaseβπΊ) β Word π β Word (BaseβπΊ)) |
52 | 50, 51 | ax-mp 5 |
. . . . . . . . . 10
β’ Word
π β Word
(BaseβπΊ) |
53 | 52, 1 | sselid 3981 |
. . . . . . . . 9
β’ (π β π β Word (BaseβπΊ)) |
54 | 49 | gsumwcl 18720 |
. . . . . . . . 9
β’ ((πΊ β Mnd β§ π β Word (BaseβπΊ)) β (πΊ Ξ£g π) β (BaseβπΊ)) |
55 | 48, 53, 54 | syl2anc 585 |
. . . . . . . 8
β’ (π β (πΊ Ξ£g π) β (BaseβπΊ)) |
56 | | eqid 2733 |
. . . . . . . . 9
β’
(+gβπΊ) = (+gβπΊ) |
57 | | eqid 2733 |
. . . . . . . . 9
β’
(0gβπΊ) = (0gβπΊ) |
58 | 49, 56, 57, 40 | grprinv 18875 |
. . . . . . . 8
β’ ((πΊ β Grp β§ (πΊ Ξ£g
π) β (BaseβπΊ)) β ((πΊ Ξ£g π)(+gβπΊ)((invgβπΊ)β(πΊ Ξ£g π))) = (0gβπΊ)) |
59 | 46, 55, 58 | syl2anc 585 |
. . . . . . 7
β’ (π β ((πΊ Ξ£g π)(+gβπΊ)((invgβπΊ)β(πΊ Ξ£g π))) = (0gβπΊ)) |
60 | 44, 59 | eqtrd 2773 |
. . . . . 6
β’ (π β ((πΊ Ξ£g π)(+gβπΊ)(πΊ Ξ£g
(reverseβπ))) =
(0gβπΊ)) |
61 | 52, 25 | sselid 3981 |
. . . . . . 7
β’ (π β (reverseβπ) β Word (BaseβπΊ)) |
62 | 49, 56 | gsumccat 18722 |
. . . . . . 7
β’ ((πΊ β Mnd β§ π β Word (BaseβπΊ) β§ (reverseβπ) β Word (BaseβπΊ)) β (πΊ Ξ£g (π ++ (reverseβπ))) = ((πΊ Ξ£g π)(+gβπΊ)(πΊ Ξ£g
(reverseβπ)))) |
63 | 48, 53, 61, 62 | syl3anc 1372 |
. . . . . 6
β’ (π β (πΊ Ξ£g (π ++ (reverseβπ))) = ((πΊ Ξ£g π)(+gβπΊ)(πΊ Ξ£g
(reverseβπ)))) |
64 | 33 | symgid 19269 |
. . . . . . 7
β’ (π· β π β ( I βΎ π·) = (0gβπΊ)) |
65 | 35, 64 | syl 17 |
. . . . . 6
β’ (π β ( I βΎ π·) = (0gβπΊ)) |
66 | 60, 63, 65 | 3eqtr4d 2783 |
. . . . 5
β’ (π β (πΊ Ξ£g (π ++ (reverseβπ))) = ( I βΎ π·)) |
67 | 33, 34, 35, 37, 66 | psgnunilem4 19365 |
. . . 4
β’ (π β
(-1β(β―β(π
++ (reverseβπ)))) =
1) |
68 | 32, 67 | eqtrd 2773 |
. . 3
β’ (π β
(-1β((β―βπ)
+ (β―βπ))) =
1) |
69 | 20, 23, 68 | 3eqtr3d 2781 |
. 2
β’ (π β
((-1β(β―βπ)) / (-1β(β―βπ))) = 1) |
70 | 7, 14, 18, 69 | diveq1d 11998 |
1
β’ (π β
(-1β(β―βπ))
= (-1β(β―βπ))) |