MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgnuni Structured version   Visualization version   GIF version

Theorem psgnuni 19429
Description: If the same permutation can be written in more than one way as a product of transpositions, the parity of those products must agree; otherwise the product of one with the inverse of the other would be an odd representation of the identity. (Contributed by Stefan O'Rear, 27-Aug-2015.)
Hypotheses
Ref Expression
psgnuni.g 𝐺 = (SymGrp‘𝐷)
psgnuni.t 𝑇 = ran (pmTrsp‘𝐷)
psgnuni.d (𝜑𝐷𝑉)
psgnuni.w (𝜑𝑊 ∈ Word 𝑇)
psgnuni.x (𝜑𝑋 ∈ Word 𝑇)
psgnuni.e (𝜑 → (𝐺 Σg 𝑊) = (𝐺 Σg 𝑋))
Assertion
Ref Expression
psgnuni (𝜑 → (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑋)))

Proof of Theorem psgnuni
StepHypRef Expression
1 psgnuni.w . . . . . 6 (𝜑𝑊 ∈ Word 𝑇)
2 lencl 14498 . . . . . 6 (𝑊 ∈ Word 𝑇 → (♯‘𝑊) ∈ ℕ0)
31, 2syl 17 . . . . 5 (𝜑 → (♯‘𝑊) ∈ ℕ0)
43nn0zd 12555 . . . 4 (𝜑 → (♯‘𝑊) ∈ ℤ)
5 m1expcl 14051 . . . 4 ((♯‘𝑊) ∈ ℤ → (-1↑(♯‘𝑊)) ∈ ℤ)
64, 5syl 17 . . 3 (𝜑 → (-1↑(♯‘𝑊)) ∈ ℤ)
76zcnd 12639 . 2 (𝜑 → (-1↑(♯‘𝑊)) ∈ ℂ)
8 psgnuni.x . . . . . 6 (𝜑𝑋 ∈ Word 𝑇)
9 lencl 14498 . . . . . 6 (𝑋 ∈ Word 𝑇 → (♯‘𝑋) ∈ ℕ0)
108, 9syl 17 . . . . 5 (𝜑 → (♯‘𝑋) ∈ ℕ0)
1110nn0zd 12555 . . . 4 (𝜑 → (♯‘𝑋) ∈ ℤ)
12 m1expcl 14051 . . . 4 ((♯‘𝑋) ∈ ℤ → (-1↑(♯‘𝑋)) ∈ ℤ)
1311, 12syl 17 . . 3 (𝜑 → (-1↑(♯‘𝑋)) ∈ ℤ)
1413zcnd 12639 . 2 (𝜑 → (-1↑(♯‘𝑋)) ∈ ℂ)
15 neg1cn 12171 . . 3 -1 ∈ ℂ
16 neg1ne0 12173 . . 3 -1 ≠ 0
17 expne0i 14059 . . 3 ((-1 ∈ ℂ ∧ -1 ≠ 0 ∧ (♯‘𝑋) ∈ ℤ) → (-1↑(♯‘𝑋)) ≠ 0)
1815, 16, 11, 17mp3an12i 1467 . 2 (𝜑 → (-1↑(♯‘𝑋)) ≠ 0)
19 m1expaddsub 19428 . . . 4 (((♯‘𝑊) ∈ ℤ ∧ (♯‘𝑋) ∈ ℤ) → (-1↑((♯‘𝑊) − (♯‘𝑋))) = (-1↑((♯‘𝑊) + (♯‘𝑋))))
204, 11, 19syl2anc 584 . . 3 (𝜑 → (-1↑((♯‘𝑊) − (♯‘𝑋))) = (-1↑((♯‘𝑊) + (♯‘𝑋))))
21 expsub 14075 . . . . 5 (((-1 ∈ ℂ ∧ -1 ≠ 0) ∧ ((♯‘𝑊) ∈ ℤ ∧ (♯‘𝑋) ∈ ℤ)) → (-1↑((♯‘𝑊) − (♯‘𝑋))) = ((-1↑(♯‘𝑊)) / (-1↑(♯‘𝑋))))
2215, 16, 21mpanl12 702 . . . 4 (((♯‘𝑊) ∈ ℤ ∧ (♯‘𝑋) ∈ ℤ) → (-1↑((♯‘𝑊) − (♯‘𝑋))) = ((-1↑(♯‘𝑊)) / (-1↑(♯‘𝑋))))
234, 11, 22syl2anc 584 . . 3 (𝜑 → (-1↑((♯‘𝑊) − (♯‘𝑋))) = ((-1↑(♯‘𝑊)) / (-1↑(♯‘𝑋))))
24 revcl 14726 . . . . . . . 8 (𝑋 ∈ Word 𝑇 → (reverse‘𝑋) ∈ Word 𝑇)
258, 24syl 17 . . . . . . 7 (𝜑 → (reverse‘𝑋) ∈ Word 𝑇)
26 ccatlen 14540 . . . . . . 7 ((𝑊 ∈ Word 𝑇 ∧ (reverse‘𝑋) ∈ Word 𝑇) → (♯‘(𝑊 ++ (reverse‘𝑋))) = ((♯‘𝑊) + (♯‘(reverse‘𝑋))))
271, 25, 26syl2anc 584 . . . . . 6 (𝜑 → (♯‘(𝑊 ++ (reverse‘𝑋))) = ((♯‘𝑊) + (♯‘(reverse‘𝑋))))
28 revlen 14727 . . . . . . . 8 (𝑋 ∈ Word 𝑇 → (♯‘(reverse‘𝑋)) = (♯‘𝑋))
298, 28syl 17 . . . . . . 7 (𝜑 → (♯‘(reverse‘𝑋)) = (♯‘𝑋))
3029oveq2d 7403 . . . . . 6 (𝜑 → ((♯‘𝑊) + (♯‘(reverse‘𝑋))) = ((♯‘𝑊) + (♯‘𝑋)))
3127, 30eqtr2d 2765 . . . . 5 (𝜑 → ((♯‘𝑊) + (♯‘𝑋)) = (♯‘(𝑊 ++ (reverse‘𝑋))))
3231oveq2d 7403 . . . 4 (𝜑 → (-1↑((♯‘𝑊) + (♯‘𝑋))) = (-1↑(♯‘(𝑊 ++ (reverse‘𝑋)))))
33 psgnuni.g . . . . 5 𝐺 = (SymGrp‘𝐷)
34 psgnuni.t . . . . 5 𝑇 = ran (pmTrsp‘𝐷)
35 psgnuni.d . . . . 5 (𝜑𝐷𝑉)
36 ccatcl 14539 . . . . . 6 ((𝑊 ∈ Word 𝑇 ∧ (reverse‘𝑋) ∈ Word 𝑇) → (𝑊 ++ (reverse‘𝑋)) ∈ Word 𝑇)
371, 25, 36syl2anc 584 . . . . 5 (𝜑 → (𝑊 ++ (reverse‘𝑋)) ∈ Word 𝑇)
38 psgnuni.e . . . . . . . . . 10 (𝜑 → (𝐺 Σg 𝑊) = (𝐺 Σg 𝑋))
3938fveq2d 6862 . . . . . . . . 9 (𝜑 → ((invg𝐺)‘(𝐺 Σg 𝑊)) = ((invg𝐺)‘(𝐺 Σg 𝑋)))
40 eqid 2729 . . . . . . . . . . 11 (invg𝐺) = (invg𝐺)
4134, 33, 40symgtrinv 19402 . . . . . . . . . 10 ((𝐷𝑉𝑋 ∈ Word 𝑇) → ((invg𝐺)‘(𝐺 Σg 𝑋)) = (𝐺 Σg (reverse‘𝑋)))
4235, 8, 41syl2anc 584 . . . . . . . . 9 (𝜑 → ((invg𝐺)‘(𝐺 Σg 𝑋)) = (𝐺 Σg (reverse‘𝑋)))
4339, 42eqtr2d 2765 . . . . . . . 8 (𝜑 → (𝐺 Σg (reverse‘𝑋)) = ((invg𝐺)‘(𝐺 Σg 𝑊)))
4443oveq2d 7403 . . . . . . 7 (𝜑 → ((𝐺 Σg 𝑊)(+g𝐺)(𝐺 Σg (reverse‘𝑋))) = ((𝐺 Σg 𝑊)(+g𝐺)((invg𝐺)‘(𝐺 Σg 𝑊))))
4533symggrp 19330 . . . . . . . . 9 (𝐷𝑉𝐺 ∈ Grp)
4635, 45syl 17 . . . . . . . 8 (𝜑𝐺 ∈ Grp)
47 grpmnd 18872 . . . . . . . . . 10 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
4835, 45, 473syl 18 . . . . . . . . 9 (𝜑𝐺 ∈ Mnd)
49 eqid 2729 . . . . . . . . . . . 12 (Base‘𝐺) = (Base‘𝐺)
5034, 33, 49symgtrf 19399 . . . . . . . . . . 11 𝑇 ⊆ (Base‘𝐺)
51 sswrd 14487 . . . . . . . . . . 11 (𝑇 ⊆ (Base‘𝐺) → Word 𝑇 ⊆ Word (Base‘𝐺))
5250, 51ax-mp 5 . . . . . . . . . 10 Word 𝑇 ⊆ Word (Base‘𝐺)
5352, 1sselid 3944 . . . . . . . . 9 (𝜑𝑊 ∈ Word (Base‘𝐺))
5449gsumwcl 18766 . . . . . . . . 9 ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word (Base‘𝐺)) → (𝐺 Σg 𝑊) ∈ (Base‘𝐺))
5548, 53, 54syl2anc 584 . . . . . . . 8 (𝜑 → (𝐺 Σg 𝑊) ∈ (Base‘𝐺))
56 eqid 2729 . . . . . . . . 9 (+g𝐺) = (+g𝐺)
57 eqid 2729 . . . . . . . . 9 (0g𝐺) = (0g𝐺)
5849, 56, 57, 40grprinv 18922 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝐺 Σg 𝑊) ∈ (Base‘𝐺)) → ((𝐺 Σg 𝑊)(+g𝐺)((invg𝐺)‘(𝐺 Σg 𝑊))) = (0g𝐺))
5946, 55, 58syl2anc 584 . . . . . . 7 (𝜑 → ((𝐺 Σg 𝑊)(+g𝐺)((invg𝐺)‘(𝐺 Σg 𝑊))) = (0g𝐺))
6044, 59eqtrd 2764 . . . . . 6 (𝜑 → ((𝐺 Σg 𝑊)(+g𝐺)(𝐺 Σg (reverse‘𝑋))) = (0g𝐺))
6152, 25sselid 3944 . . . . . . 7 (𝜑 → (reverse‘𝑋) ∈ Word (Base‘𝐺))
6249, 56gsumccat 18768 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word (Base‘𝐺) ∧ (reverse‘𝑋) ∈ Word (Base‘𝐺)) → (𝐺 Σg (𝑊 ++ (reverse‘𝑋))) = ((𝐺 Σg 𝑊)(+g𝐺)(𝐺 Σg (reverse‘𝑋))))
6348, 53, 61, 62syl3anc 1373 . . . . . 6 (𝜑 → (𝐺 Σg (𝑊 ++ (reverse‘𝑋))) = ((𝐺 Σg 𝑊)(+g𝐺)(𝐺 Σg (reverse‘𝑋))))
6433symgid 19331 . . . . . . 7 (𝐷𝑉 → ( I ↾ 𝐷) = (0g𝐺))
6535, 64syl 17 . . . . . 6 (𝜑 → ( I ↾ 𝐷) = (0g𝐺))
6660, 63, 653eqtr4d 2774 . . . . 5 (𝜑 → (𝐺 Σg (𝑊 ++ (reverse‘𝑋))) = ( I ↾ 𝐷))
6733, 34, 35, 37, 66psgnunilem4 19427 . . . 4 (𝜑 → (-1↑(♯‘(𝑊 ++ (reverse‘𝑋)))) = 1)
6832, 67eqtrd 2764 . . 3 (𝜑 → (-1↑((♯‘𝑊) + (♯‘𝑋))) = 1)
6920, 23, 683eqtr3d 2772 . 2 (𝜑 → ((-1↑(♯‘𝑊)) / (-1↑(♯‘𝑋))) = 1)
707, 14, 18, 69diveq1d 11966 1 (𝜑 → (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wss 3914   I cid 5532  ran crn 5639  cres 5640  cfv 6511  (class class class)co 7387  cc 11066  0cc0 11068  1c1 11069   + caddc 11071  cmin 11405  -cneg 11406   / cdiv 11835  0cn0 12442  cz 12529  cexp 14026  chash 14295  Word cword 14478   ++ cconcat 14535  reversecreverse 14723  Basecbs 17179  +gcplusg 17220  0gc0g 17402   Σg cgsu 17403  Mndcmnd 18661  Grpcgrp 18865  invgcminusg 18866  SymGrpcsymg 19299  pmTrspcpmtr 19371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1512  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-ot 4598  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-hash 14296  df-word 14479  df-lsw 14528  df-concat 14536  df-s1 14561  df-substr 14606  df-pfx 14636  df-splice 14715  df-reverse 14724  df-s2 14814  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-tset 17239  df-0g 17404  df-gsum 17405  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-efmnd 18796  df-grp 18868  df-minusg 18869  df-subg 19055  df-ghm 19145  df-gim 19191  df-oppg 19278  df-symg 19300  df-pmtr 19372
This theorem is referenced by:  psgneu  19436  psgndiflemA  21510
  Copyright terms: Public domain W3C validator