MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgnuni Structured version   Visualization version   GIF version

Theorem psgnuni 19421
Description: If the same permutation can be written in more than one way as a product of transpositions, the parity of those products must agree; otherwise the product of one with the inverse of the other would be an odd representation of the identity. (Contributed by Stefan O'Rear, 27-Aug-2015.)
Hypotheses
Ref Expression
psgnuni.g 𝐺 = (SymGrp‘𝐷)
psgnuni.t 𝑇 = ran (pmTrsp‘𝐷)
psgnuni.d (𝜑𝐷𝑉)
psgnuni.w (𝜑𝑊 ∈ Word 𝑇)
psgnuni.x (𝜑𝑋 ∈ Word 𝑇)
psgnuni.e (𝜑 → (𝐺 Σg 𝑊) = (𝐺 Σg 𝑋))
Assertion
Ref Expression
psgnuni (𝜑 → (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑋)))

Proof of Theorem psgnuni
StepHypRef Expression
1 psgnuni.w . . . . . 6 (𝜑𝑊 ∈ Word 𝑇)
2 lencl 14450 . . . . . 6 (𝑊 ∈ Word 𝑇 → (♯‘𝑊) ∈ ℕ0)
31, 2syl 17 . . . . 5 (𝜑 → (♯‘𝑊) ∈ ℕ0)
43nn0zd 12504 . . . 4 (𝜑 → (♯‘𝑊) ∈ ℤ)
5 m1expcl 14003 . . . 4 ((♯‘𝑊) ∈ ℤ → (-1↑(♯‘𝑊)) ∈ ℤ)
64, 5syl 17 . . 3 (𝜑 → (-1↑(♯‘𝑊)) ∈ ℤ)
76zcnd 12588 . 2 (𝜑 → (-1↑(♯‘𝑊)) ∈ ℂ)
8 psgnuni.x . . . . . 6 (𝜑𝑋 ∈ Word 𝑇)
9 lencl 14450 . . . . . 6 (𝑋 ∈ Word 𝑇 → (♯‘𝑋) ∈ ℕ0)
108, 9syl 17 . . . . 5 (𝜑 → (♯‘𝑋) ∈ ℕ0)
1110nn0zd 12504 . . . 4 (𝜑 → (♯‘𝑋) ∈ ℤ)
12 m1expcl 14003 . . . 4 ((♯‘𝑋) ∈ ℤ → (-1↑(♯‘𝑋)) ∈ ℤ)
1311, 12syl 17 . . 3 (𝜑 → (-1↑(♯‘𝑋)) ∈ ℤ)
1413zcnd 12588 . 2 (𝜑 → (-1↑(♯‘𝑋)) ∈ ℂ)
15 neg1cn 12120 . . 3 -1 ∈ ℂ
16 neg1ne0 12122 . . 3 -1 ≠ 0
17 expne0i 14011 . . 3 ((-1 ∈ ℂ ∧ -1 ≠ 0 ∧ (♯‘𝑋) ∈ ℤ) → (-1↑(♯‘𝑋)) ≠ 0)
1815, 16, 11, 17mp3an12i 1467 . 2 (𝜑 → (-1↑(♯‘𝑋)) ≠ 0)
19 m1expaddsub 19420 . . . 4 (((♯‘𝑊) ∈ ℤ ∧ (♯‘𝑋) ∈ ℤ) → (-1↑((♯‘𝑊) − (♯‘𝑋))) = (-1↑((♯‘𝑊) + (♯‘𝑋))))
204, 11, 19syl2anc 584 . . 3 (𝜑 → (-1↑((♯‘𝑊) − (♯‘𝑋))) = (-1↑((♯‘𝑊) + (♯‘𝑋))))
21 expsub 14027 . . . . 5 (((-1 ∈ ℂ ∧ -1 ≠ 0) ∧ ((♯‘𝑊) ∈ ℤ ∧ (♯‘𝑋) ∈ ℤ)) → (-1↑((♯‘𝑊) − (♯‘𝑋))) = ((-1↑(♯‘𝑊)) / (-1↑(♯‘𝑋))))
2215, 16, 21mpanl12 702 . . . 4 (((♯‘𝑊) ∈ ℤ ∧ (♯‘𝑋) ∈ ℤ) → (-1↑((♯‘𝑊) − (♯‘𝑋))) = ((-1↑(♯‘𝑊)) / (-1↑(♯‘𝑋))))
234, 11, 22syl2anc 584 . . 3 (𝜑 → (-1↑((♯‘𝑊) − (♯‘𝑋))) = ((-1↑(♯‘𝑊)) / (-1↑(♯‘𝑋))))
24 revcl 14678 . . . . . . . 8 (𝑋 ∈ Word 𝑇 → (reverse‘𝑋) ∈ Word 𝑇)
258, 24syl 17 . . . . . . 7 (𝜑 → (reverse‘𝑋) ∈ Word 𝑇)
26 ccatlen 14492 . . . . . . 7 ((𝑊 ∈ Word 𝑇 ∧ (reverse‘𝑋) ∈ Word 𝑇) → (♯‘(𝑊 ++ (reverse‘𝑋))) = ((♯‘𝑊) + (♯‘(reverse‘𝑋))))
271, 25, 26syl2anc 584 . . . . . 6 (𝜑 → (♯‘(𝑊 ++ (reverse‘𝑋))) = ((♯‘𝑊) + (♯‘(reverse‘𝑋))))
28 revlen 14679 . . . . . . . 8 (𝑋 ∈ Word 𝑇 → (♯‘(reverse‘𝑋)) = (♯‘𝑋))
298, 28syl 17 . . . . . . 7 (𝜑 → (♯‘(reverse‘𝑋)) = (♯‘𝑋))
3029oveq2d 7371 . . . . . 6 (𝜑 → ((♯‘𝑊) + (♯‘(reverse‘𝑋))) = ((♯‘𝑊) + (♯‘𝑋)))
3127, 30eqtr2d 2769 . . . . 5 (𝜑 → ((♯‘𝑊) + (♯‘𝑋)) = (♯‘(𝑊 ++ (reverse‘𝑋))))
3231oveq2d 7371 . . . 4 (𝜑 → (-1↑((♯‘𝑊) + (♯‘𝑋))) = (-1↑(♯‘(𝑊 ++ (reverse‘𝑋)))))
33 psgnuni.g . . . . 5 𝐺 = (SymGrp‘𝐷)
34 psgnuni.t . . . . 5 𝑇 = ran (pmTrsp‘𝐷)
35 psgnuni.d . . . . 5 (𝜑𝐷𝑉)
36 ccatcl 14491 . . . . . 6 ((𝑊 ∈ Word 𝑇 ∧ (reverse‘𝑋) ∈ Word 𝑇) → (𝑊 ++ (reverse‘𝑋)) ∈ Word 𝑇)
371, 25, 36syl2anc 584 . . . . 5 (𝜑 → (𝑊 ++ (reverse‘𝑋)) ∈ Word 𝑇)
38 psgnuni.e . . . . . . . . . 10 (𝜑 → (𝐺 Σg 𝑊) = (𝐺 Σg 𝑋))
3938fveq2d 6835 . . . . . . . . 9 (𝜑 → ((invg𝐺)‘(𝐺 Σg 𝑊)) = ((invg𝐺)‘(𝐺 Σg 𝑋)))
40 eqid 2733 . . . . . . . . . . 11 (invg𝐺) = (invg𝐺)
4134, 33, 40symgtrinv 19394 . . . . . . . . . 10 ((𝐷𝑉𝑋 ∈ Word 𝑇) → ((invg𝐺)‘(𝐺 Σg 𝑋)) = (𝐺 Σg (reverse‘𝑋)))
4235, 8, 41syl2anc 584 . . . . . . . . 9 (𝜑 → ((invg𝐺)‘(𝐺 Σg 𝑋)) = (𝐺 Σg (reverse‘𝑋)))
4339, 42eqtr2d 2769 . . . . . . . 8 (𝜑 → (𝐺 Σg (reverse‘𝑋)) = ((invg𝐺)‘(𝐺 Σg 𝑊)))
4443oveq2d 7371 . . . . . . 7 (𝜑 → ((𝐺 Σg 𝑊)(+g𝐺)(𝐺 Σg (reverse‘𝑋))) = ((𝐺 Σg 𝑊)(+g𝐺)((invg𝐺)‘(𝐺 Σg 𝑊))))
4533symggrp 19322 . . . . . . . . 9 (𝐷𝑉𝐺 ∈ Grp)
4635, 45syl 17 . . . . . . . 8 (𝜑𝐺 ∈ Grp)
47 grpmnd 18863 . . . . . . . . . 10 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
4835, 45, 473syl 18 . . . . . . . . 9 (𝜑𝐺 ∈ Mnd)
49 eqid 2733 . . . . . . . . . . . 12 (Base‘𝐺) = (Base‘𝐺)
5034, 33, 49symgtrf 19391 . . . . . . . . . . 11 𝑇 ⊆ (Base‘𝐺)
51 sswrd 14439 . . . . . . . . . . 11 (𝑇 ⊆ (Base‘𝐺) → Word 𝑇 ⊆ Word (Base‘𝐺))
5250, 51ax-mp 5 . . . . . . . . . 10 Word 𝑇 ⊆ Word (Base‘𝐺)
5352, 1sselid 3929 . . . . . . . . 9 (𝜑𝑊 ∈ Word (Base‘𝐺))
5449gsumwcl 18757 . . . . . . . . 9 ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word (Base‘𝐺)) → (𝐺 Σg 𝑊) ∈ (Base‘𝐺))
5548, 53, 54syl2anc 584 . . . . . . . 8 (𝜑 → (𝐺 Σg 𝑊) ∈ (Base‘𝐺))
56 eqid 2733 . . . . . . . . 9 (+g𝐺) = (+g𝐺)
57 eqid 2733 . . . . . . . . 9 (0g𝐺) = (0g𝐺)
5849, 56, 57, 40grprinv 18913 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝐺 Σg 𝑊) ∈ (Base‘𝐺)) → ((𝐺 Σg 𝑊)(+g𝐺)((invg𝐺)‘(𝐺 Σg 𝑊))) = (0g𝐺))
5946, 55, 58syl2anc 584 . . . . . . 7 (𝜑 → ((𝐺 Σg 𝑊)(+g𝐺)((invg𝐺)‘(𝐺 Σg 𝑊))) = (0g𝐺))
6044, 59eqtrd 2768 . . . . . 6 (𝜑 → ((𝐺 Σg 𝑊)(+g𝐺)(𝐺 Σg (reverse‘𝑋))) = (0g𝐺))
6152, 25sselid 3929 . . . . . . 7 (𝜑 → (reverse‘𝑋) ∈ Word (Base‘𝐺))
6249, 56gsumccat 18759 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word (Base‘𝐺) ∧ (reverse‘𝑋) ∈ Word (Base‘𝐺)) → (𝐺 Σg (𝑊 ++ (reverse‘𝑋))) = ((𝐺 Σg 𝑊)(+g𝐺)(𝐺 Σg (reverse‘𝑋))))
6348, 53, 61, 62syl3anc 1373 . . . . . 6 (𝜑 → (𝐺 Σg (𝑊 ++ (reverse‘𝑋))) = ((𝐺 Σg 𝑊)(+g𝐺)(𝐺 Σg (reverse‘𝑋))))
6433symgid 19323 . . . . . . 7 (𝐷𝑉 → ( I ↾ 𝐷) = (0g𝐺))
6535, 64syl 17 . . . . . 6 (𝜑 → ( I ↾ 𝐷) = (0g𝐺))
6660, 63, 653eqtr4d 2778 . . . . 5 (𝜑 → (𝐺 Σg (𝑊 ++ (reverse‘𝑋))) = ( I ↾ 𝐷))
6733, 34, 35, 37, 66psgnunilem4 19419 . . . 4 (𝜑 → (-1↑(♯‘(𝑊 ++ (reverse‘𝑋)))) = 1)
6832, 67eqtrd 2768 . . 3 (𝜑 → (-1↑((♯‘𝑊) + (♯‘𝑋))) = 1)
6920, 23, 683eqtr3d 2776 . 2 (𝜑 → ((-1↑(♯‘𝑊)) / (-1↑(♯‘𝑋))) = 1)
707, 14, 18, 69diveq1d 11915 1 (𝜑 → (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wne 2930  wss 3899   I cid 5515  ran crn 5622  cres 5623  cfv 6489  (class class class)co 7355  cc 11014  0cc0 11016  1c1 11017   + caddc 11019  cmin 11354  -cneg 11355   / cdiv 11784  0cn0 12391  cz 12478  cexp 13978  chash 14247  Word cword 14430   ++ cconcat 14487  reversecreverse 14675  Basecbs 17130  +gcplusg 17171  0gc0g 17353   Σg cgsu 17354  Mndcmnd 18652  Grpcgrp 18856  invgcminusg 18857  SymGrpcsymg 19291  pmTrspcpmtr 19363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1513  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-ot 4586  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-tpos 8165  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-er 8631  df-map 8761  df-en 8879  df-dom 8880  df-sdom 8881  df-fin 8882  df-card 9842  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-div 11785  df-nn 12136  df-2 12198  df-3 12199  df-4 12200  df-5 12201  df-6 12202  df-7 12203  df-8 12204  df-9 12205  df-n0 12392  df-xnn0 12465  df-z 12479  df-uz 12743  df-rp 12901  df-fz 13418  df-fzo 13565  df-seq 13919  df-exp 13979  df-hash 14248  df-word 14431  df-lsw 14480  df-concat 14488  df-s1 14514  df-substr 14559  df-pfx 14589  df-splice 14667  df-reverse 14676  df-s2 14765  df-struct 17068  df-sets 17085  df-slot 17103  df-ndx 17115  df-base 17131  df-ress 17152  df-plusg 17184  df-tset 17190  df-0g 17355  df-gsum 17356  df-mgm 18558  df-sgrp 18637  df-mnd 18653  df-mhm 18701  df-submnd 18702  df-efmnd 18787  df-grp 18859  df-minusg 18860  df-subg 19046  df-ghm 19135  df-gim 19181  df-oppg 19268  df-symg 19292  df-pmtr 19364
This theorem is referenced by:  psgneu  19428  psgndiflemA  21548
  Copyright terms: Public domain W3C validator