MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgnuni Structured version   Visualization version   GIF version

Theorem psgnuni 18619
Description: If the same permutation can be written in more than one way as a product of transpositions, the parity of those products must agree; otherwise the product of one with the inverse of the other would be an odd representation of the identity. (Contributed by Stefan O'Rear, 27-Aug-2015.)
Hypotheses
Ref Expression
psgnuni.g 𝐺 = (SymGrp‘𝐷)
psgnuni.t 𝑇 = ran (pmTrsp‘𝐷)
psgnuni.d (𝜑𝐷𝑉)
psgnuni.w (𝜑𝑊 ∈ Word 𝑇)
psgnuni.x (𝜑𝑋 ∈ Word 𝑇)
psgnuni.e (𝜑 → (𝐺 Σg 𝑊) = (𝐺 Σg 𝑋))
Assertion
Ref Expression
psgnuni (𝜑 → (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑋)))

Proof of Theorem psgnuni
StepHypRef Expression
1 psgnuni.w . . . . . 6 (𝜑𝑊 ∈ Word 𝑇)
2 lencl 13876 . . . . . 6 (𝑊 ∈ Word 𝑇 → (♯‘𝑊) ∈ ℕ0)
31, 2syl 17 . . . . 5 (𝜑 → (♯‘𝑊) ∈ ℕ0)
43nn0zd 12073 . . . 4 (𝜑 → (♯‘𝑊) ∈ ℤ)
5 m1expcl 13448 . . . 4 ((♯‘𝑊) ∈ ℤ → (-1↑(♯‘𝑊)) ∈ ℤ)
64, 5syl 17 . . 3 (𝜑 → (-1↑(♯‘𝑊)) ∈ ℤ)
76zcnd 12076 . 2 (𝜑 → (-1↑(♯‘𝑊)) ∈ ℂ)
8 psgnuni.x . . . . . 6 (𝜑𝑋 ∈ Word 𝑇)
9 lencl 13876 . . . . . 6 (𝑋 ∈ Word 𝑇 → (♯‘𝑋) ∈ ℕ0)
108, 9syl 17 . . . . 5 (𝜑 → (♯‘𝑋) ∈ ℕ0)
1110nn0zd 12073 . . . 4 (𝜑 → (♯‘𝑋) ∈ ℤ)
12 m1expcl 13448 . . . 4 ((♯‘𝑋) ∈ ℤ → (-1↑(♯‘𝑋)) ∈ ℤ)
1311, 12syl 17 . . 3 (𝜑 → (-1↑(♯‘𝑋)) ∈ ℤ)
1413zcnd 12076 . 2 (𝜑 → (-1↑(♯‘𝑋)) ∈ ℂ)
15 neg1cn 11739 . . 3 -1 ∈ ℂ
16 neg1ne0 11741 . . 3 -1 ≠ 0
17 expne0i 13457 . . 3 ((-1 ∈ ℂ ∧ -1 ≠ 0 ∧ (♯‘𝑋) ∈ ℤ) → (-1↑(♯‘𝑋)) ≠ 0)
1815, 16, 11, 17mp3an12i 1462 . 2 (𝜑 → (-1↑(♯‘𝑋)) ≠ 0)
19 m1expaddsub 18618 . . . 4 (((♯‘𝑊) ∈ ℤ ∧ (♯‘𝑋) ∈ ℤ) → (-1↑((♯‘𝑊) − (♯‘𝑋))) = (-1↑((♯‘𝑊) + (♯‘𝑋))))
204, 11, 19syl2anc 587 . . 3 (𝜑 → (-1↑((♯‘𝑊) − (♯‘𝑋))) = (-1↑((♯‘𝑊) + (♯‘𝑋))))
21 expsub 13473 . . . . 5 (((-1 ∈ ℂ ∧ -1 ≠ 0) ∧ ((♯‘𝑊) ∈ ℤ ∧ (♯‘𝑋) ∈ ℤ)) → (-1↑((♯‘𝑊) − (♯‘𝑋))) = ((-1↑(♯‘𝑊)) / (-1↑(♯‘𝑋))))
2215, 16, 21mpanl12 701 . . . 4 (((♯‘𝑊) ∈ ℤ ∧ (♯‘𝑋) ∈ ℤ) → (-1↑((♯‘𝑊) − (♯‘𝑋))) = ((-1↑(♯‘𝑊)) / (-1↑(♯‘𝑋))))
234, 11, 22syl2anc 587 . . 3 (𝜑 → (-1↑((♯‘𝑊) − (♯‘𝑋))) = ((-1↑(♯‘𝑊)) / (-1↑(♯‘𝑋))))
24 revcl 14114 . . . . . . . 8 (𝑋 ∈ Word 𝑇 → (reverse‘𝑋) ∈ Word 𝑇)
258, 24syl 17 . . . . . . 7 (𝜑 → (reverse‘𝑋) ∈ Word 𝑇)
26 ccatlen 13918 . . . . . . 7 ((𝑊 ∈ Word 𝑇 ∧ (reverse‘𝑋) ∈ Word 𝑇) → (♯‘(𝑊 ++ (reverse‘𝑋))) = ((♯‘𝑊) + (♯‘(reverse‘𝑋))))
271, 25, 26syl2anc 587 . . . . . 6 (𝜑 → (♯‘(𝑊 ++ (reverse‘𝑋))) = ((♯‘𝑊) + (♯‘(reverse‘𝑋))))
28 revlen 14115 . . . . . . . 8 (𝑋 ∈ Word 𝑇 → (♯‘(reverse‘𝑋)) = (♯‘𝑋))
298, 28syl 17 . . . . . . 7 (𝜑 → (♯‘(reverse‘𝑋)) = (♯‘𝑋))
3029oveq2d 7151 . . . . . 6 (𝜑 → ((♯‘𝑊) + (♯‘(reverse‘𝑋))) = ((♯‘𝑊) + (♯‘𝑋)))
3127, 30eqtr2d 2834 . . . . 5 (𝜑 → ((♯‘𝑊) + (♯‘𝑋)) = (♯‘(𝑊 ++ (reverse‘𝑋))))
3231oveq2d 7151 . . . 4 (𝜑 → (-1↑((♯‘𝑊) + (♯‘𝑋))) = (-1↑(♯‘(𝑊 ++ (reverse‘𝑋)))))
33 psgnuni.g . . . . 5 𝐺 = (SymGrp‘𝐷)
34 psgnuni.t . . . . 5 𝑇 = ran (pmTrsp‘𝐷)
35 psgnuni.d . . . . 5 (𝜑𝐷𝑉)
36 ccatcl 13917 . . . . . 6 ((𝑊 ∈ Word 𝑇 ∧ (reverse‘𝑋) ∈ Word 𝑇) → (𝑊 ++ (reverse‘𝑋)) ∈ Word 𝑇)
371, 25, 36syl2anc 587 . . . . 5 (𝜑 → (𝑊 ++ (reverse‘𝑋)) ∈ Word 𝑇)
38 psgnuni.e . . . . . . . . . 10 (𝜑 → (𝐺 Σg 𝑊) = (𝐺 Σg 𝑋))
3938fveq2d 6649 . . . . . . . . 9 (𝜑 → ((invg𝐺)‘(𝐺 Σg 𝑊)) = ((invg𝐺)‘(𝐺 Σg 𝑋)))
40 eqid 2798 . . . . . . . . . . 11 (invg𝐺) = (invg𝐺)
4134, 33, 40symgtrinv 18592 . . . . . . . . . 10 ((𝐷𝑉𝑋 ∈ Word 𝑇) → ((invg𝐺)‘(𝐺 Σg 𝑋)) = (𝐺 Σg (reverse‘𝑋)))
4235, 8, 41syl2anc 587 . . . . . . . . 9 (𝜑 → ((invg𝐺)‘(𝐺 Σg 𝑋)) = (𝐺 Σg (reverse‘𝑋)))
4339, 42eqtr2d 2834 . . . . . . . 8 (𝜑 → (𝐺 Σg (reverse‘𝑋)) = ((invg𝐺)‘(𝐺 Σg 𝑊)))
4443oveq2d 7151 . . . . . . 7 (𝜑 → ((𝐺 Σg 𝑊)(+g𝐺)(𝐺 Σg (reverse‘𝑋))) = ((𝐺 Σg 𝑊)(+g𝐺)((invg𝐺)‘(𝐺 Σg 𝑊))))
4533symggrp 18520 . . . . . . . . 9 (𝐷𝑉𝐺 ∈ Grp)
4635, 45syl 17 . . . . . . . 8 (𝜑𝐺 ∈ Grp)
47 grpmnd 18102 . . . . . . . . . 10 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
4835, 45, 473syl 18 . . . . . . . . 9 (𝜑𝐺 ∈ Mnd)
49 eqid 2798 . . . . . . . . . . . 12 (Base‘𝐺) = (Base‘𝐺)
5034, 33, 49symgtrf 18589 . . . . . . . . . . 11 𝑇 ⊆ (Base‘𝐺)
51 sswrd 13865 . . . . . . . . . . 11 (𝑇 ⊆ (Base‘𝐺) → Word 𝑇 ⊆ Word (Base‘𝐺))
5250, 51ax-mp 5 . . . . . . . . . 10 Word 𝑇 ⊆ Word (Base‘𝐺)
5352, 1sseldi 3913 . . . . . . . . 9 (𝜑𝑊 ∈ Word (Base‘𝐺))
5449gsumwcl 17995 . . . . . . . . 9 ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word (Base‘𝐺)) → (𝐺 Σg 𝑊) ∈ (Base‘𝐺))
5548, 53, 54syl2anc 587 . . . . . . . 8 (𝜑 → (𝐺 Σg 𝑊) ∈ (Base‘𝐺))
56 eqid 2798 . . . . . . . . 9 (+g𝐺) = (+g𝐺)
57 eqid 2798 . . . . . . . . 9 (0g𝐺) = (0g𝐺)
5849, 56, 57, 40grprinv 18145 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝐺 Σg 𝑊) ∈ (Base‘𝐺)) → ((𝐺 Σg 𝑊)(+g𝐺)((invg𝐺)‘(𝐺 Σg 𝑊))) = (0g𝐺))
5946, 55, 58syl2anc 587 . . . . . . 7 (𝜑 → ((𝐺 Σg 𝑊)(+g𝐺)((invg𝐺)‘(𝐺 Σg 𝑊))) = (0g𝐺))
6044, 59eqtrd 2833 . . . . . 6 (𝜑 → ((𝐺 Σg 𝑊)(+g𝐺)(𝐺 Σg (reverse‘𝑋))) = (0g𝐺))
6152, 25sseldi 3913 . . . . . . 7 (𝜑 → (reverse‘𝑋) ∈ Word (Base‘𝐺))
6249, 56gsumccat 17998 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝑊 ∈ Word (Base‘𝐺) ∧ (reverse‘𝑋) ∈ Word (Base‘𝐺)) → (𝐺 Σg (𝑊 ++ (reverse‘𝑋))) = ((𝐺 Σg 𝑊)(+g𝐺)(𝐺 Σg (reverse‘𝑋))))
6348, 53, 61, 62syl3anc 1368 . . . . . 6 (𝜑 → (𝐺 Σg (𝑊 ++ (reverse‘𝑋))) = ((𝐺 Σg 𝑊)(+g𝐺)(𝐺 Σg (reverse‘𝑋))))
6433symgid 18521 . . . . . . 7 (𝐷𝑉 → ( I ↾ 𝐷) = (0g𝐺))
6535, 64syl 17 . . . . . 6 (𝜑 → ( I ↾ 𝐷) = (0g𝐺))
6660, 63, 653eqtr4d 2843 . . . . 5 (𝜑 → (𝐺 Σg (𝑊 ++ (reverse‘𝑋))) = ( I ↾ 𝐷))
6733, 34, 35, 37, 66psgnunilem4 18617 . . . 4 (𝜑 → (-1↑(♯‘(𝑊 ++ (reverse‘𝑋)))) = 1)
6832, 67eqtrd 2833 . . 3 (𝜑 → (-1↑((♯‘𝑊) + (♯‘𝑋))) = 1)
6920, 23, 683eqtr3d 2841 . 2 (𝜑 → ((-1↑(♯‘𝑊)) / (-1↑(♯‘𝑋))) = 1)
707, 14, 18, 69diveq1d 11413 1 (𝜑 → (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wne 2987  wss 3881   I cid 5424  ran crn 5520  cres 5521  cfv 6324  (class class class)co 7135  cc 10524  0cc0 10526  1c1 10527   + caddc 10529  cmin 10859  -cneg 10860   / cdiv 11286  0cn0 11885  cz 11969  cexp 13425  chash 13686  Word cword 13857   ++ cconcat 13913  reversecreverse 14111  Basecbs 16475  +gcplusg 16557  0gc0g 16705   Σg cgsu 16706  Mndcmnd 17903  Grpcgrp 18095  invgcminusg 18096  SymGrpcsymg 18487  pmTrspcpmtr 18561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-xor 1503  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-ot 4534  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-word 13858  df-lsw 13906  df-concat 13914  df-s1 13941  df-substr 13994  df-pfx 14024  df-splice 14103  df-reverse 14112  df-s2 14201  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-tset 16576  df-0g 16707  df-gsum 16708  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-submnd 17949  df-efmnd 18026  df-grp 18098  df-minusg 18099  df-subg 18268  df-ghm 18348  df-gim 18391  df-oppg 18466  df-symg 18488  df-pmtr 18562
This theorem is referenced by:  psgneu  18626  psgndiflemA  20290
  Copyright terms: Public domain W3C validator