MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubg3 Structured version   Visualization version   GIF version

Theorem issubg3 18408
Description: A subgroup is a symmetric submonoid. (Contributed by Mario Carneiro, 7-Mar-2015.)
Hypothesis
Ref Expression
issubg3.i 𝐼 = (invg𝐺)
Assertion
Ref Expression
issubg3 (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆 ∈ (SubMnd‘𝐺) ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆)))
Distinct variable groups:   𝑥,𝐺   𝑥,𝐼   𝑥,𝑆

Proof of Theorem issubg3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . 4 (0g𝐺) = (0g𝐺)
21subg0cl 18398 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝑆)
32a1i 11 . 2 (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝑆))
41subm0cl 18085 . . . 4 (𝑆 ∈ (SubMnd‘𝐺) → (0g𝐺) ∈ 𝑆)
54adantr 484 . . 3 ((𝑆 ∈ (SubMnd‘𝐺) ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆) → (0g𝐺) ∈ 𝑆)
65a1i 11 . 2 (𝐺 ∈ Grp → ((𝑆 ∈ (SubMnd‘𝐺) ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆) → (0g𝐺) ∈ 𝑆))
7 ne0i 4221 . . . . . . . 8 ((0g𝐺) ∈ 𝑆𝑆 ≠ ∅)
8 id 22 . . . . . . . 8 ((0g𝐺) ∈ 𝑆 → (0g𝐺) ∈ 𝑆)
97, 82thd 268 . . . . . . 7 ((0g𝐺) ∈ 𝑆 → (𝑆 ≠ ∅ ↔ (0g𝐺) ∈ 𝑆))
109adantl 485 . . . . . 6 ((𝐺 ∈ Grp ∧ (0g𝐺) ∈ 𝑆) → (𝑆 ≠ ∅ ↔ (0g𝐺) ∈ 𝑆))
11 r19.26 3084 . . . . . . 7 (∀𝑥𝑆 (∀𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆) ↔ (∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆))
1211a1i 11 . . . . . 6 ((𝐺 ∈ Grp ∧ (0g𝐺) ∈ 𝑆) → (∀𝑥𝑆 (∀𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆) ↔ (∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆)))
1310, 123anbi23d 1440 . . . . 5 ((𝐺 ∈ Grp ∧ (0g𝐺) ∈ 𝑆) → ((𝑆 ⊆ (Base‘𝐺) ∧ 𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆)) ↔ (𝑆 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑆 ∧ (∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆))))
14 anass 472 . . . . . 6 ((((𝑆 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆) ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆) ↔ ((𝑆 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑆) ∧ (∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆)))
15 df-3an 1090 . . . . . . 7 ((𝑆 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆) ↔ ((𝑆 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆))
1615anbi1i 627 . . . . . 6 (((𝑆 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆) ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆) ↔ (((𝑆 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆) ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆))
17 df-3an 1090 . . . . . 6 ((𝑆 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑆 ∧ (∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆)) ↔ ((𝑆 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑆) ∧ (∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆)))
1814, 16, 173bitr4ri 307 . . . . 5 ((𝑆 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑆 ∧ (∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆)) ↔ ((𝑆 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆) ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆))
1913, 18bitrdi 290 . . . 4 ((𝐺 ∈ Grp ∧ (0g𝐺) ∈ 𝑆) → ((𝑆 ⊆ (Base‘𝐺) ∧ 𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆)) ↔ ((𝑆 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆) ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆)))
20 eqid 2738 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
21 eqid 2738 . . . . . 6 (+g𝐺) = (+g𝐺)
22 issubg3.i . . . . . 6 𝐼 = (invg𝐺)
2320, 21, 22issubg2 18405 . . . . 5 (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆 ⊆ (Base‘𝐺) ∧ 𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))))
2423adantr 484 . . . 4 ((𝐺 ∈ Grp ∧ (0g𝐺) ∈ 𝑆) → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆 ⊆ (Base‘𝐺) ∧ 𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))))
25 grpmnd 18219 . . . . . . 7 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
2620, 1, 21issubm 18077 . . . . . . 7 (𝐺 ∈ Mnd → (𝑆 ∈ (SubMnd‘𝐺) ↔ (𝑆 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆)))
2725, 26syl 17 . . . . . 6 (𝐺 ∈ Grp → (𝑆 ∈ (SubMnd‘𝐺) ↔ (𝑆 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆)))
2827anbi1d 633 . . . . 5 (𝐺 ∈ Grp → ((𝑆 ∈ (SubMnd‘𝐺) ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆) ↔ ((𝑆 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆) ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆)))
2928adantr 484 . . . 4 ((𝐺 ∈ Grp ∧ (0g𝐺) ∈ 𝑆) → ((𝑆 ∈ (SubMnd‘𝐺) ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆) ↔ ((𝑆 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆) ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆)))
3019, 24, 293bitr4d 314 . . 3 ((𝐺 ∈ Grp ∧ (0g𝐺) ∈ 𝑆) → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆 ∈ (SubMnd‘𝐺) ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆)))
3130ex 416 . 2 (𝐺 ∈ Grp → ((0g𝐺) ∈ 𝑆 → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆 ∈ (SubMnd‘𝐺) ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆))))
323, 6, 31pm5.21ndd 384 1 (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆 ∈ (SubMnd‘𝐺) ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wcel 2113  wne 2934  wral 3053  wss 3841  c0 4209  cfv 6333  (class class class)co 7164  Basecbs 16579  +gcplusg 16661  0gc0g 16809  Mndcmnd 18020  SubMndcsubmnd 18064  Grpcgrp 18212  invgcminusg 18213  SubGrpcsubg 18384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473  ax-cnex 10664  ax-resscn 10665  ax-1cn 10666  ax-icn 10667  ax-addcl 10668  ax-addrcl 10669  ax-mulcl 10670  ax-mulrcl 10671  ax-mulcom 10672  ax-addass 10673  ax-mulass 10674  ax-distr 10675  ax-i2m1 10676  ax-1ne0 10677  ax-1rid 10678  ax-rnegex 10679  ax-rrecex 10680  ax-cnre 10681  ax-pre-lttri 10682  ax-pre-lttrn 10683  ax-pre-ltadd 10684  ax-pre-mulgt0 10685
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-pss 3860  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-tp 4518  df-op 4520  df-uni 4794  df-iun 4880  df-br 5028  df-opab 5090  df-mpt 5108  df-tr 5134  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-riota 7121  df-ov 7167  df-oprab 7168  df-mpo 7169  df-om 7594  df-wrecs 7969  df-recs 8030  df-rdg 8068  df-er 8313  df-en 8549  df-dom 8550  df-sdom 8551  df-pnf 10748  df-mnf 10749  df-xr 10750  df-ltxr 10751  df-le 10752  df-sub 10943  df-neg 10944  df-nn 11710  df-2 11772  df-ndx 16582  df-slot 16583  df-base 16585  df-sets 16586  df-ress 16587  df-plusg 16674  df-0g 16811  df-mgm 17961  df-sgrp 18010  df-mnd 18021  df-submnd 18066  df-grp 18215  df-minusg 18216  df-subg 18387
This theorem is referenced by:  subgsubm  18412  subgacs  18424  ghmeql  18492  cntzsubg  18578  oppgsubg  18602  lsmsubg  18890
  Copyright terms: Public domain W3C validator