MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubg3 Structured version   Visualization version   GIF version

Theorem issubg3 18297
Description: A subgroup is a symmetric submonoid. (Contributed by Mario Carneiro, 7-Mar-2015.)
Hypothesis
Ref Expression
issubg3.i 𝐼 = (invg𝐺)
Assertion
Ref Expression
issubg3 (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆 ∈ (SubMnd‘𝐺) ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆)))
Distinct variable groups:   𝑥,𝐺   𝑥,𝐼   𝑥,𝑆

Proof of Theorem issubg3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2821 . . . 4 (0g𝐺) = (0g𝐺)
21subg0cl 18287 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝑆)
32a1i 11 . 2 (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝑆))
41subm0cl 17976 . . . 4 (𝑆 ∈ (SubMnd‘𝐺) → (0g𝐺) ∈ 𝑆)
54adantr 483 . . 3 ((𝑆 ∈ (SubMnd‘𝐺) ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆) → (0g𝐺) ∈ 𝑆)
65a1i 11 . 2 (𝐺 ∈ Grp → ((𝑆 ∈ (SubMnd‘𝐺) ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆) → (0g𝐺) ∈ 𝑆))
7 ne0i 4300 . . . . . . . 8 ((0g𝐺) ∈ 𝑆𝑆 ≠ ∅)
8 id 22 . . . . . . . 8 ((0g𝐺) ∈ 𝑆 → (0g𝐺) ∈ 𝑆)
97, 82thd 267 . . . . . . 7 ((0g𝐺) ∈ 𝑆 → (𝑆 ≠ ∅ ↔ (0g𝐺) ∈ 𝑆))
109adantl 484 . . . . . 6 ((𝐺 ∈ Grp ∧ (0g𝐺) ∈ 𝑆) → (𝑆 ≠ ∅ ↔ (0g𝐺) ∈ 𝑆))
11 r19.26 3170 . . . . . . 7 (∀𝑥𝑆 (∀𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆) ↔ (∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆))
1211a1i 11 . . . . . 6 ((𝐺 ∈ Grp ∧ (0g𝐺) ∈ 𝑆) → (∀𝑥𝑆 (∀𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆) ↔ (∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆)))
1310, 123anbi23d 1435 . . . . 5 ((𝐺 ∈ Grp ∧ (0g𝐺) ∈ 𝑆) → ((𝑆 ⊆ (Base‘𝐺) ∧ 𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆)) ↔ (𝑆 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑆 ∧ (∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆))))
14 anass 471 . . . . . 6 ((((𝑆 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆) ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆) ↔ ((𝑆 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑆) ∧ (∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆)))
15 df-3an 1085 . . . . . . 7 ((𝑆 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆) ↔ ((𝑆 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆))
1615anbi1i 625 . . . . . 6 (((𝑆 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆) ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆) ↔ (((𝑆 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆) ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆))
17 df-3an 1085 . . . . . 6 ((𝑆 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑆 ∧ (∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆)) ↔ ((𝑆 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑆) ∧ (∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆)))
1814, 16, 173bitr4ri 306 . . . . 5 ((𝑆 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑆 ∧ (∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆)) ↔ ((𝑆 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆) ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆))
1913, 18syl6bb 289 . . . 4 ((𝐺 ∈ Grp ∧ (0g𝐺) ∈ 𝑆) → ((𝑆 ⊆ (Base‘𝐺) ∧ 𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆)) ↔ ((𝑆 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆) ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆)))
20 eqid 2821 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
21 eqid 2821 . . . . . 6 (+g𝐺) = (+g𝐺)
22 issubg3.i . . . . . 6 𝐼 = (invg𝐺)
2320, 21, 22issubg2 18294 . . . . 5 (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆 ⊆ (Base‘𝐺) ∧ 𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))))
2423adantr 483 . . . 4 ((𝐺 ∈ Grp ∧ (0g𝐺) ∈ 𝑆) → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆 ⊆ (Base‘𝐺) ∧ 𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))))
25 grpmnd 18110 . . . . . . 7 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
2620, 1, 21issubm 17968 . . . . . . 7 (𝐺 ∈ Mnd → (𝑆 ∈ (SubMnd‘𝐺) ↔ (𝑆 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆)))
2725, 26syl 17 . . . . . 6 (𝐺 ∈ Grp → (𝑆 ∈ (SubMnd‘𝐺) ↔ (𝑆 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆)))
2827anbi1d 631 . . . . 5 (𝐺 ∈ Grp → ((𝑆 ∈ (SubMnd‘𝐺) ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆) ↔ ((𝑆 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆) ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆)))
2928adantr 483 . . . 4 ((𝐺 ∈ Grp ∧ (0g𝐺) ∈ 𝑆) → ((𝑆 ∈ (SubMnd‘𝐺) ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆) ↔ ((𝑆 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆) ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆)))
3019, 24, 293bitr4d 313 . . 3 ((𝐺 ∈ Grp ∧ (0g𝐺) ∈ 𝑆) → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆 ∈ (SubMnd‘𝐺) ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆)))
3130ex 415 . 2 (𝐺 ∈ Grp → ((0g𝐺) ∈ 𝑆 → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆 ∈ (SubMnd‘𝐺) ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆))))
323, 6, 31pm5.21ndd 383 1 (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆 ∈ (SubMnd‘𝐺) ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3016  wral 3138  wss 3936  c0 4291  cfv 6355  (class class class)co 7156  Basecbs 16483  +gcplusg 16565  0gc0g 16713  Mndcmnd 17911  SubMndcsubmnd 17955  Grpcgrp 18103  invgcminusg 18104  SubGrpcsubg 18273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-0g 16715  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-grp 18106  df-minusg 18107  df-subg 18276
This theorem is referenced by:  subgsubm  18301  subgacs  18313  ghmeql  18381  cntzsubg  18467  oppgsubg  18491  lsmsubg  18779
  Copyright terms: Public domain W3C validator