MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubg3 Structured version   Visualization version   GIF version

Theorem issubg3 19083
Description: A subgroup is a symmetric submonoid. (Contributed by Mario Carneiro, 7-Mar-2015.)
Hypothesis
Ref Expression
issubg3.i 𝐼 = (invg𝐺)
Assertion
Ref Expression
issubg3 (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆 ∈ (SubMnd‘𝐺) ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆)))
Distinct variable groups:   𝑥,𝐺   𝑥,𝐼   𝑥,𝑆

Proof of Theorem issubg3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . . 4 (0g𝐺) = (0g𝐺)
21subg0cl 19073 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝑆)
32a1i 11 . 2 (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝑆))
41subm0cl 18745 . . . 4 (𝑆 ∈ (SubMnd‘𝐺) → (0g𝐺) ∈ 𝑆)
54adantr 480 . . 3 ((𝑆 ∈ (SubMnd‘𝐺) ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆) → (0g𝐺) ∈ 𝑆)
65a1i 11 . 2 (𝐺 ∈ Grp → ((𝑆 ∈ (SubMnd‘𝐺) ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆) → (0g𝐺) ∈ 𝑆))
7 ne0i 4307 . . . . . . . 8 ((0g𝐺) ∈ 𝑆𝑆 ≠ ∅)
8 id 22 . . . . . . . 8 ((0g𝐺) ∈ 𝑆 → (0g𝐺) ∈ 𝑆)
97, 82thd 265 . . . . . . 7 ((0g𝐺) ∈ 𝑆 → (𝑆 ≠ ∅ ↔ (0g𝐺) ∈ 𝑆))
109adantl 481 . . . . . 6 ((𝐺 ∈ Grp ∧ (0g𝐺) ∈ 𝑆) → (𝑆 ≠ ∅ ↔ (0g𝐺) ∈ 𝑆))
11 r19.26 3092 . . . . . . 7 (∀𝑥𝑆 (∀𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆) ↔ (∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆))
1211a1i 11 . . . . . 6 ((𝐺 ∈ Grp ∧ (0g𝐺) ∈ 𝑆) → (∀𝑥𝑆 (∀𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆) ↔ (∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆)))
1310, 123anbi23d 1441 . . . . 5 ((𝐺 ∈ Grp ∧ (0g𝐺) ∈ 𝑆) → ((𝑆 ⊆ (Base‘𝐺) ∧ 𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆)) ↔ (𝑆 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑆 ∧ (∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆))))
14 anass 468 . . . . . 6 ((((𝑆 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆) ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆) ↔ ((𝑆 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑆) ∧ (∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆)))
15 df-3an 1088 . . . . . . 7 ((𝑆 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆) ↔ ((𝑆 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆))
1615anbi1i 624 . . . . . 6 (((𝑆 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆) ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆) ↔ (((𝑆 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆) ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆))
17 df-3an 1088 . . . . . 6 ((𝑆 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑆 ∧ (∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆)) ↔ ((𝑆 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑆) ∧ (∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆)))
1814, 16, 173bitr4ri 304 . . . . 5 ((𝑆 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑆 ∧ (∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆)) ↔ ((𝑆 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆) ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆))
1913, 18bitrdi 287 . . . 4 ((𝐺 ∈ Grp ∧ (0g𝐺) ∈ 𝑆) → ((𝑆 ⊆ (Base‘𝐺) ∧ 𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆)) ↔ ((𝑆 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆) ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆)))
20 eqid 2730 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
21 eqid 2730 . . . . . 6 (+g𝐺) = (+g𝐺)
22 issubg3.i . . . . . 6 𝐼 = (invg𝐺)
2320, 21, 22issubg2 19080 . . . . 5 (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆 ⊆ (Base‘𝐺) ∧ 𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))))
2423adantr 480 . . . 4 ((𝐺 ∈ Grp ∧ (0g𝐺) ∈ 𝑆) → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆 ⊆ (Base‘𝐺) ∧ 𝑆 ≠ ∅ ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))))
25 grpmnd 18879 . . . . . . 7 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
2620, 1, 21issubm 18737 . . . . . . 7 (𝐺 ∈ Mnd → (𝑆 ∈ (SubMnd‘𝐺) ↔ (𝑆 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆)))
2725, 26syl 17 . . . . . 6 (𝐺 ∈ Grp → (𝑆 ∈ (SubMnd‘𝐺) ↔ (𝑆 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆)))
2827anbi1d 631 . . . . 5 (𝐺 ∈ Grp → ((𝑆 ∈ (SubMnd‘𝐺) ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆) ↔ ((𝑆 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆) ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆)))
2928adantr 480 . . . 4 ((𝐺 ∈ Grp ∧ (0g𝐺) ∈ 𝑆) → ((𝑆 ∈ (SubMnd‘𝐺) ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆) ↔ ((𝑆 ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐺)𝑦) ∈ 𝑆) ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆)))
3019, 24, 293bitr4d 311 . . 3 ((𝐺 ∈ Grp ∧ (0g𝐺) ∈ 𝑆) → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆 ∈ (SubMnd‘𝐺) ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆)))
3130ex 412 . 2 (𝐺 ∈ Grp → ((0g𝐺) ∈ 𝑆 → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆 ∈ (SubMnd‘𝐺) ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆))))
323, 6, 31pm5.21ndd 379 1 (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆 ∈ (SubMnd‘𝐺) ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wss 3917  c0 4299  cfv 6514  (class class class)co 7390  Basecbs 17186  +gcplusg 17227  0gc0g 17409  Mndcmnd 18668  SubMndcsubmnd 18716  Grpcgrp 18872  invgcminusg 18873  SubGrpcsubg 19059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-grp 18875  df-minusg 18876  df-subg 19062
This theorem is referenced by:  subgsubm  19087  0subg  19090  subgacs  19100  ghmeql  19178  cntzsubg  19278  oppgsubg  19302  finodsubmsubg  19504  lsmsubg  19591
  Copyright terms: Public domain W3C validator