MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgneg2 Structured version   Visualization version   GIF version

Theorem mulgneg2 19021
Description: Group multiple (exponentiation) operation at a negative integer. (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
mulgneg2.b 𝐵 = (Base‘𝐺)
mulgneg2.m · = (.g𝐺)
mulgneg2.i 𝐼 = (invg𝐺)
Assertion
Ref Expression
mulgneg2 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) = (𝑁 · (𝐼𝑋)))

Proof of Theorem mulgneg2
Dummy variables 𝑥 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 negeq 11352 . . . . . . 7 (𝑥 = 0 → -𝑥 = -0)
2 neg0 11407 . . . . . . 7 -0 = 0
31, 2eqtrdi 2782 . . . . . 6 (𝑥 = 0 → -𝑥 = 0)
43oveq1d 7361 . . . . 5 (𝑥 = 0 → (-𝑥 · 𝑋) = (0 · 𝑋))
5 oveq1 7353 . . . . 5 (𝑥 = 0 → (𝑥 · (𝐼𝑋)) = (0 · (𝐼𝑋)))
64, 5eqeq12d 2747 . . . 4 (𝑥 = 0 → ((-𝑥 · 𝑋) = (𝑥 · (𝐼𝑋)) ↔ (0 · 𝑋) = (0 · (𝐼𝑋))))
7 negeq 11352 . . . . . 6 (𝑥 = 𝑛 → -𝑥 = -𝑛)
87oveq1d 7361 . . . . 5 (𝑥 = 𝑛 → (-𝑥 · 𝑋) = (-𝑛 · 𝑋))
9 oveq1 7353 . . . . 5 (𝑥 = 𝑛 → (𝑥 · (𝐼𝑋)) = (𝑛 · (𝐼𝑋)))
108, 9eqeq12d 2747 . . . 4 (𝑥 = 𝑛 → ((-𝑥 · 𝑋) = (𝑥 · (𝐼𝑋)) ↔ (-𝑛 · 𝑋) = (𝑛 · (𝐼𝑋))))
11 negeq 11352 . . . . . 6 (𝑥 = (𝑛 + 1) → -𝑥 = -(𝑛 + 1))
1211oveq1d 7361 . . . . 5 (𝑥 = (𝑛 + 1) → (-𝑥 · 𝑋) = (-(𝑛 + 1) · 𝑋))
13 oveq1 7353 . . . . 5 (𝑥 = (𝑛 + 1) → (𝑥 · (𝐼𝑋)) = ((𝑛 + 1) · (𝐼𝑋)))
1412, 13eqeq12d 2747 . . . 4 (𝑥 = (𝑛 + 1) → ((-𝑥 · 𝑋) = (𝑥 · (𝐼𝑋)) ↔ (-(𝑛 + 1) · 𝑋) = ((𝑛 + 1) · (𝐼𝑋))))
15 negeq 11352 . . . . . 6 (𝑥 = -𝑛 → -𝑥 = --𝑛)
1615oveq1d 7361 . . . . 5 (𝑥 = -𝑛 → (-𝑥 · 𝑋) = (--𝑛 · 𝑋))
17 oveq1 7353 . . . . 5 (𝑥 = -𝑛 → (𝑥 · (𝐼𝑋)) = (-𝑛 · (𝐼𝑋)))
1816, 17eqeq12d 2747 . . . 4 (𝑥 = -𝑛 → ((-𝑥 · 𝑋) = (𝑥 · (𝐼𝑋)) ↔ (--𝑛 · 𝑋) = (-𝑛 · (𝐼𝑋))))
19 negeq 11352 . . . . . 6 (𝑥 = 𝑁 → -𝑥 = -𝑁)
2019oveq1d 7361 . . . . 5 (𝑥 = 𝑁 → (-𝑥 · 𝑋) = (-𝑁 · 𝑋))
21 oveq1 7353 . . . . 5 (𝑥 = 𝑁 → (𝑥 · (𝐼𝑋)) = (𝑁 · (𝐼𝑋)))
2220, 21eqeq12d 2747 . . . 4 (𝑥 = 𝑁 → ((-𝑥 · 𝑋) = (𝑥 · (𝐼𝑋)) ↔ (-𝑁 · 𝑋) = (𝑁 · (𝐼𝑋))))
23 mulgneg2.b . . . . . . 7 𝐵 = (Base‘𝐺)
24 eqid 2731 . . . . . . 7 (0g𝐺) = (0g𝐺)
25 mulgneg2.m . . . . . . 7 · = (.g𝐺)
2623, 24, 25mulg0 18987 . . . . . 6 (𝑋𝐵 → (0 · 𝑋) = (0g𝐺))
2726adantl 481 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (0 · 𝑋) = (0g𝐺))
28 mulgneg2.i . . . . . . 7 𝐼 = (invg𝐺)
2923, 28grpinvcl 18900 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝐼𝑋) ∈ 𝐵)
3023, 24, 25mulg0 18987 . . . . . 6 ((𝐼𝑋) ∈ 𝐵 → (0 · (𝐼𝑋)) = (0g𝐺))
3129, 30syl 17 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (0 · (𝐼𝑋)) = (0g𝐺))
3227, 31eqtr4d 2769 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (0 · 𝑋) = (0 · (𝐼𝑋)))
33 oveq1 7353 . . . . . 6 ((-𝑛 · 𝑋) = (𝑛 · (𝐼𝑋)) → ((-𝑛 · 𝑋)(+g𝐺)(𝐼𝑋)) = ((𝑛 · (𝐼𝑋))(+g𝐺)(𝐼𝑋)))
34 nn0cn 12391 . . . . . . . . . . 11 (𝑛 ∈ ℕ0𝑛 ∈ ℂ)
3534adantl 481 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℂ)
36 ax-1cn 11064 . . . . . . . . . 10 1 ∈ ℂ
37 negdi 11418 . . . . . . . . . 10 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → -(𝑛 + 1) = (-𝑛 + -1))
3835, 36, 37sylancl 586 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ0) → -(𝑛 + 1) = (-𝑛 + -1))
3938oveq1d 7361 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ0) → (-(𝑛 + 1) · 𝑋) = ((-𝑛 + -1) · 𝑋))
40 simpll 766 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ0) → 𝐺 ∈ Grp)
41 nn0negz 12510 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → -𝑛 ∈ ℤ)
4241adantl 481 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ0) → -𝑛 ∈ ℤ)
43 1z 12502 . . . . . . . . . 10 1 ∈ ℤ
44 znegcl 12507 . . . . . . . . . 10 (1 ∈ ℤ → -1 ∈ ℤ)
4543, 44mp1i 13 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ0) → -1 ∈ ℤ)
46 simplr 768 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑋𝐵)
47 eqid 2731 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
4823, 25, 47mulgdir 19019 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (-𝑛 ∈ ℤ ∧ -1 ∈ ℤ ∧ 𝑋𝐵)) → ((-𝑛 + -1) · 𝑋) = ((-𝑛 · 𝑋)(+g𝐺)(-1 · 𝑋)))
4940, 42, 45, 46, 48syl13anc 1374 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ0) → ((-𝑛 + -1) · 𝑋) = ((-𝑛 · 𝑋)(+g𝐺)(-1 · 𝑋)))
5023, 25, 28mulgm1 19007 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (-1 · 𝑋) = (𝐼𝑋))
5150adantr 480 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ0) → (-1 · 𝑋) = (𝐼𝑋))
5251oveq2d 7362 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ0) → ((-𝑛 · 𝑋)(+g𝐺)(-1 · 𝑋)) = ((-𝑛 · 𝑋)(+g𝐺)(𝐼𝑋)))
5339, 49, 523eqtrd 2770 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ0) → (-(𝑛 + 1) · 𝑋) = ((-𝑛 · 𝑋)(+g𝐺)(𝐼𝑋)))
54 grpmnd 18853 . . . . . . . . 9 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
5554ad2antrr 726 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ0) → 𝐺 ∈ Mnd)
56 simpr 484 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
5729adantr 480 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ0) → (𝐼𝑋) ∈ 𝐵)
5823, 25, 47mulgnn0p1 18998 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ 𝑛 ∈ ℕ0 ∧ (𝐼𝑋) ∈ 𝐵) → ((𝑛 + 1) · (𝐼𝑋)) = ((𝑛 · (𝐼𝑋))(+g𝐺)(𝐼𝑋)))
5955, 56, 57, 58syl3anc 1373 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ0) → ((𝑛 + 1) · (𝐼𝑋)) = ((𝑛 · (𝐼𝑋))(+g𝐺)(𝐼𝑋)))
6053, 59eqeq12d 2747 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ0) → ((-(𝑛 + 1) · 𝑋) = ((𝑛 + 1) · (𝐼𝑋)) ↔ ((-𝑛 · 𝑋)(+g𝐺)(𝐼𝑋)) = ((𝑛 · (𝐼𝑋))(+g𝐺)(𝐼𝑋))))
6133, 60imbitrrid 246 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ0) → ((-𝑛 · 𝑋) = (𝑛 · (𝐼𝑋)) → (-(𝑛 + 1) · 𝑋) = ((𝑛 + 1) · (𝐼𝑋))))
6261ex 412 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑛 ∈ ℕ0 → ((-𝑛 · 𝑋) = (𝑛 · (𝐼𝑋)) → (-(𝑛 + 1) · 𝑋) = ((𝑛 + 1) · (𝐼𝑋)))))
63 fveq2 6822 . . . . . 6 ((-𝑛 · 𝑋) = (𝑛 · (𝐼𝑋)) → (𝐼‘(-𝑛 · 𝑋)) = (𝐼‘(𝑛 · (𝐼𝑋))))
64 simpll 766 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ) → 𝐺 ∈ Grp)
65 nnnegz 12471 . . . . . . . . 9 (𝑛 ∈ ℕ → -𝑛 ∈ ℤ)
6665adantl 481 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ) → -𝑛 ∈ ℤ)
67 simplr 768 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ) → 𝑋𝐵)
6823, 25, 28mulgneg 19005 . . . . . . . 8 ((𝐺 ∈ Grp ∧ -𝑛 ∈ ℤ ∧ 𝑋𝐵) → (--𝑛 · 𝑋) = (𝐼‘(-𝑛 · 𝑋)))
6964, 66, 67, 68syl3anc 1373 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ) → (--𝑛 · 𝑋) = (𝐼‘(-𝑛 · 𝑋)))
70 id 22 . . . . . . . 8 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ)
7123, 25, 28mulgnegnn 18997 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ (𝐼𝑋) ∈ 𝐵) → (-𝑛 · (𝐼𝑋)) = (𝐼‘(𝑛 · (𝐼𝑋))))
7270, 29, 71syl2anr 597 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ) → (-𝑛 · (𝐼𝑋)) = (𝐼‘(𝑛 · (𝐼𝑋))))
7369, 72eqeq12d 2747 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ) → ((--𝑛 · 𝑋) = (-𝑛 · (𝐼𝑋)) ↔ (𝐼‘(-𝑛 · 𝑋)) = (𝐼‘(𝑛 · (𝐼𝑋)))))
7463, 73imbitrrid 246 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ) → ((-𝑛 · 𝑋) = (𝑛 · (𝐼𝑋)) → (--𝑛 · 𝑋) = (-𝑛 · (𝐼𝑋))))
7574ex 412 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑛 ∈ ℕ → ((-𝑛 · 𝑋) = (𝑛 · (𝐼𝑋)) → (--𝑛 · 𝑋) = (-𝑛 · (𝐼𝑋)))))
766, 10, 14, 18, 22, 32, 62, 75zindd 12574 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁 ∈ ℤ → (-𝑁 · 𝑋) = (𝑁 · (𝐼𝑋))))
77763impia 1117 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑁 ∈ ℤ) → (-𝑁 · 𝑋) = (𝑁 · (𝐼𝑋)))
78773com23 1126 1 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) = (𝑁 · (𝐼𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  cfv 6481  (class class class)co 7346  cc 11004  0cc0 11006  1c1 11007   + caddc 11009  -cneg 11345  cn 12125  0cn0 12381  cz 12468  Basecbs 17120  +gcplusg 17161  0gc0g 17343  Mndcmnd 18642  Grpcgrp 18846  invgcminusg 18847  .gcmg 18980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-seq 13909  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-minusg 18850  df-mulg 18981
This theorem is referenced by:  mulgass  19024  cyggeninv  19795
  Copyright terms: Public domain W3C validator