MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgneg2 Structured version   Visualization version   GIF version

Theorem mulgneg2 19071
Description: Group multiple (exponentiation) operation at a negative integer. (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
mulgneg2.b 𝐵 = (Base‘𝐺)
mulgneg2.m · = (.g𝐺)
mulgneg2.i 𝐼 = (invg𝐺)
Assertion
Ref Expression
mulgneg2 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) = (𝑁 · (𝐼𝑋)))

Proof of Theorem mulgneg2
Dummy variables 𝑥 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 negeq 11484 . . . . . . 7 (𝑥 = 0 → -𝑥 = -0)
2 neg0 11538 . . . . . . 7 -0 = 0
31, 2eqtrdi 2781 . . . . . 6 (𝑥 = 0 → -𝑥 = 0)
43oveq1d 7434 . . . . 5 (𝑥 = 0 → (-𝑥 · 𝑋) = (0 · 𝑋))
5 oveq1 7426 . . . . 5 (𝑥 = 0 → (𝑥 · (𝐼𝑋)) = (0 · (𝐼𝑋)))
64, 5eqeq12d 2741 . . . 4 (𝑥 = 0 → ((-𝑥 · 𝑋) = (𝑥 · (𝐼𝑋)) ↔ (0 · 𝑋) = (0 · (𝐼𝑋))))
7 negeq 11484 . . . . . 6 (𝑥 = 𝑛 → -𝑥 = -𝑛)
87oveq1d 7434 . . . . 5 (𝑥 = 𝑛 → (-𝑥 · 𝑋) = (-𝑛 · 𝑋))
9 oveq1 7426 . . . . 5 (𝑥 = 𝑛 → (𝑥 · (𝐼𝑋)) = (𝑛 · (𝐼𝑋)))
108, 9eqeq12d 2741 . . . 4 (𝑥 = 𝑛 → ((-𝑥 · 𝑋) = (𝑥 · (𝐼𝑋)) ↔ (-𝑛 · 𝑋) = (𝑛 · (𝐼𝑋))))
11 negeq 11484 . . . . . 6 (𝑥 = (𝑛 + 1) → -𝑥 = -(𝑛 + 1))
1211oveq1d 7434 . . . . 5 (𝑥 = (𝑛 + 1) → (-𝑥 · 𝑋) = (-(𝑛 + 1) · 𝑋))
13 oveq1 7426 . . . . 5 (𝑥 = (𝑛 + 1) → (𝑥 · (𝐼𝑋)) = ((𝑛 + 1) · (𝐼𝑋)))
1412, 13eqeq12d 2741 . . . 4 (𝑥 = (𝑛 + 1) → ((-𝑥 · 𝑋) = (𝑥 · (𝐼𝑋)) ↔ (-(𝑛 + 1) · 𝑋) = ((𝑛 + 1) · (𝐼𝑋))))
15 negeq 11484 . . . . . 6 (𝑥 = -𝑛 → -𝑥 = --𝑛)
1615oveq1d 7434 . . . . 5 (𝑥 = -𝑛 → (-𝑥 · 𝑋) = (--𝑛 · 𝑋))
17 oveq1 7426 . . . . 5 (𝑥 = -𝑛 → (𝑥 · (𝐼𝑋)) = (-𝑛 · (𝐼𝑋)))
1816, 17eqeq12d 2741 . . . 4 (𝑥 = -𝑛 → ((-𝑥 · 𝑋) = (𝑥 · (𝐼𝑋)) ↔ (--𝑛 · 𝑋) = (-𝑛 · (𝐼𝑋))))
19 negeq 11484 . . . . . 6 (𝑥 = 𝑁 → -𝑥 = -𝑁)
2019oveq1d 7434 . . . . 5 (𝑥 = 𝑁 → (-𝑥 · 𝑋) = (-𝑁 · 𝑋))
21 oveq1 7426 . . . . 5 (𝑥 = 𝑁 → (𝑥 · (𝐼𝑋)) = (𝑁 · (𝐼𝑋)))
2220, 21eqeq12d 2741 . . . 4 (𝑥 = 𝑁 → ((-𝑥 · 𝑋) = (𝑥 · (𝐼𝑋)) ↔ (-𝑁 · 𝑋) = (𝑁 · (𝐼𝑋))))
23 mulgneg2.b . . . . . . 7 𝐵 = (Base‘𝐺)
24 eqid 2725 . . . . . . 7 (0g𝐺) = (0g𝐺)
25 mulgneg2.m . . . . . . 7 · = (.g𝐺)
2623, 24, 25mulg0 19038 . . . . . 6 (𝑋𝐵 → (0 · 𝑋) = (0g𝐺))
2726adantl 480 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (0 · 𝑋) = (0g𝐺))
28 mulgneg2.i . . . . . . 7 𝐼 = (invg𝐺)
2923, 28grpinvcl 18952 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝐼𝑋) ∈ 𝐵)
3023, 24, 25mulg0 19038 . . . . . 6 ((𝐼𝑋) ∈ 𝐵 → (0 · (𝐼𝑋)) = (0g𝐺))
3129, 30syl 17 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (0 · (𝐼𝑋)) = (0g𝐺))
3227, 31eqtr4d 2768 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (0 · 𝑋) = (0 · (𝐼𝑋)))
33 oveq1 7426 . . . . . 6 ((-𝑛 · 𝑋) = (𝑛 · (𝐼𝑋)) → ((-𝑛 · 𝑋)(+g𝐺)(𝐼𝑋)) = ((𝑛 · (𝐼𝑋))(+g𝐺)(𝐼𝑋)))
34 nn0cn 12515 . . . . . . . . . . 11 (𝑛 ∈ ℕ0𝑛 ∈ ℂ)
3534adantl 480 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℂ)
36 ax-1cn 11198 . . . . . . . . . 10 1 ∈ ℂ
37 negdi 11549 . . . . . . . . . 10 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → -(𝑛 + 1) = (-𝑛 + -1))
3835, 36, 37sylancl 584 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ0) → -(𝑛 + 1) = (-𝑛 + -1))
3938oveq1d 7434 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ0) → (-(𝑛 + 1) · 𝑋) = ((-𝑛 + -1) · 𝑋))
40 simpll 765 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ0) → 𝐺 ∈ Grp)
41 nn0negz 12633 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → -𝑛 ∈ ℤ)
4241adantl 480 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ0) → -𝑛 ∈ ℤ)
43 1z 12625 . . . . . . . . . 10 1 ∈ ℤ
44 znegcl 12630 . . . . . . . . . 10 (1 ∈ ℤ → -1 ∈ ℤ)
4543, 44mp1i 13 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ0) → -1 ∈ ℤ)
46 simplr 767 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑋𝐵)
47 eqid 2725 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
4823, 25, 47mulgdir 19069 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (-𝑛 ∈ ℤ ∧ -1 ∈ ℤ ∧ 𝑋𝐵)) → ((-𝑛 + -1) · 𝑋) = ((-𝑛 · 𝑋)(+g𝐺)(-1 · 𝑋)))
4940, 42, 45, 46, 48syl13anc 1369 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ0) → ((-𝑛 + -1) · 𝑋) = ((-𝑛 · 𝑋)(+g𝐺)(-1 · 𝑋)))
5023, 25, 28mulgm1 19057 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (-1 · 𝑋) = (𝐼𝑋))
5150adantr 479 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ0) → (-1 · 𝑋) = (𝐼𝑋))
5251oveq2d 7435 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ0) → ((-𝑛 · 𝑋)(+g𝐺)(-1 · 𝑋)) = ((-𝑛 · 𝑋)(+g𝐺)(𝐼𝑋)))
5339, 49, 523eqtrd 2769 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ0) → (-(𝑛 + 1) · 𝑋) = ((-𝑛 · 𝑋)(+g𝐺)(𝐼𝑋)))
54 grpmnd 18905 . . . . . . . . 9 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
5554ad2antrr 724 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ0) → 𝐺 ∈ Mnd)
56 simpr 483 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
5729adantr 479 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ0) → (𝐼𝑋) ∈ 𝐵)
5823, 25, 47mulgnn0p1 19048 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ 𝑛 ∈ ℕ0 ∧ (𝐼𝑋) ∈ 𝐵) → ((𝑛 + 1) · (𝐼𝑋)) = ((𝑛 · (𝐼𝑋))(+g𝐺)(𝐼𝑋)))
5955, 56, 57, 58syl3anc 1368 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ0) → ((𝑛 + 1) · (𝐼𝑋)) = ((𝑛 · (𝐼𝑋))(+g𝐺)(𝐼𝑋)))
6053, 59eqeq12d 2741 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ0) → ((-(𝑛 + 1) · 𝑋) = ((𝑛 + 1) · (𝐼𝑋)) ↔ ((-𝑛 · 𝑋)(+g𝐺)(𝐼𝑋)) = ((𝑛 · (𝐼𝑋))(+g𝐺)(𝐼𝑋))))
6133, 60imbitrrid 245 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ0) → ((-𝑛 · 𝑋) = (𝑛 · (𝐼𝑋)) → (-(𝑛 + 1) · 𝑋) = ((𝑛 + 1) · (𝐼𝑋))))
6261ex 411 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑛 ∈ ℕ0 → ((-𝑛 · 𝑋) = (𝑛 · (𝐼𝑋)) → (-(𝑛 + 1) · 𝑋) = ((𝑛 + 1) · (𝐼𝑋)))))
63 fveq2 6896 . . . . . 6 ((-𝑛 · 𝑋) = (𝑛 · (𝐼𝑋)) → (𝐼‘(-𝑛 · 𝑋)) = (𝐼‘(𝑛 · (𝐼𝑋))))
64 simpll 765 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ) → 𝐺 ∈ Grp)
65 nnnegz 12594 . . . . . . . . 9 (𝑛 ∈ ℕ → -𝑛 ∈ ℤ)
6665adantl 480 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ) → -𝑛 ∈ ℤ)
67 simplr 767 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ) → 𝑋𝐵)
6823, 25, 28mulgneg 19055 . . . . . . . 8 ((𝐺 ∈ Grp ∧ -𝑛 ∈ ℤ ∧ 𝑋𝐵) → (--𝑛 · 𝑋) = (𝐼‘(-𝑛 · 𝑋)))
6964, 66, 67, 68syl3anc 1368 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ) → (--𝑛 · 𝑋) = (𝐼‘(-𝑛 · 𝑋)))
70 id 22 . . . . . . . 8 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ)
7123, 25, 28mulgnegnn 19047 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ (𝐼𝑋) ∈ 𝐵) → (-𝑛 · (𝐼𝑋)) = (𝐼‘(𝑛 · (𝐼𝑋))))
7270, 29, 71syl2anr 595 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ) → (-𝑛 · (𝐼𝑋)) = (𝐼‘(𝑛 · (𝐼𝑋))))
7369, 72eqeq12d 2741 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ) → ((--𝑛 · 𝑋) = (-𝑛 · (𝐼𝑋)) ↔ (𝐼‘(-𝑛 · 𝑋)) = (𝐼‘(𝑛 · (𝐼𝑋)))))
7463, 73imbitrrid 245 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ) → ((-𝑛 · 𝑋) = (𝑛 · (𝐼𝑋)) → (--𝑛 · 𝑋) = (-𝑛 · (𝐼𝑋))))
7574ex 411 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑛 ∈ ℕ → ((-𝑛 · 𝑋) = (𝑛 · (𝐼𝑋)) → (--𝑛 · 𝑋) = (-𝑛 · (𝐼𝑋)))))
766, 10, 14, 18, 22, 32, 62, 75zindd 12696 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁 ∈ ℤ → (-𝑁 · 𝑋) = (𝑁 · (𝐼𝑋))))
77763impia 1114 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑁 ∈ ℤ) → (-𝑁 · 𝑋) = (𝑁 · (𝐼𝑋)))
78773com23 1123 1 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) = (𝑁 · (𝐼𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  cfv 6549  (class class class)co 7419  cc 11138  0cc0 11140  1c1 11141   + caddc 11143  -cneg 11477  cn 12245  0cn0 12505  cz 12591  Basecbs 17183  +gcplusg 17236  0gc0g 17424  Mndcmnd 18697  Grpcgrp 18898  invgcminusg 18899  .gcmg 19031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-n0 12506  df-z 12592  df-uz 12856  df-fz 13520  df-seq 14003  df-0g 17426  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-grp 18901  df-minusg 18902  df-mulg 19032
This theorem is referenced by:  mulgass  19074  cyggeninv  19850
  Copyright terms: Public domain W3C validator