Step | Hyp | Ref
| Expression |
1 | | negeq 11213 |
. . . . . . 7
⊢ (𝑥 = 0 → -𝑥 = -0) |
2 | | neg0 11267 |
. . . . . . 7
⊢ -0 =
0 |
3 | 1, 2 | eqtrdi 2794 |
. . . . . 6
⊢ (𝑥 = 0 → -𝑥 = 0) |
4 | 3 | oveq1d 7290 |
. . . . 5
⊢ (𝑥 = 0 → (-𝑥 · 𝑋) = (0 · 𝑋)) |
5 | | oveq1 7282 |
. . . . 5
⊢ (𝑥 = 0 → (𝑥 · (𝐼‘𝑋)) = (0 · (𝐼‘𝑋))) |
6 | 4, 5 | eqeq12d 2754 |
. . . 4
⊢ (𝑥 = 0 → ((-𝑥 · 𝑋) = (𝑥 · (𝐼‘𝑋)) ↔ (0 · 𝑋) = (0 · (𝐼‘𝑋)))) |
7 | | negeq 11213 |
. . . . . 6
⊢ (𝑥 = 𝑛 → -𝑥 = -𝑛) |
8 | 7 | oveq1d 7290 |
. . . . 5
⊢ (𝑥 = 𝑛 → (-𝑥 · 𝑋) = (-𝑛 · 𝑋)) |
9 | | oveq1 7282 |
. . . . 5
⊢ (𝑥 = 𝑛 → (𝑥 · (𝐼‘𝑋)) = (𝑛 · (𝐼‘𝑋))) |
10 | 8, 9 | eqeq12d 2754 |
. . . 4
⊢ (𝑥 = 𝑛 → ((-𝑥 · 𝑋) = (𝑥 · (𝐼‘𝑋)) ↔ (-𝑛 · 𝑋) = (𝑛 · (𝐼‘𝑋)))) |
11 | | negeq 11213 |
. . . . . 6
⊢ (𝑥 = (𝑛 + 1) → -𝑥 = -(𝑛 + 1)) |
12 | 11 | oveq1d 7290 |
. . . . 5
⊢ (𝑥 = (𝑛 + 1) → (-𝑥 · 𝑋) = (-(𝑛 + 1) · 𝑋)) |
13 | | oveq1 7282 |
. . . . 5
⊢ (𝑥 = (𝑛 + 1) → (𝑥 · (𝐼‘𝑋)) = ((𝑛 + 1) · (𝐼‘𝑋))) |
14 | 12, 13 | eqeq12d 2754 |
. . . 4
⊢ (𝑥 = (𝑛 + 1) → ((-𝑥 · 𝑋) = (𝑥 · (𝐼‘𝑋)) ↔ (-(𝑛 + 1) · 𝑋) = ((𝑛 + 1) · (𝐼‘𝑋)))) |
15 | | negeq 11213 |
. . . . . 6
⊢ (𝑥 = -𝑛 → -𝑥 = --𝑛) |
16 | 15 | oveq1d 7290 |
. . . . 5
⊢ (𝑥 = -𝑛 → (-𝑥 · 𝑋) = (--𝑛 · 𝑋)) |
17 | | oveq1 7282 |
. . . . 5
⊢ (𝑥 = -𝑛 → (𝑥 · (𝐼‘𝑋)) = (-𝑛 · (𝐼‘𝑋))) |
18 | 16, 17 | eqeq12d 2754 |
. . . 4
⊢ (𝑥 = -𝑛 → ((-𝑥 · 𝑋) = (𝑥 · (𝐼‘𝑋)) ↔ (--𝑛 · 𝑋) = (-𝑛 · (𝐼‘𝑋)))) |
19 | | negeq 11213 |
. . . . . 6
⊢ (𝑥 = 𝑁 → -𝑥 = -𝑁) |
20 | 19 | oveq1d 7290 |
. . . . 5
⊢ (𝑥 = 𝑁 → (-𝑥 · 𝑋) = (-𝑁 · 𝑋)) |
21 | | oveq1 7282 |
. . . . 5
⊢ (𝑥 = 𝑁 → (𝑥 · (𝐼‘𝑋)) = (𝑁 · (𝐼‘𝑋))) |
22 | 20, 21 | eqeq12d 2754 |
. . . 4
⊢ (𝑥 = 𝑁 → ((-𝑥 · 𝑋) = (𝑥 · (𝐼‘𝑋)) ↔ (-𝑁 · 𝑋) = (𝑁 · (𝐼‘𝑋)))) |
23 | | mulgneg2.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝐺) |
24 | | eqid 2738 |
. . . . . . 7
⊢
(0g‘𝐺) = (0g‘𝐺) |
25 | | mulgneg2.m |
. . . . . . 7
⊢ · =
(.g‘𝐺) |
26 | 23, 24, 25 | mulg0 18707 |
. . . . . 6
⊢ (𝑋 ∈ 𝐵 → (0 · 𝑋) = (0g‘𝐺)) |
27 | 26 | adantl 482 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (0 · 𝑋) = (0g‘𝐺)) |
28 | | mulgneg2.i |
. . . . . . 7
⊢ 𝐼 = (invg‘𝐺) |
29 | 23, 28 | grpinvcl 18627 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝐼‘𝑋) ∈ 𝐵) |
30 | 23, 24, 25 | mulg0 18707 |
. . . . . 6
⊢ ((𝐼‘𝑋) ∈ 𝐵 → (0 · (𝐼‘𝑋)) = (0g‘𝐺)) |
31 | 29, 30 | syl 17 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (0 · (𝐼‘𝑋)) = (0g‘𝐺)) |
32 | 27, 31 | eqtr4d 2781 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (0 · 𝑋) = (0 · (𝐼‘𝑋))) |
33 | | oveq1 7282 |
. . . . . 6
⊢ ((-𝑛 · 𝑋) = (𝑛 · (𝐼‘𝑋)) → ((-𝑛 · 𝑋)(+g‘𝐺)(𝐼‘𝑋)) = ((𝑛 · (𝐼‘𝑋))(+g‘𝐺)(𝐼‘𝑋))) |
34 | | nn0cn 12243 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ0
→ 𝑛 ∈
ℂ) |
35 | 34 | adantl 482 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈
ℂ) |
36 | | ax-1cn 10929 |
. . . . . . . . . 10
⊢ 1 ∈
ℂ |
37 | | negdi 11278 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℂ ∧ 1 ∈
ℂ) → -(𝑛 + 1) =
(-𝑛 + -1)) |
38 | 35, 36, 37 | sylancl 586 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → -(𝑛 + 1) = (-𝑛 + -1)) |
39 | 38 | oveq1d 7290 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → (-(𝑛 + 1) · 𝑋) = ((-𝑛 + -1) · 𝑋)) |
40 | | simpll 764 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → 𝐺 ∈ Grp) |
41 | | nn0negz 12358 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ0
→ -𝑛 ∈
ℤ) |
42 | 41 | adantl 482 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → -𝑛 ∈
ℤ) |
43 | | 1z 12350 |
. . . . . . . . . 10
⊢ 1 ∈
ℤ |
44 | | znegcl 12355 |
. . . . . . . . . 10
⊢ (1 ∈
ℤ → -1 ∈ ℤ) |
45 | 43, 44 | mp1i 13 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → -1 ∈
ℤ) |
46 | | simplr 766 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑋 ∈ 𝐵) |
47 | | eqid 2738 |
. . . . . . . . . 10
⊢
(+g‘𝐺) = (+g‘𝐺) |
48 | 23, 25, 47 | mulgdir 18735 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Grp ∧ (-𝑛 ∈ ℤ ∧ -1 ∈
ℤ ∧ 𝑋 ∈
𝐵)) → ((-𝑛 + -1) · 𝑋) = ((-𝑛 · 𝑋)(+g‘𝐺)(-1 · 𝑋))) |
49 | 40, 42, 45, 46, 48 | syl13anc 1371 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → ((-𝑛 + -1) · 𝑋) = ((-𝑛 · 𝑋)(+g‘𝐺)(-1 · 𝑋))) |
50 | 23, 25, 28 | mulgm1 18724 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (-1 · 𝑋) = (𝐼‘𝑋)) |
51 | 50 | adantr 481 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → (-1 · 𝑋) = (𝐼‘𝑋)) |
52 | 51 | oveq2d 7291 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → ((-𝑛 · 𝑋)(+g‘𝐺)(-1 · 𝑋)) = ((-𝑛 · 𝑋)(+g‘𝐺)(𝐼‘𝑋))) |
53 | 39, 49, 52 | 3eqtrd 2782 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → (-(𝑛 + 1) · 𝑋) = ((-𝑛 · 𝑋)(+g‘𝐺)(𝐼‘𝑋))) |
54 | | grpmnd 18584 |
. . . . . . . . 9
⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) |
55 | 54 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → 𝐺 ∈ Mnd) |
56 | | simpr 485 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈
ℕ0) |
57 | 29 | adantr 481 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → (𝐼‘𝑋) ∈ 𝐵) |
58 | 23, 25, 47 | mulgnn0p1 18715 |
. . . . . . . 8
⊢ ((𝐺 ∈ Mnd ∧ 𝑛 ∈ ℕ0
∧ (𝐼‘𝑋) ∈ 𝐵) → ((𝑛 + 1) · (𝐼‘𝑋)) = ((𝑛 · (𝐼‘𝑋))(+g‘𝐺)(𝐼‘𝑋))) |
59 | 55, 56, 57, 58 | syl3anc 1370 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → ((𝑛 + 1) · (𝐼‘𝑋)) = ((𝑛 · (𝐼‘𝑋))(+g‘𝐺)(𝐼‘𝑋))) |
60 | 53, 59 | eqeq12d 2754 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → ((-(𝑛 + 1) · 𝑋) = ((𝑛 + 1) · (𝐼‘𝑋)) ↔ ((-𝑛 · 𝑋)(+g‘𝐺)(𝐼‘𝑋)) = ((𝑛 · (𝐼‘𝑋))(+g‘𝐺)(𝐼‘𝑋)))) |
61 | 33, 60 | syl5ibr 245 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → ((-𝑛 · 𝑋) = (𝑛 · (𝐼‘𝑋)) → (-(𝑛 + 1) · 𝑋) = ((𝑛 + 1) · (𝐼‘𝑋)))) |
62 | 61 | ex 413 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑛 ∈ ℕ0 → ((-𝑛 · 𝑋) = (𝑛 · (𝐼‘𝑋)) → (-(𝑛 + 1) · 𝑋) = ((𝑛 + 1) · (𝐼‘𝑋))))) |
63 | | fveq2 6774 |
. . . . . 6
⊢ ((-𝑛 · 𝑋) = (𝑛 · (𝐼‘𝑋)) → (𝐼‘(-𝑛 · 𝑋)) = (𝐼‘(𝑛 · (𝐼‘𝑋)))) |
64 | | simpll 764 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ 𝑛 ∈ ℕ) → 𝐺 ∈ Grp) |
65 | | nnnegz 12322 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ → -𝑛 ∈
ℤ) |
66 | 65 | adantl 482 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ 𝑛 ∈ ℕ) → -𝑛 ∈ ℤ) |
67 | | simplr 766 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ 𝑛 ∈ ℕ) → 𝑋 ∈ 𝐵) |
68 | 23, 25, 28 | mulgneg 18722 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ -𝑛 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (--𝑛 · 𝑋) = (𝐼‘(-𝑛 · 𝑋))) |
69 | 64, 66, 67, 68 | syl3anc 1370 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ 𝑛 ∈ ℕ) → (--𝑛 · 𝑋) = (𝐼‘(-𝑛 · 𝑋))) |
70 | | id 22 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℕ) |
71 | 23, 25, 28 | mulgnegnn 18714 |
. . . . . . . 8
⊢ ((𝑛 ∈ ℕ ∧ (𝐼‘𝑋) ∈ 𝐵) → (-𝑛 · (𝐼‘𝑋)) = (𝐼‘(𝑛 · (𝐼‘𝑋)))) |
72 | 70, 29, 71 | syl2anr 597 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ 𝑛 ∈ ℕ) → (-𝑛 · (𝐼‘𝑋)) = (𝐼‘(𝑛 · (𝐼‘𝑋)))) |
73 | 69, 72 | eqeq12d 2754 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ 𝑛 ∈ ℕ) → ((--𝑛 · 𝑋) = (-𝑛 · (𝐼‘𝑋)) ↔ (𝐼‘(-𝑛 · 𝑋)) = (𝐼‘(𝑛 · (𝐼‘𝑋))))) |
74 | 63, 73 | syl5ibr 245 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) ∧ 𝑛 ∈ ℕ) → ((-𝑛 · 𝑋) = (𝑛 · (𝐼‘𝑋)) → (--𝑛 · 𝑋) = (-𝑛 · (𝐼‘𝑋)))) |
75 | 74 | ex 413 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑛 ∈ ℕ → ((-𝑛 · 𝑋) = (𝑛 · (𝐼‘𝑋)) → (--𝑛 · 𝑋) = (-𝑛 · (𝐼‘𝑋))))) |
76 | 6, 10, 14, 18, 22, 32, 62, 75 | zindd 12421 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁 ∈ ℤ → (-𝑁 · 𝑋) = (𝑁 · (𝐼‘𝑋)))) |
77 | 76 | 3impia 1116 |
. 2
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ ℤ) → (-𝑁 · 𝑋) = (𝑁 · (𝐼‘𝑋))) |
78 | 77 | 3com23 1125 |
1
⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (-𝑁 · 𝑋) = (𝑁 · (𝐼‘𝑋))) |