MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgneg2 Structured version   Visualization version   GIF version

Theorem mulgneg2 18652
Description: Group multiple (exponentiation) operation at a negative integer. (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
mulgneg2.b 𝐵 = (Base‘𝐺)
mulgneg2.m · = (.g𝐺)
mulgneg2.i 𝐼 = (invg𝐺)
Assertion
Ref Expression
mulgneg2 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) = (𝑁 · (𝐼𝑋)))

Proof of Theorem mulgneg2
Dummy variables 𝑥 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 negeq 11143 . . . . . . 7 (𝑥 = 0 → -𝑥 = -0)
2 neg0 11197 . . . . . . 7 -0 = 0
31, 2eqtrdi 2795 . . . . . 6 (𝑥 = 0 → -𝑥 = 0)
43oveq1d 7270 . . . . 5 (𝑥 = 0 → (-𝑥 · 𝑋) = (0 · 𝑋))
5 oveq1 7262 . . . . 5 (𝑥 = 0 → (𝑥 · (𝐼𝑋)) = (0 · (𝐼𝑋)))
64, 5eqeq12d 2754 . . . 4 (𝑥 = 0 → ((-𝑥 · 𝑋) = (𝑥 · (𝐼𝑋)) ↔ (0 · 𝑋) = (0 · (𝐼𝑋))))
7 negeq 11143 . . . . . 6 (𝑥 = 𝑛 → -𝑥 = -𝑛)
87oveq1d 7270 . . . . 5 (𝑥 = 𝑛 → (-𝑥 · 𝑋) = (-𝑛 · 𝑋))
9 oveq1 7262 . . . . 5 (𝑥 = 𝑛 → (𝑥 · (𝐼𝑋)) = (𝑛 · (𝐼𝑋)))
108, 9eqeq12d 2754 . . . 4 (𝑥 = 𝑛 → ((-𝑥 · 𝑋) = (𝑥 · (𝐼𝑋)) ↔ (-𝑛 · 𝑋) = (𝑛 · (𝐼𝑋))))
11 negeq 11143 . . . . . 6 (𝑥 = (𝑛 + 1) → -𝑥 = -(𝑛 + 1))
1211oveq1d 7270 . . . . 5 (𝑥 = (𝑛 + 1) → (-𝑥 · 𝑋) = (-(𝑛 + 1) · 𝑋))
13 oveq1 7262 . . . . 5 (𝑥 = (𝑛 + 1) → (𝑥 · (𝐼𝑋)) = ((𝑛 + 1) · (𝐼𝑋)))
1412, 13eqeq12d 2754 . . . 4 (𝑥 = (𝑛 + 1) → ((-𝑥 · 𝑋) = (𝑥 · (𝐼𝑋)) ↔ (-(𝑛 + 1) · 𝑋) = ((𝑛 + 1) · (𝐼𝑋))))
15 negeq 11143 . . . . . 6 (𝑥 = -𝑛 → -𝑥 = --𝑛)
1615oveq1d 7270 . . . . 5 (𝑥 = -𝑛 → (-𝑥 · 𝑋) = (--𝑛 · 𝑋))
17 oveq1 7262 . . . . 5 (𝑥 = -𝑛 → (𝑥 · (𝐼𝑋)) = (-𝑛 · (𝐼𝑋)))
1816, 17eqeq12d 2754 . . . 4 (𝑥 = -𝑛 → ((-𝑥 · 𝑋) = (𝑥 · (𝐼𝑋)) ↔ (--𝑛 · 𝑋) = (-𝑛 · (𝐼𝑋))))
19 negeq 11143 . . . . . 6 (𝑥 = 𝑁 → -𝑥 = -𝑁)
2019oveq1d 7270 . . . . 5 (𝑥 = 𝑁 → (-𝑥 · 𝑋) = (-𝑁 · 𝑋))
21 oveq1 7262 . . . . 5 (𝑥 = 𝑁 → (𝑥 · (𝐼𝑋)) = (𝑁 · (𝐼𝑋)))
2220, 21eqeq12d 2754 . . . 4 (𝑥 = 𝑁 → ((-𝑥 · 𝑋) = (𝑥 · (𝐼𝑋)) ↔ (-𝑁 · 𝑋) = (𝑁 · (𝐼𝑋))))
23 mulgneg2.b . . . . . . 7 𝐵 = (Base‘𝐺)
24 eqid 2738 . . . . . . 7 (0g𝐺) = (0g𝐺)
25 mulgneg2.m . . . . . . 7 · = (.g𝐺)
2623, 24, 25mulg0 18622 . . . . . 6 (𝑋𝐵 → (0 · 𝑋) = (0g𝐺))
2726adantl 481 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (0 · 𝑋) = (0g𝐺))
28 mulgneg2.i . . . . . . 7 𝐼 = (invg𝐺)
2923, 28grpinvcl 18542 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝐼𝑋) ∈ 𝐵)
3023, 24, 25mulg0 18622 . . . . . 6 ((𝐼𝑋) ∈ 𝐵 → (0 · (𝐼𝑋)) = (0g𝐺))
3129, 30syl 17 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (0 · (𝐼𝑋)) = (0g𝐺))
3227, 31eqtr4d 2781 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (0 · 𝑋) = (0 · (𝐼𝑋)))
33 oveq1 7262 . . . . . 6 ((-𝑛 · 𝑋) = (𝑛 · (𝐼𝑋)) → ((-𝑛 · 𝑋)(+g𝐺)(𝐼𝑋)) = ((𝑛 · (𝐼𝑋))(+g𝐺)(𝐼𝑋)))
34 nn0cn 12173 . . . . . . . . . . 11 (𝑛 ∈ ℕ0𝑛 ∈ ℂ)
3534adantl 481 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℂ)
36 ax-1cn 10860 . . . . . . . . . 10 1 ∈ ℂ
37 negdi 11208 . . . . . . . . . 10 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → -(𝑛 + 1) = (-𝑛 + -1))
3835, 36, 37sylancl 585 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ0) → -(𝑛 + 1) = (-𝑛 + -1))
3938oveq1d 7270 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ0) → (-(𝑛 + 1) · 𝑋) = ((-𝑛 + -1) · 𝑋))
40 simpll 763 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ0) → 𝐺 ∈ Grp)
41 nn0negz 12288 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → -𝑛 ∈ ℤ)
4241adantl 481 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ0) → -𝑛 ∈ ℤ)
43 1z 12280 . . . . . . . . . 10 1 ∈ ℤ
44 znegcl 12285 . . . . . . . . . 10 (1 ∈ ℤ → -1 ∈ ℤ)
4543, 44mp1i 13 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ0) → -1 ∈ ℤ)
46 simplr 765 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑋𝐵)
47 eqid 2738 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
4823, 25, 47mulgdir 18650 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (-𝑛 ∈ ℤ ∧ -1 ∈ ℤ ∧ 𝑋𝐵)) → ((-𝑛 + -1) · 𝑋) = ((-𝑛 · 𝑋)(+g𝐺)(-1 · 𝑋)))
4940, 42, 45, 46, 48syl13anc 1370 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ0) → ((-𝑛 + -1) · 𝑋) = ((-𝑛 · 𝑋)(+g𝐺)(-1 · 𝑋)))
5023, 25, 28mulgm1 18639 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (-1 · 𝑋) = (𝐼𝑋))
5150adantr 480 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ0) → (-1 · 𝑋) = (𝐼𝑋))
5251oveq2d 7271 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ0) → ((-𝑛 · 𝑋)(+g𝐺)(-1 · 𝑋)) = ((-𝑛 · 𝑋)(+g𝐺)(𝐼𝑋)))
5339, 49, 523eqtrd 2782 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ0) → (-(𝑛 + 1) · 𝑋) = ((-𝑛 · 𝑋)(+g𝐺)(𝐼𝑋)))
54 grpmnd 18499 . . . . . . . . 9 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
5554ad2antrr 722 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ0) → 𝐺 ∈ Mnd)
56 simpr 484 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
5729adantr 480 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ0) → (𝐼𝑋) ∈ 𝐵)
5823, 25, 47mulgnn0p1 18630 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ 𝑛 ∈ ℕ0 ∧ (𝐼𝑋) ∈ 𝐵) → ((𝑛 + 1) · (𝐼𝑋)) = ((𝑛 · (𝐼𝑋))(+g𝐺)(𝐼𝑋)))
5955, 56, 57, 58syl3anc 1369 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ0) → ((𝑛 + 1) · (𝐼𝑋)) = ((𝑛 · (𝐼𝑋))(+g𝐺)(𝐼𝑋)))
6053, 59eqeq12d 2754 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ0) → ((-(𝑛 + 1) · 𝑋) = ((𝑛 + 1) · (𝐼𝑋)) ↔ ((-𝑛 · 𝑋)(+g𝐺)(𝐼𝑋)) = ((𝑛 · (𝐼𝑋))(+g𝐺)(𝐼𝑋))))
6133, 60syl5ibr 245 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ0) → ((-𝑛 · 𝑋) = (𝑛 · (𝐼𝑋)) → (-(𝑛 + 1) · 𝑋) = ((𝑛 + 1) · (𝐼𝑋))))
6261ex 412 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑛 ∈ ℕ0 → ((-𝑛 · 𝑋) = (𝑛 · (𝐼𝑋)) → (-(𝑛 + 1) · 𝑋) = ((𝑛 + 1) · (𝐼𝑋)))))
63 fveq2 6756 . . . . . 6 ((-𝑛 · 𝑋) = (𝑛 · (𝐼𝑋)) → (𝐼‘(-𝑛 · 𝑋)) = (𝐼‘(𝑛 · (𝐼𝑋))))
64 simpll 763 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ) → 𝐺 ∈ Grp)
65 nnnegz 12252 . . . . . . . . 9 (𝑛 ∈ ℕ → -𝑛 ∈ ℤ)
6665adantl 481 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ) → -𝑛 ∈ ℤ)
67 simplr 765 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ) → 𝑋𝐵)
6823, 25, 28mulgneg 18637 . . . . . . . 8 ((𝐺 ∈ Grp ∧ -𝑛 ∈ ℤ ∧ 𝑋𝐵) → (--𝑛 · 𝑋) = (𝐼‘(-𝑛 · 𝑋)))
6964, 66, 67, 68syl3anc 1369 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ) → (--𝑛 · 𝑋) = (𝐼‘(-𝑛 · 𝑋)))
70 id 22 . . . . . . . 8 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ)
7123, 25, 28mulgnegnn 18629 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ (𝐼𝑋) ∈ 𝐵) → (-𝑛 · (𝐼𝑋)) = (𝐼‘(𝑛 · (𝐼𝑋))))
7270, 29, 71syl2anr 596 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ) → (-𝑛 · (𝐼𝑋)) = (𝐼‘(𝑛 · (𝐼𝑋))))
7369, 72eqeq12d 2754 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ) → ((--𝑛 · 𝑋) = (-𝑛 · (𝐼𝑋)) ↔ (𝐼‘(-𝑛 · 𝑋)) = (𝐼‘(𝑛 · (𝐼𝑋)))))
7463, 73syl5ibr 245 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑋𝐵) ∧ 𝑛 ∈ ℕ) → ((-𝑛 · 𝑋) = (𝑛 · (𝐼𝑋)) → (--𝑛 · 𝑋) = (-𝑛 · (𝐼𝑋))))
7574ex 412 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑛 ∈ ℕ → ((-𝑛 · 𝑋) = (𝑛 · (𝐼𝑋)) → (--𝑛 · 𝑋) = (-𝑛 · (𝐼𝑋)))))
766, 10, 14, 18, 22, 32, 62, 75zindd 12351 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁 ∈ ℤ → (-𝑁 · 𝑋) = (𝑁 · (𝐼𝑋))))
77763impia 1115 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑁 ∈ ℤ) → (-𝑁 · 𝑋) = (𝑁 · (𝐼𝑋)))
78773com23 1124 1 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) = (𝑁 · (𝐼𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  cfv 6418  (class class class)co 7255  cc 10800  0cc0 10802  1c1 10803   + caddc 10805  -cneg 11136  cn 11903  0cn0 12163  cz 12249  Basecbs 16840  +gcplusg 16888  0gc0g 17067  Mndcmnd 18300  Grpcgrp 18492  invgcminusg 18493  .gcmg 18615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-seq 13650  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-mulg 18616
This theorem is referenced by:  mulgass  18655  cyggeninv  19398
  Copyright terms: Public domain W3C validator