MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opnreen Structured version   Visualization version   GIF version

Theorem opnreen 24767
Description: Every nonempty open set is uncountable. (Contributed by Mario Carneiro, 26-Jul-2014.) (Revised by Mario Carneiro, 20-Feb-2015.)
Assertion
Ref Expression
opnreen ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝐴 ≠ ∅) → 𝐴 ≈ 𝒫 ℕ)

Proof of Theorem opnreen
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reex 11108 . . . 4 ℝ ∈ V
2 elssuni 4891 . . . . 5 (𝐴 ∈ (topGen‘ran (,)) → 𝐴 (topGen‘ran (,)))
3 uniretop 24697 . . . . 5 ℝ = (topGen‘ran (,))
42, 3sseqtrrdi 3972 . . . 4 (𝐴 ∈ (topGen‘ran (,)) → 𝐴 ⊆ ℝ)
5 ssdomg 8933 . . . 4 (ℝ ∈ V → (𝐴 ⊆ ℝ → 𝐴 ≼ ℝ))
61, 4, 5mpsyl 68 . . 3 (𝐴 ∈ (topGen‘ran (,)) → 𝐴 ≼ ℝ)
7 rpnnen 16143 . . 3 ℝ ≈ 𝒫 ℕ
8 domentr 8946 . . 3 ((𝐴 ≼ ℝ ∧ ℝ ≈ 𝒫 ℕ) → 𝐴 ≼ 𝒫 ℕ)
96, 7, 8sylancl 586 . 2 (𝐴 ∈ (topGen‘ran (,)) → 𝐴 ≼ 𝒫 ℕ)
10 n0 4302 . . . 4 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
114sselda 3930 . . . . . . . . 9 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
12 rpnnen2 16142 . . . . . . . . . . . 12 𝒫 ℕ ≼ (0[,]1)
13 rphalfcl 12925 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℝ+ → (𝑦 / 2) ∈ ℝ+)
1413rpred 12940 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ+ → (𝑦 / 2) ∈ ℝ)
15 resubcl 11436 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ (𝑦 / 2) ∈ ℝ) → (𝑥 − (𝑦 / 2)) ∈ ℝ)
1614, 15sylan2 593 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑥 − (𝑦 / 2)) ∈ ℝ)
17 readdcl 11100 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ (𝑦 / 2) ∈ ℝ) → (𝑥 + (𝑦 / 2)) ∈ ℝ)
1814, 17sylan2 593 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑥 + (𝑦 / 2)) ∈ ℝ)
19 simpl 482 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → 𝑥 ∈ ℝ)
20 ltsubrp 12934 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ (𝑦 / 2) ∈ ℝ+) → (𝑥 − (𝑦 / 2)) < 𝑥)
2113, 20sylan2 593 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑥 − (𝑦 / 2)) < 𝑥)
22 ltaddrp 12935 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ (𝑦 / 2) ∈ ℝ+) → 𝑥 < (𝑥 + (𝑦 / 2)))
2313, 22sylan2 593 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → 𝑥 < (𝑥 + (𝑦 / 2)))
2416, 19, 18, 21, 23lttrd 11285 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑥 − (𝑦 / 2)) < (𝑥 + (𝑦 / 2)))
25 iccen 13404 . . . . . . . . . . . . 13 (((𝑥 − (𝑦 / 2)) ∈ ℝ ∧ (𝑥 + (𝑦 / 2)) ∈ ℝ ∧ (𝑥 − (𝑦 / 2)) < (𝑥 + (𝑦 / 2))) → (0[,]1) ≈ ((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2))))
2616, 18, 24, 25syl3anc 1373 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (0[,]1) ≈ ((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2))))
27 domentr 8946 . . . . . . . . . . . 12 ((𝒫 ℕ ≼ (0[,]1) ∧ (0[,]1) ≈ ((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2)))) → 𝒫 ℕ ≼ ((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2))))
2812, 26, 27sylancr 587 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → 𝒫 ℕ ≼ ((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2))))
29 ovex 7388 . . . . . . . . . . . 12 ((𝑥𝑦)(,)(𝑥 + 𝑦)) ∈ V
30 rpre 12905 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
31 resubcl 11436 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥𝑦) ∈ ℝ)
3230, 31sylan2 593 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑥𝑦) ∈ ℝ)
3332rexrd 11173 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑥𝑦) ∈ ℝ*)
34 readdcl 11100 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ)
3530, 34sylan2 593 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑥 + 𝑦) ∈ ℝ)
3635rexrd 11173 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑥 + 𝑦) ∈ ℝ*)
3719recnd 11151 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → 𝑥 ∈ ℂ)
3814adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑦 / 2) ∈ ℝ)
3938recnd 11151 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑦 / 2) ∈ ℂ)
4037, 39, 39subsub4d 11514 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → ((𝑥 − (𝑦 / 2)) − (𝑦 / 2)) = (𝑥 − ((𝑦 / 2) + (𝑦 / 2))))
4130adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ)
4241recnd 11151 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈ ℂ)
43422halvesd 12378 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → ((𝑦 / 2) + (𝑦 / 2)) = 𝑦)
4443oveq2d 7371 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑥 − ((𝑦 / 2) + (𝑦 / 2))) = (𝑥𝑦))
4540, 44eqtrd 2768 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → ((𝑥 − (𝑦 / 2)) − (𝑦 / 2)) = (𝑥𝑦))
4613adantl 481 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑦 / 2) ∈ ℝ+)
4716, 46ltsubrpd 12972 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → ((𝑥 − (𝑦 / 2)) − (𝑦 / 2)) < (𝑥 − (𝑦 / 2)))
4845, 47eqbrtrrd 5119 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑥𝑦) < (𝑥 − (𝑦 / 2)))
4918, 46ltaddrpd 12973 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑥 + (𝑦 / 2)) < ((𝑥 + (𝑦 / 2)) + (𝑦 / 2)))
5037, 39, 39addassd 11145 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → ((𝑥 + (𝑦 / 2)) + (𝑦 / 2)) = (𝑥 + ((𝑦 / 2) + (𝑦 / 2))))
5143oveq2d 7371 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑥 + ((𝑦 / 2) + (𝑦 / 2))) = (𝑥 + 𝑦))
5250, 51eqtrd 2768 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → ((𝑥 + (𝑦 / 2)) + (𝑦 / 2)) = (𝑥 + 𝑦))
5349, 52breqtrd 5121 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑥 + (𝑦 / 2)) < (𝑥 + 𝑦))
54 iccssioo 13322 . . . . . . . . . . . . 13 ((((𝑥𝑦) ∈ ℝ* ∧ (𝑥 + 𝑦) ∈ ℝ*) ∧ ((𝑥𝑦) < (𝑥 − (𝑦 / 2)) ∧ (𝑥 + (𝑦 / 2)) < (𝑥 + 𝑦))) → ((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2))) ⊆ ((𝑥𝑦)(,)(𝑥 + 𝑦)))
5533, 36, 48, 53, 54syl22anc 838 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → ((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2))) ⊆ ((𝑥𝑦)(,)(𝑥 + 𝑦)))
56 ssdomg 8933 . . . . . . . . . . . 12 (((𝑥𝑦)(,)(𝑥 + 𝑦)) ∈ V → (((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2))) ⊆ ((𝑥𝑦)(,)(𝑥 + 𝑦)) → ((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2))) ≼ ((𝑥𝑦)(,)(𝑥 + 𝑦))))
5729, 55, 56mpsyl 68 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → ((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2))) ≼ ((𝑥𝑦)(,)(𝑥 + 𝑦)))
58 domtr 8940 . . . . . . . . . . 11 ((𝒫 ℕ ≼ ((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2))) ∧ ((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2))) ≼ ((𝑥𝑦)(,)(𝑥 + 𝑦))) → 𝒫 ℕ ≼ ((𝑥𝑦)(,)(𝑥 + 𝑦)))
5928, 57, 58syl2anc 584 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → 𝒫 ℕ ≼ ((𝑥𝑦)(,)(𝑥 + 𝑦)))
60 eqid 2733 . . . . . . . . . . . 12 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
6160bl2ioo 24727 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) = ((𝑥𝑦)(,)(𝑥 + 𝑦)))
6230, 61sylan2 593 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) = ((𝑥𝑦)(,)(𝑥 + 𝑦)))
6359, 62breqtrrd 5123 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → 𝒫 ℕ ≼ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦))
6411, 63sylan 580 . . . . . . . 8 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑥𝐴) ∧ 𝑦 ∈ ℝ+) → 𝒫 ℕ ≼ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦))
65 simplll 774 . . . . . . . . 9 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑥𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ⊆ 𝐴) → 𝐴 ∈ (topGen‘ran (,)))
66 simpr 484 . . . . . . . . 9 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑥𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ⊆ 𝐴) → (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ⊆ 𝐴)
67 ssdomg 8933 . . . . . . . . 9 (𝐴 ∈ (topGen‘ran (,)) → ((𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ⊆ 𝐴 → (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ≼ 𝐴))
6865, 66, 67sylc 65 . . . . . . . 8 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑥𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ⊆ 𝐴) → (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ≼ 𝐴)
69 domtr 8940 . . . . . . . 8 ((𝒫 ℕ ≼ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ∧ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ≼ 𝐴) → 𝒫 ℕ ≼ 𝐴)
7064, 68, 69syl2an2r 685 . . . . . . 7 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑥𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ⊆ 𝐴) → 𝒫 ℕ ≼ 𝐴)
71 eqid 2733 . . . . . . . . . 10 (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
7260, 71tgioo 24731 . . . . . . . . 9 (topGen‘ran (,)) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
7372eleq2i 2825 . . . . . . . 8 (𝐴 ∈ (topGen‘ran (,)) ↔ 𝐴 ∈ (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))))
7460rexmet 24726 . . . . . . . . 9 ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ)
7571mopni2 24428 . . . . . . . . 9 ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ 𝐴 ∈ (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) ∧ 𝑥𝐴) → ∃𝑦 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ⊆ 𝐴)
7674, 75mp3an1 1450 . . . . . . . 8 ((𝐴 ∈ (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) ∧ 𝑥𝐴) → ∃𝑦 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ⊆ 𝐴)
7773, 76sylanb 581 . . . . . . 7 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑥𝐴) → ∃𝑦 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ⊆ 𝐴)
7870, 77r19.29a 3141 . . . . . 6 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑥𝐴) → 𝒫 ℕ ≼ 𝐴)
7978ex 412 . . . . 5 (𝐴 ∈ (topGen‘ran (,)) → (𝑥𝐴 → 𝒫 ℕ ≼ 𝐴))
8079exlimdv 1934 . . . 4 (𝐴 ∈ (topGen‘ran (,)) → (∃𝑥 𝑥𝐴 → 𝒫 ℕ ≼ 𝐴))
8110, 80biimtrid 242 . . 3 (𝐴 ∈ (topGen‘ran (,)) → (𝐴 ≠ ∅ → 𝒫 ℕ ≼ 𝐴))
8281imp 406 . 2 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝐴 ≠ ∅) → 𝒫 ℕ ≼ 𝐴)
83 sbth 9021 . 2 ((𝐴 ≼ 𝒫 ℕ ∧ 𝒫 ℕ ≼ 𝐴) → 𝐴 ≈ 𝒫 ℕ)
849, 82, 83syl2an2r 685 1 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝐴 ≠ ∅) → 𝐴 ≈ 𝒫 ℕ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wex 1780  wcel 2113  wne 2929  wrex 3057  Vcvv 3437  wss 3898  c0 4282  𝒫 cpw 4551   cuni 4860   class class class wbr 5095   × cxp 5619  ran crn 5622  cres 5623  ccom 5625  cfv 6489  (class class class)co 7355  cen 8876  cdom 8877  cr 11016  0cc0 11017  1c1 11018   + caddc 11020  *cxr 11156   < clt 11157  cmin 11355   / cdiv 11785  cn 12136  2c2 12191  +crp 12896  (,)cioo 13252  [,]cicc 13255  abscabs 15148  topGenctg 17348  ∞Metcxmet 21285  ballcbl 21287  MetOpencmopn 21290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9542  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-oadd 8398  df-omul 8399  df-er 8631  df-map 8761  df-pm 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9337  df-inf 9338  df-oi 9407  df-card 9843  df-acn 9846  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-n0 12393  df-z 12480  df-uz 12743  df-q 12853  df-rp 12897  df-xneg 13017  df-xadd 13018  df-xmul 13019  df-ioo 13256  df-ico 13258  df-icc 13259  df-fz 13415  df-fzo 13562  df-fl 13703  df-seq 13916  df-exp 13976  df-hash 14245  df-cj 15013  df-re 15014  df-im 15015  df-sqrt 15149  df-abs 15150  df-limsup 15385  df-clim 15402  df-rlim 15403  df-sum 15601  df-topgen 17354  df-psmet 21292  df-xmet 21293  df-met 21294  df-bl 21295  df-mopn 21296  df-top 22829  df-topon 22846  df-bases 22881
This theorem is referenced by:  rectbntr0  24768
  Copyright terms: Public domain W3C validator