MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opnreen Structured version   Visualization version   GIF version

Theorem opnreen 24771
Description: Every nonempty open set is uncountable. (Contributed by Mario Carneiro, 26-Jul-2014.) (Revised by Mario Carneiro, 20-Feb-2015.)
Assertion
Ref Expression
opnreen ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝐴 ≠ ∅) → 𝐴 ≈ 𝒫 ℕ)

Proof of Theorem opnreen
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reex 11220 . . . 4 ℝ ∈ V
2 elssuni 4913 . . . . 5 (𝐴 ∈ (topGen‘ran (,)) → 𝐴 (topGen‘ran (,)))
3 uniretop 24701 . . . . 5 ℝ = (topGen‘ran (,))
42, 3sseqtrrdi 4000 . . . 4 (𝐴 ∈ (topGen‘ran (,)) → 𝐴 ⊆ ℝ)
5 ssdomg 9014 . . . 4 (ℝ ∈ V → (𝐴 ⊆ ℝ → 𝐴 ≼ ℝ))
61, 4, 5mpsyl 68 . . 3 (𝐴 ∈ (topGen‘ran (,)) → 𝐴 ≼ ℝ)
7 rpnnen 16245 . . 3 ℝ ≈ 𝒫 ℕ
8 domentr 9027 . . 3 ((𝐴 ≼ ℝ ∧ ℝ ≈ 𝒫 ℕ) → 𝐴 ≼ 𝒫 ℕ)
96, 7, 8sylancl 586 . 2 (𝐴 ∈ (topGen‘ran (,)) → 𝐴 ≼ 𝒫 ℕ)
10 n0 4328 . . . 4 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
114sselda 3958 . . . . . . . . 9 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
12 rpnnen2 16244 . . . . . . . . . . . 12 𝒫 ℕ ≼ (0[,]1)
13 rphalfcl 13036 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℝ+ → (𝑦 / 2) ∈ ℝ+)
1413rpred 13051 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ+ → (𝑦 / 2) ∈ ℝ)
15 resubcl 11547 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ (𝑦 / 2) ∈ ℝ) → (𝑥 − (𝑦 / 2)) ∈ ℝ)
1614, 15sylan2 593 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑥 − (𝑦 / 2)) ∈ ℝ)
17 readdcl 11212 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ (𝑦 / 2) ∈ ℝ) → (𝑥 + (𝑦 / 2)) ∈ ℝ)
1814, 17sylan2 593 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑥 + (𝑦 / 2)) ∈ ℝ)
19 simpl 482 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → 𝑥 ∈ ℝ)
20 ltsubrp 13045 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ (𝑦 / 2) ∈ ℝ+) → (𝑥 − (𝑦 / 2)) < 𝑥)
2113, 20sylan2 593 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑥 − (𝑦 / 2)) < 𝑥)
22 ltaddrp 13046 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ (𝑦 / 2) ∈ ℝ+) → 𝑥 < (𝑥 + (𝑦 / 2)))
2313, 22sylan2 593 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → 𝑥 < (𝑥 + (𝑦 / 2)))
2416, 19, 18, 21, 23lttrd 11396 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑥 − (𝑦 / 2)) < (𝑥 + (𝑦 / 2)))
25 iccen 13514 . . . . . . . . . . . . 13 (((𝑥 − (𝑦 / 2)) ∈ ℝ ∧ (𝑥 + (𝑦 / 2)) ∈ ℝ ∧ (𝑥 − (𝑦 / 2)) < (𝑥 + (𝑦 / 2))) → (0[,]1) ≈ ((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2))))
2616, 18, 24, 25syl3anc 1373 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (0[,]1) ≈ ((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2))))
27 domentr 9027 . . . . . . . . . . . 12 ((𝒫 ℕ ≼ (0[,]1) ∧ (0[,]1) ≈ ((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2)))) → 𝒫 ℕ ≼ ((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2))))
2812, 26, 27sylancr 587 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → 𝒫 ℕ ≼ ((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2))))
29 ovex 7438 . . . . . . . . . . . 12 ((𝑥𝑦)(,)(𝑥 + 𝑦)) ∈ V
30 rpre 13017 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
31 resubcl 11547 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥𝑦) ∈ ℝ)
3230, 31sylan2 593 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑥𝑦) ∈ ℝ)
3332rexrd 11285 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑥𝑦) ∈ ℝ*)
34 readdcl 11212 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ)
3530, 34sylan2 593 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑥 + 𝑦) ∈ ℝ)
3635rexrd 11285 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑥 + 𝑦) ∈ ℝ*)
3719recnd 11263 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → 𝑥 ∈ ℂ)
3814adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑦 / 2) ∈ ℝ)
3938recnd 11263 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑦 / 2) ∈ ℂ)
4037, 39, 39subsub4d 11625 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → ((𝑥 − (𝑦 / 2)) − (𝑦 / 2)) = (𝑥 − ((𝑦 / 2) + (𝑦 / 2))))
4130adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ)
4241recnd 11263 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈ ℂ)
43422halvesd 12487 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → ((𝑦 / 2) + (𝑦 / 2)) = 𝑦)
4443oveq2d 7421 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑥 − ((𝑦 / 2) + (𝑦 / 2))) = (𝑥𝑦))
4540, 44eqtrd 2770 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → ((𝑥 − (𝑦 / 2)) − (𝑦 / 2)) = (𝑥𝑦))
4613adantl 481 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑦 / 2) ∈ ℝ+)
4716, 46ltsubrpd 13083 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → ((𝑥 − (𝑦 / 2)) − (𝑦 / 2)) < (𝑥 − (𝑦 / 2)))
4845, 47eqbrtrrd 5143 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑥𝑦) < (𝑥 − (𝑦 / 2)))
4918, 46ltaddrpd 13084 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑥 + (𝑦 / 2)) < ((𝑥 + (𝑦 / 2)) + (𝑦 / 2)))
5037, 39, 39addassd 11257 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → ((𝑥 + (𝑦 / 2)) + (𝑦 / 2)) = (𝑥 + ((𝑦 / 2) + (𝑦 / 2))))
5143oveq2d 7421 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑥 + ((𝑦 / 2) + (𝑦 / 2))) = (𝑥 + 𝑦))
5250, 51eqtrd 2770 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → ((𝑥 + (𝑦 / 2)) + (𝑦 / 2)) = (𝑥 + 𝑦))
5349, 52breqtrd 5145 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑥 + (𝑦 / 2)) < (𝑥 + 𝑦))
54 iccssioo 13432 . . . . . . . . . . . . 13 ((((𝑥𝑦) ∈ ℝ* ∧ (𝑥 + 𝑦) ∈ ℝ*) ∧ ((𝑥𝑦) < (𝑥 − (𝑦 / 2)) ∧ (𝑥 + (𝑦 / 2)) < (𝑥 + 𝑦))) → ((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2))) ⊆ ((𝑥𝑦)(,)(𝑥 + 𝑦)))
5533, 36, 48, 53, 54syl22anc 838 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → ((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2))) ⊆ ((𝑥𝑦)(,)(𝑥 + 𝑦)))
56 ssdomg 9014 . . . . . . . . . . . 12 (((𝑥𝑦)(,)(𝑥 + 𝑦)) ∈ V → (((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2))) ⊆ ((𝑥𝑦)(,)(𝑥 + 𝑦)) → ((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2))) ≼ ((𝑥𝑦)(,)(𝑥 + 𝑦))))
5729, 55, 56mpsyl 68 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → ((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2))) ≼ ((𝑥𝑦)(,)(𝑥 + 𝑦)))
58 domtr 9021 . . . . . . . . . . 11 ((𝒫 ℕ ≼ ((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2))) ∧ ((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2))) ≼ ((𝑥𝑦)(,)(𝑥 + 𝑦))) → 𝒫 ℕ ≼ ((𝑥𝑦)(,)(𝑥 + 𝑦)))
5928, 57, 58syl2anc 584 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → 𝒫 ℕ ≼ ((𝑥𝑦)(,)(𝑥 + 𝑦)))
60 eqid 2735 . . . . . . . . . . . 12 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
6160bl2ioo 24731 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) = ((𝑥𝑦)(,)(𝑥 + 𝑦)))
6230, 61sylan2 593 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) = ((𝑥𝑦)(,)(𝑥 + 𝑦)))
6359, 62breqtrrd 5147 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → 𝒫 ℕ ≼ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦))
6411, 63sylan 580 . . . . . . . 8 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑥𝐴) ∧ 𝑦 ∈ ℝ+) → 𝒫 ℕ ≼ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦))
65 simplll 774 . . . . . . . . 9 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑥𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ⊆ 𝐴) → 𝐴 ∈ (topGen‘ran (,)))
66 simpr 484 . . . . . . . . 9 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑥𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ⊆ 𝐴) → (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ⊆ 𝐴)
67 ssdomg 9014 . . . . . . . . 9 (𝐴 ∈ (topGen‘ran (,)) → ((𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ⊆ 𝐴 → (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ≼ 𝐴))
6865, 66, 67sylc 65 . . . . . . . 8 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑥𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ⊆ 𝐴) → (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ≼ 𝐴)
69 domtr 9021 . . . . . . . 8 ((𝒫 ℕ ≼ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ∧ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ≼ 𝐴) → 𝒫 ℕ ≼ 𝐴)
7064, 68, 69syl2an2r 685 . . . . . . 7 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑥𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ⊆ 𝐴) → 𝒫 ℕ ≼ 𝐴)
71 eqid 2735 . . . . . . . . . 10 (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
7260, 71tgioo 24735 . . . . . . . . 9 (topGen‘ran (,)) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
7372eleq2i 2826 . . . . . . . 8 (𝐴 ∈ (topGen‘ran (,)) ↔ 𝐴 ∈ (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))))
7460rexmet 24730 . . . . . . . . 9 ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ)
7571mopni2 24432 . . . . . . . . 9 ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ 𝐴 ∈ (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) ∧ 𝑥𝐴) → ∃𝑦 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ⊆ 𝐴)
7674, 75mp3an1 1450 . . . . . . . 8 ((𝐴 ∈ (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) ∧ 𝑥𝐴) → ∃𝑦 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ⊆ 𝐴)
7773, 76sylanb 581 . . . . . . 7 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑥𝐴) → ∃𝑦 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ⊆ 𝐴)
7870, 77r19.29a 3148 . . . . . 6 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑥𝐴) → 𝒫 ℕ ≼ 𝐴)
7978ex 412 . . . . 5 (𝐴 ∈ (topGen‘ran (,)) → (𝑥𝐴 → 𝒫 ℕ ≼ 𝐴))
8079exlimdv 1933 . . . 4 (𝐴 ∈ (topGen‘ran (,)) → (∃𝑥 𝑥𝐴 → 𝒫 ℕ ≼ 𝐴))
8110, 80biimtrid 242 . . 3 (𝐴 ∈ (topGen‘ran (,)) → (𝐴 ≠ ∅ → 𝒫 ℕ ≼ 𝐴))
8281imp 406 . 2 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝐴 ≠ ∅) → 𝒫 ℕ ≼ 𝐴)
83 sbth 9107 . 2 ((𝐴 ≼ 𝒫 ℕ ∧ 𝒫 ℕ ≼ 𝐴) → 𝐴 ≈ 𝒫 ℕ)
849, 82, 83syl2an2r 685 1 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝐴 ≠ ∅) → 𝐴 ≈ 𝒫 ℕ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2108  wne 2932  wrex 3060  Vcvv 3459  wss 3926  c0 4308  𝒫 cpw 4575   cuni 4883   class class class wbr 5119   × cxp 5652  ran crn 5655  cres 5656  ccom 5658  cfv 6531  (class class class)co 7405  cen 8956  cdom 8957  cr 11128  0cc0 11129  1c1 11130   + caddc 11132  *cxr 11268   < clt 11269  cmin 11466   / cdiv 11894  cn 12240  2c2 12295  +crp 13008  (,)cioo 13362  [,]cicc 13365  abscabs 15253  topGenctg 17451  ∞Metcxmet 21300  ballcbl 21302  MetOpencmopn 21305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-omul 8485  df-er 8719  df-map 8842  df-pm 8843  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-inf 9455  df-oi 9524  df-card 9953  df-acn 9956  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ioo 13366  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-fl 13809  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-limsup 15487  df-clim 15504  df-rlim 15505  df-sum 15703  df-topgen 17457  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-top 22832  df-topon 22849  df-bases 22884
This theorem is referenced by:  rectbntr0  24772
  Copyright terms: Public domain W3C validator