Step | Hyp | Ref
| Expression |
1 | | reex 10962 |
. . . 4
⊢ ℝ
∈ V |
2 | | elssuni 4871 |
. . . . 5
⊢ (𝐴 ∈ (topGen‘ran (,))
→ 𝐴 ⊆ ∪ (topGen‘ran (,))) |
3 | | uniretop 23926 |
. . . . 5
⊢ ℝ =
∪ (topGen‘ran (,)) |
4 | 2, 3 | sseqtrrdi 3972 |
. . . 4
⊢ (𝐴 ∈ (topGen‘ran (,))
→ 𝐴 ⊆
ℝ) |
5 | | ssdomg 8786 |
. . . 4
⊢ (ℝ
∈ V → (𝐴 ⊆
ℝ → 𝐴 ≼
ℝ)) |
6 | 1, 4, 5 | mpsyl 68 |
. . 3
⊢ (𝐴 ∈ (topGen‘ran (,))
→ 𝐴 ≼
ℝ) |
7 | | rpnnen 15936 |
. . 3
⊢ ℝ
≈ 𝒫 ℕ |
8 | | domentr 8799 |
. . 3
⊢ ((𝐴 ≼ ℝ ∧ ℝ
≈ 𝒫 ℕ) → 𝐴 ≼ 𝒫 ℕ) |
9 | 6, 7, 8 | sylancl 586 |
. 2
⊢ (𝐴 ∈ (topGen‘ran (,))
→ 𝐴 ≼ 𝒫
ℕ) |
10 | | n0 4280 |
. . . 4
⊢ (𝐴 ≠ ∅ ↔
∃𝑥 𝑥 ∈ 𝐴) |
11 | 4 | sselda 3921 |
. . . . . . . . 9
⊢ ((𝐴 ∈ (topGen‘ran (,))
∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ) |
12 | | rpnnen2 15935 |
. . . . . . . . . . . 12
⊢ 𝒫
ℕ ≼ (0[,]1) |
13 | | rphalfcl 12757 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ ℝ+
→ (𝑦 / 2) ∈
ℝ+) |
14 | 13 | rpred 12772 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ℝ+
→ (𝑦 / 2) ∈
ℝ) |
15 | | resubcl 11285 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℝ ∧ (𝑦 / 2) ∈ ℝ) →
(𝑥 − (𝑦 / 2)) ∈
ℝ) |
16 | 14, 15 | sylan2 593 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+)
→ (𝑥 − (𝑦 / 2)) ∈
ℝ) |
17 | | readdcl 10954 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℝ ∧ (𝑦 / 2) ∈ ℝ) →
(𝑥 + (𝑦 / 2)) ∈ ℝ) |
18 | 14, 17 | sylan2 593 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+)
→ (𝑥 + (𝑦 / 2)) ∈
ℝ) |
19 | | simpl 483 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+)
→ 𝑥 ∈
ℝ) |
20 | | ltsubrp 12766 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℝ ∧ (𝑦 / 2) ∈
ℝ+) → (𝑥 − (𝑦 / 2)) < 𝑥) |
21 | 13, 20 | sylan2 593 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+)
→ (𝑥 − (𝑦 / 2)) < 𝑥) |
22 | | ltaddrp 12767 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℝ ∧ (𝑦 / 2) ∈
ℝ+) → 𝑥 < (𝑥 + (𝑦 / 2))) |
23 | 13, 22 | sylan2 593 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+)
→ 𝑥 < (𝑥 + (𝑦 / 2))) |
24 | 16, 19, 18, 21, 23 | lttrd 11136 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+)
→ (𝑥 − (𝑦 / 2)) < (𝑥 + (𝑦 / 2))) |
25 | | iccen 13229 |
. . . . . . . . . . . . 13
⊢ (((𝑥 − (𝑦 / 2)) ∈ ℝ ∧ (𝑥 + (𝑦 / 2)) ∈ ℝ ∧ (𝑥 − (𝑦 / 2)) < (𝑥 + (𝑦 / 2))) → (0[,]1) ≈ ((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2)))) |
26 | 16, 18, 24, 25 | syl3anc 1370 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+)
→ (0[,]1) ≈ ((𝑥
− (𝑦 / 2))[,](𝑥 + (𝑦 / 2)))) |
27 | | domentr 8799 |
. . . . . . . . . . . 12
⊢
((𝒫 ℕ ≼ (0[,]1) ∧ (0[,]1) ≈ ((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2)))) → 𝒫 ℕ ≼
((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2)))) |
28 | 12, 26, 27 | sylancr 587 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+)
→ 𝒫 ℕ ≼ ((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2)))) |
29 | | ovex 7308 |
. . . . . . . . . . . 12
⊢ ((𝑥 − 𝑦)(,)(𝑥 + 𝑦)) ∈ V |
30 | | rpre 12738 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ ℝ+
→ 𝑦 ∈
ℝ) |
31 | | resubcl 11285 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 − 𝑦) ∈ ℝ) |
32 | 30, 31 | sylan2 593 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+)
→ (𝑥 − 𝑦) ∈
ℝ) |
33 | 32 | rexrd 11025 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+)
→ (𝑥 − 𝑦) ∈
ℝ*) |
34 | | readdcl 10954 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ) |
35 | 30, 34 | sylan2 593 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+)
→ (𝑥 + 𝑦) ∈
ℝ) |
36 | 35 | rexrd 11025 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+)
→ (𝑥 + 𝑦) ∈
ℝ*) |
37 | 19 | recnd 11003 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+)
→ 𝑥 ∈
ℂ) |
38 | 14 | adantl 482 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+)
→ (𝑦 / 2) ∈
ℝ) |
39 | 38 | recnd 11003 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+)
→ (𝑦 / 2) ∈
ℂ) |
40 | 37, 39, 39 | subsub4d 11363 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+)
→ ((𝑥 − (𝑦 / 2)) − (𝑦 / 2)) = (𝑥 − ((𝑦 / 2) + (𝑦 / 2)))) |
41 | 30 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+)
→ 𝑦 ∈
ℝ) |
42 | 41 | recnd 11003 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+)
→ 𝑦 ∈
ℂ) |
43 | 42 | 2halvesd 12219 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+)
→ ((𝑦 / 2) + (𝑦 / 2)) = 𝑦) |
44 | 43 | oveq2d 7291 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+)
→ (𝑥 − ((𝑦 / 2) + (𝑦 / 2))) = (𝑥 − 𝑦)) |
45 | 40, 44 | eqtrd 2778 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+)
→ ((𝑥 − (𝑦 / 2)) − (𝑦 / 2)) = (𝑥 − 𝑦)) |
46 | 13 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+)
→ (𝑦 / 2) ∈
ℝ+) |
47 | 16, 46 | ltsubrpd 12804 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+)
→ ((𝑥 − (𝑦 / 2)) − (𝑦 / 2)) < (𝑥 − (𝑦 / 2))) |
48 | 45, 47 | eqbrtrrd 5098 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+)
→ (𝑥 − 𝑦) < (𝑥 − (𝑦 / 2))) |
49 | 18, 46 | ltaddrpd 12805 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+)
→ (𝑥 + (𝑦 / 2)) < ((𝑥 + (𝑦 / 2)) + (𝑦 / 2))) |
50 | 37, 39, 39 | addassd 10997 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+)
→ ((𝑥 + (𝑦 / 2)) + (𝑦 / 2)) = (𝑥 + ((𝑦 / 2) + (𝑦 / 2)))) |
51 | 43 | oveq2d 7291 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+)
→ (𝑥 + ((𝑦 / 2) + (𝑦 / 2))) = (𝑥 + 𝑦)) |
52 | 50, 51 | eqtrd 2778 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+)
→ ((𝑥 + (𝑦 / 2)) + (𝑦 / 2)) = (𝑥 + 𝑦)) |
53 | 49, 52 | breqtrd 5100 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+)
→ (𝑥 + (𝑦 / 2)) < (𝑥 + 𝑦)) |
54 | | iccssioo 13148 |
. . . . . . . . . . . . 13
⊢ ((((𝑥 − 𝑦) ∈ ℝ* ∧ (𝑥 + 𝑦) ∈ ℝ*) ∧ ((𝑥 − 𝑦) < (𝑥 − (𝑦 / 2)) ∧ (𝑥 + (𝑦 / 2)) < (𝑥 + 𝑦))) → ((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2))) ⊆ ((𝑥 − 𝑦)(,)(𝑥 + 𝑦))) |
55 | 33, 36, 48, 53, 54 | syl22anc 836 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+)
→ ((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2))) ⊆ ((𝑥 − 𝑦)(,)(𝑥 + 𝑦))) |
56 | | ssdomg 8786 |
. . . . . . . . . . . 12
⊢ (((𝑥 − 𝑦)(,)(𝑥 + 𝑦)) ∈ V → (((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2))) ⊆ ((𝑥 − 𝑦)(,)(𝑥 + 𝑦)) → ((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2))) ≼ ((𝑥 − 𝑦)(,)(𝑥 + 𝑦)))) |
57 | 29, 55, 56 | mpsyl 68 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+)
→ ((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2))) ≼ ((𝑥 − 𝑦)(,)(𝑥 + 𝑦))) |
58 | | domtr 8793 |
. . . . . . . . . . 11
⊢
((𝒫 ℕ ≼ ((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2))) ∧ ((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2))) ≼ ((𝑥 − 𝑦)(,)(𝑥 + 𝑦))) → 𝒫 ℕ ≼ ((𝑥 − 𝑦)(,)(𝑥 + 𝑦))) |
59 | 28, 57, 58 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+)
→ 𝒫 ℕ ≼ ((𝑥 − 𝑦)(,)(𝑥 + 𝑦))) |
60 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ ((abs
∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − )
↾ (ℝ × ℝ)) |
61 | 60 | bl2ioo 23955 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥(ball‘((abs ∘
− ) ↾ (ℝ × ℝ)))𝑦) = ((𝑥 − 𝑦)(,)(𝑥 + 𝑦))) |
62 | 30, 61 | sylan2 593 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+)
→ (𝑥(ball‘((abs
∘ − ) ↾ (ℝ × ℝ)))𝑦) = ((𝑥 − 𝑦)(,)(𝑥 + 𝑦))) |
63 | 59, 62 | breqtrrd 5102 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+)
→ 𝒫 ℕ ≼ (𝑥(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))𝑦)) |
64 | 11, 63 | sylan 580 |
. . . . . . . 8
⊢ (((𝐴 ∈ (topGen‘ran (,))
∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ ℝ+) → 𝒫
ℕ ≼ (𝑥(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))𝑦)) |
65 | | simplll 772 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ (topGen‘ran (,))
∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑥(ball‘((abs ∘
− ) ↾ (ℝ × ℝ)))𝑦) ⊆ 𝐴) → 𝐴 ∈ (topGen‘ran
(,))) |
66 | | simpr 485 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ (topGen‘ran (,))
∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑥(ball‘((abs ∘
− ) ↾ (ℝ × ℝ)))𝑦) ⊆ 𝐴) → (𝑥(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))𝑦) ⊆ 𝐴) |
67 | | ssdomg 8786 |
. . . . . . . . 9
⊢ (𝐴 ∈ (topGen‘ran (,))
→ ((𝑥(ball‘((abs
∘ − ) ↾ (ℝ × ℝ)))𝑦) ⊆ 𝐴 → (𝑥(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))𝑦) ≼ 𝐴)) |
68 | 65, 66, 67 | sylc 65 |
. . . . . . . 8
⊢ ((((𝐴 ∈ (topGen‘ran (,))
∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑥(ball‘((abs ∘
− ) ↾ (ℝ × ℝ)))𝑦) ⊆ 𝐴) → (𝑥(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))𝑦) ≼ 𝐴) |
69 | | domtr 8793 |
. . . . . . . 8
⊢
((𝒫 ℕ ≼ (𝑥(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))𝑦) ∧ (𝑥(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))𝑦) ≼ 𝐴) → 𝒫 ℕ ≼ 𝐴) |
70 | 64, 68, 69 | syl2an2r 682 |
. . . . . . 7
⊢ ((((𝐴 ∈ (topGen‘ran (,))
∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑥(ball‘((abs ∘
− ) ↾ (ℝ × ℝ)))𝑦) ⊆ 𝐴) → 𝒫 ℕ ≼ 𝐴) |
71 | | eqid 2738 |
. . . . . . . . . 10
⊢
(MetOpen‘((abs ∘ − ) ↾ (ℝ ×
ℝ))) = (MetOpen‘((abs ∘ − ) ↾ (ℝ ×
ℝ))) |
72 | 60, 71 | tgioo 23959 |
. . . . . . . . 9
⊢
(topGen‘ran (,)) = (MetOpen‘((abs ∘ − ) ↾
(ℝ × ℝ))) |
73 | 72 | eleq2i 2830 |
. . . . . . . 8
⊢ (𝐴 ∈ (topGen‘ran (,))
↔ 𝐴 ∈
(MetOpen‘((abs ∘ − ) ↾ (ℝ ×
ℝ)))) |
74 | 60 | rexmet 23954 |
. . . . . . . . 9
⊢ ((abs
∘ − ) ↾ (ℝ × ℝ)) ∈
(∞Met‘ℝ) |
75 | 71 | mopni2 23649 |
. . . . . . . . 9
⊢ ((((abs
∘ − ) ↾ (ℝ × ℝ)) ∈
(∞Met‘ℝ) ∧ 𝐴 ∈ (MetOpen‘((abs ∘ −
) ↾ (ℝ × ℝ))) ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ ℝ+ (𝑥(ball‘((abs ∘
− ) ↾ (ℝ × ℝ)))𝑦) ⊆ 𝐴) |
76 | 74, 75 | mp3an1 1447 |
. . . . . . . 8
⊢ ((𝐴 ∈ (MetOpen‘((abs
∘ − ) ↾ (ℝ × ℝ))) ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ ℝ+ (𝑥(ball‘((abs ∘
− ) ↾ (ℝ × ℝ)))𝑦) ⊆ 𝐴) |
77 | 73, 76 | sylanb 581 |
. . . . . . 7
⊢ ((𝐴 ∈ (topGen‘ran (,))
∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ ℝ+
(𝑥(ball‘((abs ∘
− ) ↾ (ℝ × ℝ)))𝑦) ⊆ 𝐴) |
78 | 70, 77 | r19.29a 3218 |
. . . . . 6
⊢ ((𝐴 ∈ (topGen‘ran (,))
∧ 𝑥 ∈ 𝐴) → 𝒫 ℕ
≼ 𝐴) |
79 | 78 | ex 413 |
. . . . 5
⊢ (𝐴 ∈ (topGen‘ran (,))
→ (𝑥 ∈ 𝐴 → 𝒫 ℕ
≼ 𝐴)) |
80 | 79 | exlimdv 1936 |
. . . 4
⊢ (𝐴 ∈ (topGen‘ran (,))
→ (∃𝑥 𝑥 ∈ 𝐴 → 𝒫 ℕ ≼ 𝐴)) |
81 | 10, 80 | syl5bi 241 |
. . 3
⊢ (𝐴 ∈ (topGen‘ran (,))
→ (𝐴 ≠ ∅
→ 𝒫 ℕ ≼ 𝐴)) |
82 | 81 | imp 407 |
. 2
⊢ ((𝐴 ∈ (topGen‘ran (,))
∧ 𝐴 ≠ ∅)
→ 𝒫 ℕ ≼ 𝐴) |
83 | | sbth 8880 |
. 2
⊢ ((𝐴 ≼ 𝒫 ℕ ∧
𝒫 ℕ ≼ 𝐴) → 𝐴 ≈ 𝒫 ℕ) |
84 | 9, 82, 83 | syl2an2r 682 |
1
⊢ ((𝐴 ∈ (topGen‘ran (,))
∧ 𝐴 ≠ ∅)
→ 𝐴 ≈ 𝒫
ℕ) |