MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opnreen Structured version   Visualization version   GIF version

Theorem opnreen 23366
Description: Every nonempty open set is uncountable. (Contributed by Mario Carneiro, 26-Jul-2014.) (Revised by Mario Carneiro, 20-Feb-2015.)
Assertion
Ref Expression
opnreen ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝐴 ≠ ∅) → 𝐴 ≈ 𝒫 ℕ)

Proof of Theorem opnreen
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reex 10616 . . . 4 ℝ ∈ V
2 elssuni 4859 . . . . 5 (𝐴 ∈ (topGen‘ran (,)) → 𝐴 (topGen‘ran (,)))
3 uniretop 23298 . . . . 5 ℝ = (topGen‘ran (,))
42, 3sseqtrrdi 4015 . . . 4 (𝐴 ∈ (topGen‘ran (,)) → 𝐴 ⊆ ℝ)
5 ssdomg 8543 . . . 4 (ℝ ∈ V → (𝐴 ⊆ ℝ → 𝐴 ≼ ℝ))
61, 4, 5mpsyl 68 . . 3 (𝐴 ∈ (topGen‘ran (,)) → 𝐴 ≼ ℝ)
7 rpnnen 15568 . . 3 ℝ ≈ 𝒫 ℕ
8 domentr 8556 . . 3 ((𝐴 ≼ ℝ ∧ ℝ ≈ 𝒫 ℕ) → 𝐴 ≼ 𝒫 ℕ)
96, 7, 8sylancl 586 . 2 (𝐴 ∈ (topGen‘ran (,)) → 𝐴 ≼ 𝒫 ℕ)
10 n0 4307 . . . 4 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
114sselda 3964 . . . . . . . . 9 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
12 rpnnen2 15567 . . . . . . . . . . . 12 𝒫 ℕ ≼ (0[,]1)
13 rphalfcl 12404 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℝ+ → (𝑦 / 2) ∈ ℝ+)
1413rpred 12419 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ+ → (𝑦 / 2) ∈ ℝ)
15 resubcl 10938 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ (𝑦 / 2) ∈ ℝ) → (𝑥 − (𝑦 / 2)) ∈ ℝ)
1614, 15sylan2 592 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑥 − (𝑦 / 2)) ∈ ℝ)
17 readdcl 10608 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ (𝑦 / 2) ∈ ℝ) → (𝑥 + (𝑦 / 2)) ∈ ℝ)
1814, 17sylan2 592 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑥 + (𝑦 / 2)) ∈ ℝ)
19 simpl 483 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → 𝑥 ∈ ℝ)
20 ltsubrp 12413 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ (𝑦 / 2) ∈ ℝ+) → (𝑥 − (𝑦 / 2)) < 𝑥)
2113, 20sylan2 592 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑥 − (𝑦 / 2)) < 𝑥)
22 ltaddrp 12414 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ (𝑦 / 2) ∈ ℝ+) → 𝑥 < (𝑥 + (𝑦 / 2)))
2313, 22sylan2 592 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → 𝑥 < (𝑥 + (𝑦 / 2)))
2416, 19, 18, 21, 23lttrd 10789 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑥 − (𝑦 / 2)) < (𝑥 + (𝑦 / 2)))
25 iccen 12871 . . . . . . . . . . . . 13 (((𝑥 − (𝑦 / 2)) ∈ ℝ ∧ (𝑥 + (𝑦 / 2)) ∈ ℝ ∧ (𝑥 − (𝑦 / 2)) < (𝑥 + (𝑦 / 2))) → (0[,]1) ≈ ((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2))))
2616, 18, 24, 25syl3anc 1363 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (0[,]1) ≈ ((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2))))
27 domentr 8556 . . . . . . . . . . . 12 ((𝒫 ℕ ≼ (0[,]1) ∧ (0[,]1) ≈ ((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2)))) → 𝒫 ℕ ≼ ((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2))))
2812, 26, 27sylancr 587 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → 𝒫 ℕ ≼ ((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2))))
29 ovex 7178 . . . . . . . . . . . 12 ((𝑥𝑦)(,)(𝑥 + 𝑦)) ∈ V
30 rpre 12385 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
31 resubcl 10938 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥𝑦) ∈ ℝ)
3230, 31sylan2 592 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑥𝑦) ∈ ℝ)
3332rexrd 10679 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑥𝑦) ∈ ℝ*)
34 readdcl 10608 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ)
3530, 34sylan2 592 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑥 + 𝑦) ∈ ℝ)
3635rexrd 10679 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑥 + 𝑦) ∈ ℝ*)
3719recnd 10657 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → 𝑥 ∈ ℂ)
3814adantl 482 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑦 / 2) ∈ ℝ)
3938recnd 10657 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑦 / 2) ∈ ℂ)
4037, 39, 39subsub4d 11016 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → ((𝑥 − (𝑦 / 2)) − (𝑦 / 2)) = (𝑥 − ((𝑦 / 2) + (𝑦 / 2))))
4130adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ)
4241recnd 10657 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈ ℂ)
43422halvesd 11871 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → ((𝑦 / 2) + (𝑦 / 2)) = 𝑦)
4443oveq2d 7161 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑥 − ((𝑦 / 2) + (𝑦 / 2))) = (𝑥𝑦))
4540, 44eqtrd 2853 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → ((𝑥 − (𝑦 / 2)) − (𝑦 / 2)) = (𝑥𝑦))
4613adantl 482 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑦 / 2) ∈ ℝ+)
4716, 46ltsubrpd 12451 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → ((𝑥 − (𝑦 / 2)) − (𝑦 / 2)) < (𝑥 − (𝑦 / 2)))
4845, 47eqbrtrrd 5081 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑥𝑦) < (𝑥 − (𝑦 / 2)))
4918, 46ltaddrpd 12452 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑥 + (𝑦 / 2)) < ((𝑥 + (𝑦 / 2)) + (𝑦 / 2)))
5037, 39, 39addassd 10651 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → ((𝑥 + (𝑦 / 2)) + (𝑦 / 2)) = (𝑥 + ((𝑦 / 2) + (𝑦 / 2))))
5143oveq2d 7161 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑥 + ((𝑦 / 2) + (𝑦 / 2))) = (𝑥 + 𝑦))
5250, 51eqtrd 2853 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → ((𝑥 + (𝑦 / 2)) + (𝑦 / 2)) = (𝑥 + 𝑦))
5349, 52breqtrd 5083 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑥 + (𝑦 / 2)) < (𝑥 + 𝑦))
54 iccssioo 12793 . . . . . . . . . . . . 13 ((((𝑥𝑦) ∈ ℝ* ∧ (𝑥 + 𝑦) ∈ ℝ*) ∧ ((𝑥𝑦) < (𝑥 − (𝑦 / 2)) ∧ (𝑥 + (𝑦 / 2)) < (𝑥 + 𝑦))) → ((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2))) ⊆ ((𝑥𝑦)(,)(𝑥 + 𝑦)))
5533, 36, 48, 53, 54syl22anc 834 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → ((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2))) ⊆ ((𝑥𝑦)(,)(𝑥 + 𝑦)))
56 ssdomg 8543 . . . . . . . . . . . 12 (((𝑥𝑦)(,)(𝑥 + 𝑦)) ∈ V → (((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2))) ⊆ ((𝑥𝑦)(,)(𝑥 + 𝑦)) → ((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2))) ≼ ((𝑥𝑦)(,)(𝑥 + 𝑦))))
5729, 55, 56mpsyl 68 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → ((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2))) ≼ ((𝑥𝑦)(,)(𝑥 + 𝑦)))
58 domtr 8550 . . . . . . . . . . 11 ((𝒫 ℕ ≼ ((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2))) ∧ ((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2))) ≼ ((𝑥𝑦)(,)(𝑥 + 𝑦))) → 𝒫 ℕ ≼ ((𝑥𝑦)(,)(𝑥 + 𝑦)))
5928, 57, 58syl2anc 584 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → 𝒫 ℕ ≼ ((𝑥𝑦)(,)(𝑥 + 𝑦)))
60 eqid 2818 . . . . . . . . . . . 12 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
6160bl2ioo 23327 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) = ((𝑥𝑦)(,)(𝑥 + 𝑦)))
6230, 61sylan2 592 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) = ((𝑥𝑦)(,)(𝑥 + 𝑦)))
6359, 62breqtrrd 5085 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → 𝒫 ℕ ≼ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦))
6411, 63sylan 580 . . . . . . . 8 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑥𝐴) ∧ 𝑦 ∈ ℝ+) → 𝒫 ℕ ≼ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦))
65 simplll 771 . . . . . . . . 9 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑥𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ⊆ 𝐴) → 𝐴 ∈ (topGen‘ran (,)))
66 simpr 485 . . . . . . . . 9 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑥𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ⊆ 𝐴) → (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ⊆ 𝐴)
67 ssdomg 8543 . . . . . . . . 9 (𝐴 ∈ (topGen‘ran (,)) → ((𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ⊆ 𝐴 → (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ≼ 𝐴))
6865, 66, 67sylc 65 . . . . . . . 8 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑥𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ⊆ 𝐴) → (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ≼ 𝐴)
69 domtr 8550 . . . . . . . 8 ((𝒫 ℕ ≼ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ∧ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ≼ 𝐴) → 𝒫 ℕ ≼ 𝐴)
7064, 68, 69syl2an2r 681 . . . . . . 7 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑥𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ⊆ 𝐴) → 𝒫 ℕ ≼ 𝐴)
71 eqid 2818 . . . . . . . . . 10 (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
7260, 71tgioo 23331 . . . . . . . . 9 (topGen‘ran (,)) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
7372eleq2i 2901 . . . . . . . 8 (𝐴 ∈ (topGen‘ran (,)) ↔ 𝐴 ∈ (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))))
7460rexmet 23326 . . . . . . . . 9 ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ)
7571mopni2 23030 . . . . . . . . 9 ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ 𝐴 ∈ (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) ∧ 𝑥𝐴) → ∃𝑦 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ⊆ 𝐴)
7674, 75mp3an1 1439 . . . . . . . 8 ((𝐴 ∈ (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) ∧ 𝑥𝐴) → ∃𝑦 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ⊆ 𝐴)
7773, 76sylanb 581 . . . . . . 7 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑥𝐴) → ∃𝑦 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ⊆ 𝐴)
7870, 77r19.29a 3286 . . . . . 6 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑥𝐴) → 𝒫 ℕ ≼ 𝐴)
7978ex 413 . . . . 5 (𝐴 ∈ (topGen‘ran (,)) → (𝑥𝐴 → 𝒫 ℕ ≼ 𝐴))
8079exlimdv 1925 . . . 4 (𝐴 ∈ (topGen‘ran (,)) → (∃𝑥 𝑥𝐴 → 𝒫 ℕ ≼ 𝐴))
8110, 80syl5bi 243 . . 3 (𝐴 ∈ (topGen‘ran (,)) → (𝐴 ≠ ∅ → 𝒫 ℕ ≼ 𝐴))
8281imp 407 . 2 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝐴 ≠ ∅) → 𝒫 ℕ ≼ 𝐴)
83 sbth 8625 . 2 ((𝐴 ≼ 𝒫 ℕ ∧ 𝒫 ℕ ≼ 𝐴) → 𝐴 ≈ 𝒫 ℕ)
849, 82, 83syl2an2r 681 1 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝐴 ≠ ∅) → 𝐴 ≈ 𝒫 ℕ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wex 1771  wcel 2105  wne 3013  wrex 3136  Vcvv 3492  wss 3933  c0 4288  𝒫 cpw 4535   cuni 4830   class class class wbr 5057   × cxp 5546  ran crn 5549  cres 5550  ccom 5552  cfv 6348  (class class class)co 7145  cen 8494  cdom 8495  cr 10524  0cc0 10525  1c1 10526   + caddc 10528  *cxr 10662   < clt 10663  cmin 10858   / cdiv 11285  cn 11626  2c2 11680  +crp 12377  (,)cioo 12726  [,]cicc 12729  abscabs 14581  topGenctg 16699  ∞Metcxmet 20458  ballcbl 20460  MetOpencmopn 20463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-omul 8096  df-er 8278  df-map 8397  df-pm 8398  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-acn 9359  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ico 12732  df-icc 12733  df-fz 12881  df-fzo 13022  df-fl 13150  df-seq 13358  df-exp 13418  df-hash 13679  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-limsup 14816  df-clim 14833  df-rlim 14834  df-sum 15031  df-topgen 16705  df-psmet 20465  df-xmet 20466  df-met 20467  df-bl 20468  df-mopn 20469  df-top 21430  df-topon 21447  df-bases 21482
This theorem is referenced by:  rectbntr0  23367
  Copyright terms: Public domain W3C validator