Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  opnreen Structured version   Visualization version   GIF version

Theorem opnreen 23439
 Description: Every nonempty open set is uncountable. (Contributed by Mario Carneiro, 26-Jul-2014.) (Revised by Mario Carneiro, 20-Feb-2015.)
Assertion
Ref Expression
opnreen ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝐴 ≠ ∅) → 𝐴 ≈ 𝒫 ℕ)

Proof of Theorem opnreen
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reex 10621 . . . 4 ℝ ∈ V
2 elssuni 4833 . . . . 5 (𝐴 ∈ (topGen‘ran (,)) → 𝐴 (topGen‘ran (,)))
3 uniretop 23371 . . . . 5 ℝ = (topGen‘ran (,))
42, 3sseqtrrdi 3969 . . . 4 (𝐴 ∈ (topGen‘ran (,)) → 𝐴 ⊆ ℝ)
5 ssdomg 8542 . . . 4 (ℝ ∈ V → (𝐴 ⊆ ℝ → 𝐴 ≼ ℝ))
61, 4, 5mpsyl 68 . . 3 (𝐴 ∈ (topGen‘ran (,)) → 𝐴 ≼ ℝ)
7 rpnnen 15575 . . 3 ℝ ≈ 𝒫 ℕ
8 domentr 8555 . . 3 ((𝐴 ≼ ℝ ∧ ℝ ≈ 𝒫 ℕ) → 𝐴 ≼ 𝒫 ℕ)
96, 7, 8sylancl 589 . 2 (𝐴 ∈ (topGen‘ran (,)) → 𝐴 ≼ 𝒫 ℕ)
10 n0 4263 . . . 4 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
114sselda 3918 . . . . . . . . 9 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
12 rpnnen2 15574 . . . . . . . . . . . 12 𝒫 ℕ ≼ (0[,]1)
13 rphalfcl 12408 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℝ+ → (𝑦 / 2) ∈ ℝ+)
1413rpred 12423 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ+ → (𝑦 / 2) ∈ ℝ)
15 resubcl 10943 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ (𝑦 / 2) ∈ ℝ) → (𝑥 − (𝑦 / 2)) ∈ ℝ)
1614, 15sylan2 595 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑥 − (𝑦 / 2)) ∈ ℝ)
17 readdcl 10613 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ (𝑦 / 2) ∈ ℝ) → (𝑥 + (𝑦 / 2)) ∈ ℝ)
1814, 17sylan2 595 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑥 + (𝑦 / 2)) ∈ ℝ)
19 simpl 486 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → 𝑥 ∈ ℝ)
20 ltsubrp 12417 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ (𝑦 / 2) ∈ ℝ+) → (𝑥 − (𝑦 / 2)) < 𝑥)
2113, 20sylan2 595 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑥 − (𝑦 / 2)) < 𝑥)
22 ltaddrp 12418 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ (𝑦 / 2) ∈ ℝ+) → 𝑥 < (𝑥 + (𝑦 / 2)))
2313, 22sylan2 595 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → 𝑥 < (𝑥 + (𝑦 / 2)))
2416, 19, 18, 21, 23lttrd 10794 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑥 − (𝑦 / 2)) < (𝑥 + (𝑦 / 2)))
25 iccen 12879 . . . . . . . . . . . . 13 (((𝑥 − (𝑦 / 2)) ∈ ℝ ∧ (𝑥 + (𝑦 / 2)) ∈ ℝ ∧ (𝑥 − (𝑦 / 2)) < (𝑥 + (𝑦 / 2))) → (0[,]1) ≈ ((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2))))
2616, 18, 24, 25syl3anc 1368 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (0[,]1) ≈ ((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2))))
27 domentr 8555 . . . . . . . . . . . 12 ((𝒫 ℕ ≼ (0[,]1) ∧ (0[,]1) ≈ ((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2)))) → 𝒫 ℕ ≼ ((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2))))
2812, 26, 27sylancr 590 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → 𝒫 ℕ ≼ ((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2))))
29 ovex 7172 . . . . . . . . . . . 12 ((𝑥𝑦)(,)(𝑥 + 𝑦)) ∈ V
30 rpre 12389 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
31 resubcl 10943 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥𝑦) ∈ ℝ)
3230, 31sylan2 595 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑥𝑦) ∈ ℝ)
3332rexrd 10684 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑥𝑦) ∈ ℝ*)
34 readdcl 10613 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ)
3530, 34sylan2 595 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑥 + 𝑦) ∈ ℝ)
3635rexrd 10684 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑥 + 𝑦) ∈ ℝ*)
3719recnd 10662 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → 𝑥 ∈ ℂ)
3814adantl 485 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑦 / 2) ∈ ℝ)
3938recnd 10662 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑦 / 2) ∈ ℂ)
4037, 39, 39subsub4d 11021 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → ((𝑥 − (𝑦 / 2)) − (𝑦 / 2)) = (𝑥 − ((𝑦 / 2) + (𝑦 / 2))))
4130adantl 485 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ)
4241recnd 10662 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈ ℂ)
43422halvesd 11875 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → ((𝑦 / 2) + (𝑦 / 2)) = 𝑦)
4443oveq2d 7155 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑥 − ((𝑦 / 2) + (𝑦 / 2))) = (𝑥𝑦))
4540, 44eqtrd 2836 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → ((𝑥 − (𝑦 / 2)) − (𝑦 / 2)) = (𝑥𝑦))
4613adantl 485 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑦 / 2) ∈ ℝ+)
4716, 46ltsubrpd 12455 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → ((𝑥 − (𝑦 / 2)) − (𝑦 / 2)) < (𝑥 − (𝑦 / 2)))
4845, 47eqbrtrrd 5057 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑥𝑦) < (𝑥 − (𝑦 / 2)))
4918, 46ltaddrpd 12456 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑥 + (𝑦 / 2)) < ((𝑥 + (𝑦 / 2)) + (𝑦 / 2)))
5037, 39, 39addassd 10656 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → ((𝑥 + (𝑦 / 2)) + (𝑦 / 2)) = (𝑥 + ((𝑦 / 2) + (𝑦 / 2))))
5143oveq2d 7155 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑥 + ((𝑦 / 2) + (𝑦 / 2))) = (𝑥 + 𝑦))
5250, 51eqtrd 2836 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → ((𝑥 + (𝑦 / 2)) + (𝑦 / 2)) = (𝑥 + 𝑦))
5349, 52breqtrd 5059 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑥 + (𝑦 / 2)) < (𝑥 + 𝑦))
54 iccssioo 12798 . . . . . . . . . . . . 13 ((((𝑥𝑦) ∈ ℝ* ∧ (𝑥 + 𝑦) ∈ ℝ*) ∧ ((𝑥𝑦) < (𝑥 − (𝑦 / 2)) ∧ (𝑥 + (𝑦 / 2)) < (𝑥 + 𝑦))) → ((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2))) ⊆ ((𝑥𝑦)(,)(𝑥 + 𝑦)))
5533, 36, 48, 53, 54syl22anc 837 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → ((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2))) ⊆ ((𝑥𝑦)(,)(𝑥 + 𝑦)))
56 ssdomg 8542 . . . . . . . . . . . 12 (((𝑥𝑦)(,)(𝑥 + 𝑦)) ∈ V → (((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2))) ⊆ ((𝑥𝑦)(,)(𝑥 + 𝑦)) → ((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2))) ≼ ((𝑥𝑦)(,)(𝑥 + 𝑦))))
5729, 55, 56mpsyl 68 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → ((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2))) ≼ ((𝑥𝑦)(,)(𝑥 + 𝑦)))
58 domtr 8549 . . . . . . . . . . 11 ((𝒫 ℕ ≼ ((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2))) ∧ ((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2))) ≼ ((𝑥𝑦)(,)(𝑥 + 𝑦))) → 𝒫 ℕ ≼ ((𝑥𝑦)(,)(𝑥 + 𝑦)))
5928, 57, 58syl2anc 587 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → 𝒫 ℕ ≼ ((𝑥𝑦)(,)(𝑥 + 𝑦)))
60 eqid 2801 . . . . . . . . . . . 12 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
6160bl2ioo 23400 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) = ((𝑥𝑦)(,)(𝑥 + 𝑦)))
6230, 61sylan2 595 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) = ((𝑥𝑦)(,)(𝑥 + 𝑦)))
6359, 62breqtrrd 5061 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → 𝒫 ℕ ≼ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦))
6411, 63sylan 583 . . . . . . . 8 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑥𝐴) ∧ 𝑦 ∈ ℝ+) → 𝒫 ℕ ≼ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦))
65 simplll 774 . . . . . . . . 9 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑥𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ⊆ 𝐴) → 𝐴 ∈ (topGen‘ran (,)))
66 simpr 488 . . . . . . . . 9 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑥𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ⊆ 𝐴) → (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ⊆ 𝐴)
67 ssdomg 8542 . . . . . . . . 9 (𝐴 ∈ (topGen‘ran (,)) → ((𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ⊆ 𝐴 → (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ≼ 𝐴))
6865, 66, 67sylc 65 . . . . . . . 8 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑥𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ⊆ 𝐴) → (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ≼ 𝐴)
69 domtr 8549 . . . . . . . 8 ((𝒫 ℕ ≼ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ∧ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ≼ 𝐴) → 𝒫 ℕ ≼ 𝐴)
7064, 68, 69syl2an2r 684 . . . . . . 7 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑥𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ⊆ 𝐴) → 𝒫 ℕ ≼ 𝐴)
71 eqid 2801 . . . . . . . . . 10 (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
7260, 71tgioo 23404 . . . . . . . . 9 (topGen‘ran (,)) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
7372eleq2i 2884 . . . . . . . 8 (𝐴 ∈ (topGen‘ran (,)) ↔ 𝐴 ∈ (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))))
7460rexmet 23399 . . . . . . . . 9 ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ)
7571mopni2 23103 . . . . . . . . 9 ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ 𝐴 ∈ (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) ∧ 𝑥𝐴) → ∃𝑦 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ⊆ 𝐴)
7674, 75mp3an1 1445 . . . . . . . 8 ((𝐴 ∈ (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) ∧ 𝑥𝐴) → ∃𝑦 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ⊆ 𝐴)
7773, 76sylanb 584 . . . . . . 7 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑥𝐴) → ∃𝑦 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ⊆ 𝐴)
7870, 77r19.29a 3251 . . . . . 6 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑥𝐴) → 𝒫 ℕ ≼ 𝐴)
7978ex 416 . . . . 5 (𝐴 ∈ (topGen‘ran (,)) → (𝑥𝐴 → 𝒫 ℕ ≼ 𝐴))
8079exlimdv 1934 . . . 4 (𝐴 ∈ (topGen‘ran (,)) → (∃𝑥 𝑥𝐴 → 𝒫 ℕ ≼ 𝐴))
8110, 80syl5bi 245 . . 3 (𝐴 ∈ (topGen‘ran (,)) → (𝐴 ≠ ∅ → 𝒫 ℕ ≼ 𝐴))
8281imp 410 . 2 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝐴 ≠ ∅) → 𝒫 ℕ ≼ 𝐴)
83 sbth 8625 . 2 ((𝐴 ≼ 𝒫 ℕ ∧ 𝒫 ℕ ≼ 𝐴) → 𝐴 ≈ 𝒫 ℕ)
849, 82, 83syl2an2r 684 1 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝐴 ≠ ∅) → 𝐴 ≈ 𝒫 ℕ)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538  ∃wex 1781   ∈ wcel 2112   ≠ wne 2990  ∃wrex 3110  Vcvv 3444   ⊆ wss 3884  ∅c0 4246  𝒫 cpw 4500  ∪ cuni 4803   class class class wbr 5033   × cxp 5521  ran crn 5524   ↾ cres 5525   ∘ ccom 5527  ‘cfv 6328  (class class class)co 7139   ≈ cen 8493   ≼ cdom 8494  ℝcr 10529  0cc0 10530  1c1 10531   + caddc 10533  ℝ*cxr 10667   < clt 10668   − cmin 10863   / cdiv 11290  ℕcn 11629  2c2 11684  ℝ+crp 12381  (,)cioo 12730  [,]cicc 12733  abscabs 14588  topGenctg 16706  ∞Metcxmet 20079  ballcbl 20081  MetOpencmopn 20084 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-inf2 9092  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-omul 8094  df-er 8276  df-map 8395  df-pm 8396  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-acn 9359  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-ioo 12734  df-ico 12736  df-icc 12737  df-fz 12890  df-fzo 13033  df-fl 13161  df-seq 13369  df-exp 13430  df-hash 13691  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-limsup 14823  df-clim 14840  df-rlim 14841  df-sum 15038  df-topgen 16712  df-psmet 20086  df-xmet 20087  df-met 20088  df-bl 20089  df-mopn 20090  df-top 21502  df-topon 21519  df-bases 21554 This theorem is referenced by:  rectbntr0  23440
 Copyright terms: Public domain W3C validator