MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icoshft Structured version   Visualization version   GIF version

Theorem icoshft 13394
Description: A shifted real is a member of a shifted, closed-below, open-above real interval. (Contributed by Paul Chapman, 25-Mar-2008.)
Assertion
Ref Expression
icoshft ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑋 ∈ (𝐴[,)𝐵) → (𝑋 + 𝐶) ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))))

Proof of Theorem icoshft
StepHypRef Expression
1 rexr 11180 . . . . . 6 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
2 elico2 13331 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝑋 ∈ (𝐴[,)𝐵) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋 < 𝐵)))
31, 2sylan2 593 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑋 ∈ (𝐴[,)𝐵) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋 < 𝐵)))
43biimpd 229 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑋 ∈ (𝐴[,)𝐵) → (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋 < 𝐵)))
543adant3 1132 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑋 ∈ (𝐴[,)𝐵) → (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋 < 𝐵)))
6 3anass 1094 . . 3 ((𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋 < 𝐵) ↔ (𝑋 ∈ ℝ ∧ (𝐴𝑋𝑋 < 𝐵)))
75, 6imbitrdi 251 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑋 ∈ (𝐴[,)𝐵) → (𝑋 ∈ ℝ ∧ (𝐴𝑋𝑋 < 𝐵))))
8 leadd1 11606 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑋 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴𝑋 ↔ (𝐴 + 𝐶) ≤ (𝑋 + 𝐶)))
983com12 1123 . . . . . . . . 9 ((𝑋 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴𝑋 ↔ (𝐴 + 𝐶) ≤ (𝑋 + 𝐶)))
1093expib 1122 . . . . . . . 8 (𝑋 ∈ ℝ → ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴𝑋 ↔ (𝐴 + 𝐶) ≤ (𝑋 + 𝐶))))
1110com12 32 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑋 ∈ ℝ → (𝐴𝑋 ↔ (𝐴 + 𝐶) ≤ (𝑋 + 𝐶))))
12113adant2 1131 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑋 ∈ ℝ → (𝐴𝑋 ↔ (𝐴 + 𝐶) ≤ (𝑋 + 𝐶))))
1312imp 406 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑋 ∈ ℝ) → (𝐴𝑋 ↔ (𝐴 + 𝐶) ≤ (𝑋 + 𝐶)))
14 ltadd1 11605 . . . . . . . . 9 ((𝑋 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑋 < 𝐵 ↔ (𝑋 + 𝐶) < (𝐵 + 𝐶)))
15143expib 1122 . . . . . . . 8 (𝑋 ∈ ℝ → ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑋 < 𝐵 ↔ (𝑋 + 𝐶) < (𝐵 + 𝐶))))
1615com12 32 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑋 ∈ ℝ → (𝑋 < 𝐵 ↔ (𝑋 + 𝐶) < (𝐵 + 𝐶))))
17163adant1 1130 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑋 ∈ ℝ → (𝑋 < 𝐵 ↔ (𝑋 + 𝐶) < (𝐵 + 𝐶))))
1817imp 406 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑋 ∈ ℝ) → (𝑋 < 𝐵 ↔ (𝑋 + 𝐶) < (𝐵 + 𝐶)))
1913, 18anbi12d 632 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑋 ∈ ℝ) → ((𝐴𝑋𝑋 < 𝐵) ↔ ((𝐴 + 𝐶) ≤ (𝑋 + 𝐶) ∧ (𝑋 + 𝐶) < (𝐵 + 𝐶))))
2019pm5.32da 579 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝑋 ∈ ℝ ∧ (𝐴𝑋𝑋 < 𝐵)) ↔ (𝑋 ∈ ℝ ∧ ((𝐴 + 𝐶) ≤ (𝑋 + 𝐶) ∧ (𝑋 + 𝐶) < (𝐵 + 𝐶)))))
21 readdcl 11111 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑋 + 𝐶) ∈ ℝ)
2221expcom 413 . . . . . . 7 (𝐶 ∈ ℝ → (𝑋 ∈ ℝ → (𝑋 + 𝐶) ∈ ℝ))
2322anim1d 611 . . . . . 6 (𝐶 ∈ ℝ → ((𝑋 ∈ ℝ ∧ ((𝐴 + 𝐶) ≤ (𝑋 + 𝐶) ∧ (𝑋 + 𝐶) < (𝐵 + 𝐶))) → ((𝑋 + 𝐶) ∈ ℝ ∧ ((𝐴 + 𝐶) ≤ (𝑋 + 𝐶) ∧ (𝑋 + 𝐶) < (𝐵 + 𝐶)))))
24 3anass 1094 . . . . . 6 (((𝑋 + 𝐶) ∈ ℝ ∧ (𝐴 + 𝐶) ≤ (𝑋 + 𝐶) ∧ (𝑋 + 𝐶) < (𝐵 + 𝐶)) ↔ ((𝑋 + 𝐶) ∈ ℝ ∧ ((𝐴 + 𝐶) ≤ (𝑋 + 𝐶) ∧ (𝑋 + 𝐶) < (𝐵 + 𝐶))))
2523, 24imbitrrdi 252 . . . . 5 (𝐶 ∈ ℝ → ((𝑋 ∈ ℝ ∧ ((𝐴 + 𝐶) ≤ (𝑋 + 𝐶) ∧ (𝑋 + 𝐶) < (𝐵 + 𝐶))) → ((𝑋 + 𝐶) ∈ ℝ ∧ (𝐴 + 𝐶) ≤ (𝑋 + 𝐶) ∧ (𝑋 + 𝐶) < (𝐵 + 𝐶))))
26253ad2ant3 1135 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝑋 ∈ ℝ ∧ ((𝐴 + 𝐶) ≤ (𝑋 + 𝐶) ∧ (𝑋 + 𝐶) < (𝐵 + 𝐶))) → ((𝑋 + 𝐶) ∈ ℝ ∧ (𝐴 + 𝐶) ≤ (𝑋 + 𝐶) ∧ (𝑋 + 𝐶) < (𝐵 + 𝐶))))
27 readdcl 11111 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 + 𝐶) ∈ ℝ)
28273adant2 1131 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 + 𝐶) ∈ ℝ)
29 readdcl 11111 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 + 𝐶) ∈ ℝ)
30293adant1 1130 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 + 𝐶) ∈ ℝ)
31 rexr 11180 . . . . . . 7 ((𝐵 + 𝐶) ∈ ℝ → (𝐵 + 𝐶) ∈ ℝ*)
32 elico2 13331 . . . . . . 7 (((𝐴 + 𝐶) ∈ ℝ ∧ (𝐵 + 𝐶) ∈ ℝ*) → ((𝑋 + 𝐶) ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶)) ↔ ((𝑋 + 𝐶) ∈ ℝ ∧ (𝐴 + 𝐶) ≤ (𝑋 + 𝐶) ∧ (𝑋 + 𝐶) < (𝐵 + 𝐶))))
3331, 32sylan2 593 . . . . . 6 (((𝐴 + 𝐶) ∈ ℝ ∧ (𝐵 + 𝐶) ∈ ℝ) → ((𝑋 + 𝐶) ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶)) ↔ ((𝑋 + 𝐶) ∈ ℝ ∧ (𝐴 + 𝐶) ≤ (𝑋 + 𝐶) ∧ (𝑋 + 𝐶) < (𝐵 + 𝐶))))
3433biimprd 248 . . . . 5 (((𝐴 + 𝐶) ∈ ℝ ∧ (𝐵 + 𝐶) ∈ ℝ) → (((𝑋 + 𝐶) ∈ ℝ ∧ (𝐴 + 𝐶) ≤ (𝑋 + 𝐶) ∧ (𝑋 + 𝐶) < (𝐵 + 𝐶)) → (𝑋 + 𝐶) ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))))
3528, 30, 34syl2anc 584 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (((𝑋 + 𝐶) ∈ ℝ ∧ (𝐴 + 𝐶) ≤ (𝑋 + 𝐶) ∧ (𝑋 + 𝐶) < (𝐵 + 𝐶)) → (𝑋 + 𝐶) ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))))
3626, 35syld 47 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝑋 ∈ ℝ ∧ ((𝐴 + 𝐶) ≤ (𝑋 + 𝐶) ∧ (𝑋 + 𝐶) < (𝐵 + 𝐶))) → (𝑋 + 𝐶) ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))))
3720, 36sylbid 240 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝑋 ∈ ℝ ∧ (𝐴𝑋𝑋 < 𝐵)) → (𝑋 + 𝐶) ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))))
387, 37syld 47 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑋 ∈ (𝐴[,)𝐵) → (𝑋 + 𝐶) ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2109   class class class wbr 5095  (class class class)co 7353  cr 11027   + caddc 11031  *cxr 11167   < clt 11168  cle 11169  [,)cico 13268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-po 5531  df-so 5532  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-ico 13272
This theorem is referenced by:  icoshftf1o  13395
  Copyright terms: Public domain W3C validator