MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icoshft Structured version   Visualization version   GIF version

Theorem icoshft 13533
Description: A shifted real is a member of a shifted, closed-below, open-above real interval. (Contributed by Paul Chapman, 25-Mar-2008.)
Assertion
Ref Expression
icoshft ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑋 ∈ (𝐴[,)𝐵) → (𝑋 + 𝐶) ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))))

Proof of Theorem icoshft
StepHypRef Expression
1 rexr 11336 . . . . . 6 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
2 elico2 13471 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝑋 ∈ (𝐴[,)𝐵) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋 < 𝐵)))
31, 2sylan2 592 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑋 ∈ (𝐴[,)𝐵) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋 < 𝐵)))
43biimpd 229 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑋 ∈ (𝐴[,)𝐵) → (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋 < 𝐵)))
543adant3 1132 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑋 ∈ (𝐴[,)𝐵) → (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋 < 𝐵)))
6 3anass 1095 . . 3 ((𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋 < 𝐵) ↔ (𝑋 ∈ ℝ ∧ (𝐴𝑋𝑋 < 𝐵)))
75, 6imbitrdi 251 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑋 ∈ (𝐴[,)𝐵) → (𝑋 ∈ ℝ ∧ (𝐴𝑋𝑋 < 𝐵))))
8 leadd1 11758 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑋 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴𝑋 ↔ (𝐴 + 𝐶) ≤ (𝑋 + 𝐶)))
983com12 1123 . . . . . . . . 9 ((𝑋 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴𝑋 ↔ (𝐴 + 𝐶) ≤ (𝑋 + 𝐶)))
1093expib 1122 . . . . . . . 8 (𝑋 ∈ ℝ → ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴𝑋 ↔ (𝐴 + 𝐶) ≤ (𝑋 + 𝐶))))
1110com12 32 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑋 ∈ ℝ → (𝐴𝑋 ↔ (𝐴 + 𝐶) ≤ (𝑋 + 𝐶))))
12113adant2 1131 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑋 ∈ ℝ → (𝐴𝑋 ↔ (𝐴 + 𝐶) ≤ (𝑋 + 𝐶))))
1312imp 406 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑋 ∈ ℝ) → (𝐴𝑋 ↔ (𝐴 + 𝐶) ≤ (𝑋 + 𝐶)))
14 ltadd1 11757 . . . . . . . . 9 ((𝑋 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑋 < 𝐵 ↔ (𝑋 + 𝐶) < (𝐵 + 𝐶)))
15143expib 1122 . . . . . . . 8 (𝑋 ∈ ℝ → ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑋 < 𝐵 ↔ (𝑋 + 𝐶) < (𝐵 + 𝐶))))
1615com12 32 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑋 ∈ ℝ → (𝑋 < 𝐵 ↔ (𝑋 + 𝐶) < (𝐵 + 𝐶))))
17163adant1 1130 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑋 ∈ ℝ → (𝑋 < 𝐵 ↔ (𝑋 + 𝐶) < (𝐵 + 𝐶))))
1817imp 406 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑋 ∈ ℝ) → (𝑋 < 𝐵 ↔ (𝑋 + 𝐶) < (𝐵 + 𝐶)))
1913, 18anbi12d 631 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑋 ∈ ℝ) → ((𝐴𝑋𝑋 < 𝐵) ↔ ((𝐴 + 𝐶) ≤ (𝑋 + 𝐶) ∧ (𝑋 + 𝐶) < (𝐵 + 𝐶))))
2019pm5.32da 578 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝑋 ∈ ℝ ∧ (𝐴𝑋𝑋 < 𝐵)) ↔ (𝑋 ∈ ℝ ∧ ((𝐴 + 𝐶) ≤ (𝑋 + 𝐶) ∧ (𝑋 + 𝐶) < (𝐵 + 𝐶)))))
21 readdcl 11267 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑋 + 𝐶) ∈ ℝ)
2221expcom 413 . . . . . . 7 (𝐶 ∈ ℝ → (𝑋 ∈ ℝ → (𝑋 + 𝐶) ∈ ℝ))
2322anim1d 610 . . . . . 6 (𝐶 ∈ ℝ → ((𝑋 ∈ ℝ ∧ ((𝐴 + 𝐶) ≤ (𝑋 + 𝐶) ∧ (𝑋 + 𝐶) < (𝐵 + 𝐶))) → ((𝑋 + 𝐶) ∈ ℝ ∧ ((𝐴 + 𝐶) ≤ (𝑋 + 𝐶) ∧ (𝑋 + 𝐶) < (𝐵 + 𝐶)))))
24 3anass 1095 . . . . . 6 (((𝑋 + 𝐶) ∈ ℝ ∧ (𝐴 + 𝐶) ≤ (𝑋 + 𝐶) ∧ (𝑋 + 𝐶) < (𝐵 + 𝐶)) ↔ ((𝑋 + 𝐶) ∈ ℝ ∧ ((𝐴 + 𝐶) ≤ (𝑋 + 𝐶) ∧ (𝑋 + 𝐶) < (𝐵 + 𝐶))))
2523, 24imbitrrdi 252 . . . . 5 (𝐶 ∈ ℝ → ((𝑋 ∈ ℝ ∧ ((𝐴 + 𝐶) ≤ (𝑋 + 𝐶) ∧ (𝑋 + 𝐶) < (𝐵 + 𝐶))) → ((𝑋 + 𝐶) ∈ ℝ ∧ (𝐴 + 𝐶) ≤ (𝑋 + 𝐶) ∧ (𝑋 + 𝐶) < (𝐵 + 𝐶))))
26253ad2ant3 1135 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝑋 ∈ ℝ ∧ ((𝐴 + 𝐶) ≤ (𝑋 + 𝐶) ∧ (𝑋 + 𝐶) < (𝐵 + 𝐶))) → ((𝑋 + 𝐶) ∈ ℝ ∧ (𝐴 + 𝐶) ≤ (𝑋 + 𝐶) ∧ (𝑋 + 𝐶) < (𝐵 + 𝐶))))
27 readdcl 11267 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 + 𝐶) ∈ ℝ)
28273adant2 1131 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 + 𝐶) ∈ ℝ)
29 readdcl 11267 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 + 𝐶) ∈ ℝ)
30293adant1 1130 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 + 𝐶) ∈ ℝ)
31 rexr 11336 . . . . . . 7 ((𝐵 + 𝐶) ∈ ℝ → (𝐵 + 𝐶) ∈ ℝ*)
32 elico2 13471 . . . . . . 7 (((𝐴 + 𝐶) ∈ ℝ ∧ (𝐵 + 𝐶) ∈ ℝ*) → ((𝑋 + 𝐶) ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶)) ↔ ((𝑋 + 𝐶) ∈ ℝ ∧ (𝐴 + 𝐶) ≤ (𝑋 + 𝐶) ∧ (𝑋 + 𝐶) < (𝐵 + 𝐶))))
3331, 32sylan2 592 . . . . . 6 (((𝐴 + 𝐶) ∈ ℝ ∧ (𝐵 + 𝐶) ∈ ℝ) → ((𝑋 + 𝐶) ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶)) ↔ ((𝑋 + 𝐶) ∈ ℝ ∧ (𝐴 + 𝐶) ≤ (𝑋 + 𝐶) ∧ (𝑋 + 𝐶) < (𝐵 + 𝐶))))
3433biimprd 248 . . . . 5 (((𝐴 + 𝐶) ∈ ℝ ∧ (𝐵 + 𝐶) ∈ ℝ) → (((𝑋 + 𝐶) ∈ ℝ ∧ (𝐴 + 𝐶) ≤ (𝑋 + 𝐶) ∧ (𝑋 + 𝐶) < (𝐵 + 𝐶)) → (𝑋 + 𝐶) ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))))
3528, 30, 34syl2anc 583 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (((𝑋 + 𝐶) ∈ ℝ ∧ (𝐴 + 𝐶) ≤ (𝑋 + 𝐶) ∧ (𝑋 + 𝐶) < (𝐵 + 𝐶)) → (𝑋 + 𝐶) ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))))
3626, 35syld 47 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝑋 ∈ ℝ ∧ ((𝐴 + 𝐶) ≤ (𝑋 + 𝐶) ∧ (𝑋 + 𝐶) < (𝐵 + 𝐶))) → (𝑋 + 𝐶) ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))))
3720, 36sylbid 240 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝑋 ∈ ℝ ∧ (𝐴𝑋𝑋 < 𝐵)) → (𝑋 + 𝐶) ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))))
387, 37syld 47 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑋 ∈ (𝐴[,)𝐵) → (𝑋 + 𝐶) ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087  wcel 2108   class class class wbr 5166  (class class class)co 7448  cr 11183   + caddc 11187  *cxr 11323   < clt 11324  cle 11325  [,)cico 13409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-ico 13413
This theorem is referenced by:  icoshftf1o  13534
  Copyright terms: Public domain W3C validator