MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icoshft Structured version   Visualization version   GIF version

Theorem icoshft 13504
Description: A shifted real is a member of a shifted, closed-below, open-above real interval. (Contributed by Paul Chapman, 25-Mar-2008.)
Assertion
Ref Expression
icoshft ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑋 ∈ (𝐴[,)𝐵) → (𝑋 + 𝐶) ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))))

Proof of Theorem icoshft
StepHypRef Expression
1 rexr 11310 . . . . . 6 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
2 elico2 13442 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝑋 ∈ (𝐴[,)𝐵) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋 < 𝐵)))
31, 2sylan2 591 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑋 ∈ (𝐴[,)𝐵) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋 < 𝐵)))
43biimpd 228 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑋 ∈ (𝐴[,)𝐵) → (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋 < 𝐵)))
543adant3 1129 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑋 ∈ (𝐴[,)𝐵) → (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋 < 𝐵)))
6 3anass 1092 . . 3 ((𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋 < 𝐵) ↔ (𝑋 ∈ ℝ ∧ (𝐴𝑋𝑋 < 𝐵)))
75, 6imbitrdi 250 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑋 ∈ (𝐴[,)𝐵) → (𝑋 ∈ ℝ ∧ (𝐴𝑋𝑋 < 𝐵))))
8 leadd1 11732 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑋 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴𝑋 ↔ (𝐴 + 𝐶) ≤ (𝑋 + 𝐶)))
983com12 1120 . . . . . . . . 9 ((𝑋 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴𝑋 ↔ (𝐴 + 𝐶) ≤ (𝑋 + 𝐶)))
1093expib 1119 . . . . . . . 8 (𝑋 ∈ ℝ → ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴𝑋 ↔ (𝐴 + 𝐶) ≤ (𝑋 + 𝐶))))
1110com12 32 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑋 ∈ ℝ → (𝐴𝑋 ↔ (𝐴 + 𝐶) ≤ (𝑋 + 𝐶))))
12113adant2 1128 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑋 ∈ ℝ → (𝐴𝑋 ↔ (𝐴 + 𝐶) ≤ (𝑋 + 𝐶))))
1312imp 405 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑋 ∈ ℝ) → (𝐴𝑋 ↔ (𝐴 + 𝐶) ≤ (𝑋 + 𝐶)))
14 ltadd1 11731 . . . . . . . . 9 ((𝑋 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑋 < 𝐵 ↔ (𝑋 + 𝐶) < (𝐵 + 𝐶)))
15143expib 1119 . . . . . . . 8 (𝑋 ∈ ℝ → ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑋 < 𝐵 ↔ (𝑋 + 𝐶) < (𝐵 + 𝐶))))
1615com12 32 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑋 ∈ ℝ → (𝑋 < 𝐵 ↔ (𝑋 + 𝐶) < (𝐵 + 𝐶))))
17163adant1 1127 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑋 ∈ ℝ → (𝑋 < 𝐵 ↔ (𝑋 + 𝐶) < (𝐵 + 𝐶))))
1817imp 405 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑋 ∈ ℝ) → (𝑋 < 𝐵 ↔ (𝑋 + 𝐶) < (𝐵 + 𝐶)))
1913, 18anbi12d 630 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑋 ∈ ℝ) → ((𝐴𝑋𝑋 < 𝐵) ↔ ((𝐴 + 𝐶) ≤ (𝑋 + 𝐶) ∧ (𝑋 + 𝐶) < (𝐵 + 𝐶))))
2019pm5.32da 577 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝑋 ∈ ℝ ∧ (𝐴𝑋𝑋 < 𝐵)) ↔ (𝑋 ∈ ℝ ∧ ((𝐴 + 𝐶) ≤ (𝑋 + 𝐶) ∧ (𝑋 + 𝐶) < (𝐵 + 𝐶)))))
21 readdcl 11241 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑋 + 𝐶) ∈ ℝ)
2221expcom 412 . . . . . . 7 (𝐶 ∈ ℝ → (𝑋 ∈ ℝ → (𝑋 + 𝐶) ∈ ℝ))
2322anim1d 609 . . . . . 6 (𝐶 ∈ ℝ → ((𝑋 ∈ ℝ ∧ ((𝐴 + 𝐶) ≤ (𝑋 + 𝐶) ∧ (𝑋 + 𝐶) < (𝐵 + 𝐶))) → ((𝑋 + 𝐶) ∈ ℝ ∧ ((𝐴 + 𝐶) ≤ (𝑋 + 𝐶) ∧ (𝑋 + 𝐶) < (𝐵 + 𝐶)))))
24 3anass 1092 . . . . . 6 (((𝑋 + 𝐶) ∈ ℝ ∧ (𝐴 + 𝐶) ≤ (𝑋 + 𝐶) ∧ (𝑋 + 𝐶) < (𝐵 + 𝐶)) ↔ ((𝑋 + 𝐶) ∈ ℝ ∧ ((𝐴 + 𝐶) ≤ (𝑋 + 𝐶) ∧ (𝑋 + 𝐶) < (𝐵 + 𝐶))))
2523, 24imbitrrdi 251 . . . . 5 (𝐶 ∈ ℝ → ((𝑋 ∈ ℝ ∧ ((𝐴 + 𝐶) ≤ (𝑋 + 𝐶) ∧ (𝑋 + 𝐶) < (𝐵 + 𝐶))) → ((𝑋 + 𝐶) ∈ ℝ ∧ (𝐴 + 𝐶) ≤ (𝑋 + 𝐶) ∧ (𝑋 + 𝐶) < (𝐵 + 𝐶))))
26253ad2ant3 1132 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝑋 ∈ ℝ ∧ ((𝐴 + 𝐶) ≤ (𝑋 + 𝐶) ∧ (𝑋 + 𝐶) < (𝐵 + 𝐶))) → ((𝑋 + 𝐶) ∈ ℝ ∧ (𝐴 + 𝐶) ≤ (𝑋 + 𝐶) ∧ (𝑋 + 𝐶) < (𝐵 + 𝐶))))
27 readdcl 11241 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 + 𝐶) ∈ ℝ)
28273adant2 1128 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 + 𝐶) ∈ ℝ)
29 readdcl 11241 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 + 𝐶) ∈ ℝ)
30293adant1 1127 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 + 𝐶) ∈ ℝ)
31 rexr 11310 . . . . . . 7 ((𝐵 + 𝐶) ∈ ℝ → (𝐵 + 𝐶) ∈ ℝ*)
32 elico2 13442 . . . . . . 7 (((𝐴 + 𝐶) ∈ ℝ ∧ (𝐵 + 𝐶) ∈ ℝ*) → ((𝑋 + 𝐶) ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶)) ↔ ((𝑋 + 𝐶) ∈ ℝ ∧ (𝐴 + 𝐶) ≤ (𝑋 + 𝐶) ∧ (𝑋 + 𝐶) < (𝐵 + 𝐶))))
3331, 32sylan2 591 . . . . . 6 (((𝐴 + 𝐶) ∈ ℝ ∧ (𝐵 + 𝐶) ∈ ℝ) → ((𝑋 + 𝐶) ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶)) ↔ ((𝑋 + 𝐶) ∈ ℝ ∧ (𝐴 + 𝐶) ≤ (𝑋 + 𝐶) ∧ (𝑋 + 𝐶) < (𝐵 + 𝐶))))
3433biimprd 247 . . . . 5 (((𝐴 + 𝐶) ∈ ℝ ∧ (𝐵 + 𝐶) ∈ ℝ) → (((𝑋 + 𝐶) ∈ ℝ ∧ (𝐴 + 𝐶) ≤ (𝑋 + 𝐶) ∧ (𝑋 + 𝐶) < (𝐵 + 𝐶)) → (𝑋 + 𝐶) ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))))
3528, 30, 34syl2anc 582 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (((𝑋 + 𝐶) ∈ ℝ ∧ (𝐴 + 𝐶) ≤ (𝑋 + 𝐶) ∧ (𝑋 + 𝐶) < (𝐵 + 𝐶)) → (𝑋 + 𝐶) ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))))
3626, 35syld 47 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝑋 ∈ ℝ ∧ ((𝐴 + 𝐶) ≤ (𝑋 + 𝐶) ∧ (𝑋 + 𝐶) < (𝐵 + 𝐶))) → (𝑋 + 𝐶) ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))))
3720, 36sylbid 239 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝑋 ∈ ℝ ∧ (𝐴𝑋𝑋 < 𝐵)) → (𝑋 + 𝐶) ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))))
387, 37syld 47 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑋 ∈ (𝐴[,)𝐵) → (𝑋 + 𝐶) ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084  wcel 2099   class class class wbr 5153  (class class class)co 7424  cr 11157   + caddc 11161  *cxr 11297   < clt 11298  cle 11299  [,)cico 13380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-br 5154  df-opab 5216  df-mpt 5237  df-id 5580  df-po 5594  df-so 5595  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-ov 7427  df-oprab 7428  df-mpo 7429  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-ico 13384
This theorem is referenced by:  icoshftf1o  13505
  Copyright terms: Public domain W3C validator