MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icoshft Structured version   Visualization version   GIF version

Theorem icoshft 12855
Description: A shifted real is a member of a shifted, closed-below, open-above real interval. (Contributed by Paul Chapman, 25-Mar-2008.)
Assertion
Ref Expression
icoshft ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑋 ∈ (𝐴[,)𝐵) → (𝑋 + 𝐶) ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))))

Proof of Theorem icoshft
StepHypRef Expression
1 rexr 10680 . . . . . 6 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
2 elico2 12793 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝑋 ∈ (𝐴[,)𝐵) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋 < 𝐵)))
31, 2sylan2 595 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑋 ∈ (𝐴[,)𝐵) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋 < 𝐵)))
43biimpd 232 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑋 ∈ (𝐴[,)𝐵) → (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋 < 𝐵)))
543adant3 1129 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑋 ∈ (𝐴[,)𝐵) → (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋 < 𝐵)))
6 3anass 1092 . . 3 ((𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋 < 𝐵) ↔ (𝑋 ∈ ℝ ∧ (𝐴𝑋𝑋 < 𝐵)))
75, 6syl6ib 254 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑋 ∈ (𝐴[,)𝐵) → (𝑋 ∈ ℝ ∧ (𝐴𝑋𝑋 < 𝐵))))
8 leadd1 11101 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝑋 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴𝑋 ↔ (𝐴 + 𝐶) ≤ (𝑋 + 𝐶)))
983com12 1120 . . . . . . . . 9 ((𝑋 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴𝑋 ↔ (𝐴 + 𝐶) ≤ (𝑋 + 𝐶)))
1093expib 1119 . . . . . . . 8 (𝑋 ∈ ℝ → ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴𝑋 ↔ (𝐴 + 𝐶) ≤ (𝑋 + 𝐶))))
1110com12 32 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑋 ∈ ℝ → (𝐴𝑋 ↔ (𝐴 + 𝐶) ≤ (𝑋 + 𝐶))))
12113adant2 1128 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑋 ∈ ℝ → (𝐴𝑋 ↔ (𝐴 + 𝐶) ≤ (𝑋 + 𝐶))))
1312imp 410 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑋 ∈ ℝ) → (𝐴𝑋 ↔ (𝐴 + 𝐶) ≤ (𝑋 + 𝐶)))
14 ltadd1 11100 . . . . . . . . 9 ((𝑋 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑋 < 𝐵 ↔ (𝑋 + 𝐶) < (𝐵 + 𝐶)))
15143expib 1119 . . . . . . . 8 (𝑋 ∈ ℝ → ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑋 < 𝐵 ↔ (𝑋 + 𝐶) < (𝐵 + 𝐶))))
1615com12 32 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑋 ∈ ℝ → (𝑋 < 𝐵 ↔ (𝑋 + 𝐶) < (𝐵 + 𝐶))))
17163adant1 1127 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑋 ∈ ℝ → (𝑋 < 𝐵 ↔ (𝑋 + 𝐶) < (𝐵 + 𝐶))))
1817imp 410 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑋 ∈ ℝ) → (𝑋 < 𝐵 ↔ (𝑋 + 𝐶) < (𝐵 + 𝐶)))
1913, 18anbi12d 633 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑋 ∈ ℝ) → ((𝐴𝑋𝑋 < 𝐵) ↔ ((𝐴 + 𝐶) ≤ (𝑋 + 𝐶) ∧ (𝑋 + 𝐶) < (𝐵 + 𝐶))))
2019pm5.32da 582 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝑋 ∈ ℝ ∧ (𝐴𝑋𝑋 < 𝐵)) ↔ (𝑋 ∈ ℝ ∧ ((𝐴 + 𝐶) ≤ (𝑋 + 𝐶) ∧ (𝑋 + 𝐶) < (𝐵 + 𝐶)))))
21 readdcl 10613 . . . . . . . 8 ((𝑋 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑋 + 𝐶) ∈ ℝ)
2221expcom 417 . . . . . . 7 (𝐶 ∈ ℝ → (𝑋 ∈ ℝ → (𝑋 + 𝐶) ∈ ℝ))
2322anim1d 613 . . . . . 6 (𝐶 ∈ ℝ → ((𝑋 ∈ ℝ ∧ ((𝐴 + 𝐶) ≤ (𝑋 + 𝐶) ∧ (𝑋 + 𝐶) < (𝐵 + 𝐶))) → ((𝑋 + 𝐶) ∈ ℝ ∧ ((𝐴 + 𝐶) ≤ (𝑋 + 𝐶) ∧ (𝑋 + 𝐶) < (𝐵 + 𝐶)))))
24 3anass 1092 . . . . . 6 (((𝑋 + 𝐶) ∈ ℝ ∧ (𝐴 + 𝐶) ≤ (𝑋 + 𝐶) ∧ (𝑋 + 𝐶) < (𝐵 + 𝐶)) ↔ ((𝑋 + 𝐶) ∈ ℝ ∧ ((𝐴 + 𝐶) ≤ (𝑋 + 𝐶) ∧ (𝑋 + 𝐶) < (𝐵 + 𝐶))))
2523, 24syl6ibr 255 . . . . 5 (𝐶 ∈ ℝ → ((𝑋 ∈ ℝ ∧ ((𝐴 + 𝐶) ≤ (𝑋 + 𝐶) ∧ (𝑋 + 𝐶) < (𝐵 + 𝐶))) → ((𝑋 + 𝐶) ∈ ℝ ∧ (𝐴 + 𝐶) ≤ (𝑋 + 𝐶) ∧ (𝑋 + 𝐶) < (𝐵 + 𝐶))))
26253ad2ant3 1132 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝑋 ∈ ℝ ∧ ((𝐴 + 𝐶) ≤ (𝑋 + 𝐶) ∧ (𝑋 + 𝐶) < (𝐵 + 𝐶))) → ((𝑋 + 𝐶) ∈ ℝ ∧ (𝐴 + 𝐶) ≤ (𝑋 + 𝐶) ∧ (𝑋 + 𝐶) < (𝐵 + 𝐶))))
27 readdcl 10613 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 + 𝐶) ∈ ℝ)
28273adant2 1128 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 + 𝐶) ∈ ℝ)
29 readdcl 10613 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 + 𝐶) ∈ ℝ)
30293adant1 1127 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 + 𝐶) ∈ ℝ)
31 rexr 10680 . . . . . . 7 ((𝐵 + 𝐶) ∈ ℝ → (𝐵 + 𝐶) ∈ ℝ*)
32 elico2 12793 . . . . . . 7 (((𝐴 + 𝐶) ∈ ℝ ∧ (𝐵 + 𝐶) ∈ ℝ*) → ((𝑋 + 𝐶) ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶)) ↔ ((𝑋 + 𝐶) ∈ ℝ ∧ (𝐴 + 𝐶) ≤ (𝑋 + 𝐶) ∧ (𝑋 + 𝐶) < (𝐵 + 𝐶))))
3331, 32sylan2 595 . . . . . 6 (((𝐴 + 𝐶) ∈ ℝ ∧ (𝐵 + 𝐶) ∈ ℝ) → ((𝑋 + 𝐶) ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶)) ↔ ((𝑋 + 𝐶) ∈ ℝ ∧ (𝐴 + 𝐶) ≤ (𝑋 + 𝐶) ∧ (𝑋 + 𝐶) < (𝐵 + 𝐶))))
3433biimprd 251 . . . . 5 (((𝐴 + 𝐶) ∈ ℝ ∧ (𝐵 + 𝐶) ∈ ℝ) → (((𝑋 + 𝐶) ∈ ℝ ∧ (𝐴 + 𝐶) ≤ (𝑋 + 𝐶) ∧ (𝑋 + 𝐶) < (𝐵 + 𝐶)) → (𝑋 + 𝐶) ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))))
3528, 30, 34syl2anc 587 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (((𝑋 + 𝐶) ∈ ℝ ∧ (𝐴 + 𝐶) ≤ (𝑋 + 𝐶) ∧ (𝑋 + 𝐶) < (𝐵 + 𝐶)) → (𝑋 + 𝐶) ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))))
3626, 35syld 47 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝑋 ∈ ℝ ∧ ((𝐴 + 𝐶) ≤ (𝑋 + 𝐶) ∧ (𝑋 + 𝐶) < (𝐵 + 𝐶))) → (𝑋 + 𝐶) ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))))
3720, 36sylbid 243 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝑋 ∈ ℝ ∧ (𝐴𝑋𝑋 < 𝐵)) → (𝑋 + 𝐶) ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))))
387, 37syld 47 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑋 ∈ (𝐴[,)𝐵) → (𝑋 + 𝐶) ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084  wcel 2112   class class class wbr 5033  (class class class)co 7139  cr 10529   + caddc 10533  *cxr 10667   < clt 10668  cle 10669  [,)cico 12732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-po 5442  df-so 5443  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-ov 7142  df-oprab 7143  df-mpo 7144  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-ico 12736
This theorem is referenced by:  icoshftf1o  12856
  Copyright terms: Public domain W3C validator