Step | Hyp | Ref
| Expression |
1 | | chcoeffeq.a |
. . 3
⊢ 𝐴 = (𝑁 Mat 𝑅) |
2 | | chcoeffeq.b |
. . 3
⊢ 𝐵 = (Base‘𝐴) |
3 | | chcoeffeq.p |
. . 3
⊢ 𝑃 = (Poly1‘𝑅) |
4 | | chcoeffeq.y |
. . 3
⊢ 𝑌 = (𝑁 Mat 𝑃) |
5 | | chcoeffeq.r |
. . 3
⊢ × =
(.r‘𝑌) |
6 | | chcoeffeq.s |
. . 3
⊢ − =
(-g‘𝑌) |
7 | | chcoeffeq.0 |
. . 3
⊢ 0 =
(0g‘𝑌) |
8 | | chcoeffeq.t |
. . 3
⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
9 | | chcoeffeq.c |
. . 3
⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) |
10 | | chcoeffeq.k |
. . 3
⊢ 𝐾 = (𝐶‘𝑀) |
11 | | chcoeffeq.g |
. . 3
⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) |
12 | | chcoeffeq.w |
. . 3
⊢ 𝑊 = (Base‘𝑌) |
13 | | chcoeffeq.1 |
. . 3
⊢ 1 =
(1r‘𝐴) |
14 | | chcoeffeq.m |
. . 3
⊢ ∗ = (
·𝑠 ‘𝐴) |
15 | | chcoeffeq.u |
. . 3
⊢ 𝑈 = (𝑁 cPolyMatToMat 𝑅) |
16 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15 | chcoeffeq 21943 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵 ↑m (0...𝑠))∀𝑛 ∈ ℕ0 (𝑈‘(𝐺‘𝑛)) = (((coe1‘𝐾)‘𝑛) ∗ 1 )) |
17 | | 2fveq3 6761 |
. . . . . . 7
⊢ (𝑛 = 𝑙 → (𝑈‘(𝐺‘𝑛)) = (𝑈‘(𝐺‘𝑙))) |
18 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑛 = 𝑙 → ((coe1‘𝐾)‘𝑛) = ((coe1‘𝐾)‘𝑙)) |
19 | 18 | oveq1d 7270 |
. . . . . . 7
⊢ (𝑛 = 𝑙 → (((coe1‘𝐾)‘𝑛) ∗ 1 ) =
(((coe1‘𝐾)‘𝑙) ∗ 1 )) |
20 | 17, 19 | eqeq12d 2754 |
. . . . . 6
⊢ (𝑛 = 𝑙 → ((𝑈‘(𝐺‘𝑛)) = (((coe1‘𝐾)‘𝑛) ∗ 1 ) ↔ (𝑈‘(𝐺‘𝑙)) = (((coe1‘𝐾)‘𝑙) ∗ 1 ))) |
21 | 20 | cbvralvw 3372 |
. . . . 5
⊢
(∀𝑛 ∈
ℕ0 (𝑈‘(𝐺‘𝑛)) = (((coe1‘𝐾)‘𝑛) ∗ 1 ) ↔ ∀𝑙 ∈ ℕ0
(𝑈‘(𝐺‘𝑙)) = (((coe1‘𝐾)‘𝑙) ∗ 1 )) |
22 | | 2fveq3 6761 |
. . . . . . . . . . . . 13
⊢ (𝑙 = 𝑛 → (𝑈‘(𝐺‘𝑙)) = (𝑈‘(𝐺‘𝑛))) |
23 | | fveq2 6756 |
. . . . . . . . . . . . . 14
⊢ (𝑙 = 𝑛 → ((coe1‘𝐾)‘𝑙) = ((coe1‘𝐾)‘𝑛)) |
24 | 23 | oveq1d 7270 |
. . . . . . . . . . . . 13
⊢ (𝑙 = 𝑛 → (((coe1‘𝐾)‘𝑙) ∗ 1 ) =
(((coe1‘𝐾)‘𝑛) ∗ 1 )) |
25 | 22, 24 | eqeq12d 2754 |
. . . . . . . . . . . 12
⊢ (𝑙 = 𝑛 → ((𝑈‘(𝐺‘𝑙)) = (((coe1‘𝐾)‘𝑙) ∗ 1 ) ↔ (𝑈‘(𝐺‘𝑛)) = (((coe1‘𝐾)‘𝑛) ∗ 1 ))) |
26 | 25 | rspccva 3551 |
. . . . . . . . . . 11
⊢
((∀𝑙 ∈
ℕ0 (𝑈‘(𝐺‘𝑙)) = (((coe1‘𝐾)‘𝑙) ∗ 1 ) ∧ 𝑛 ∈ ℕ0) → (𝑈‘(𝐺‘𝑛)) = (((coe1‘𝐾)‘𝑛) ∗ 1 )) |
27 | | simprll 775 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑛 ∈ ℕ0
∧ (((𝑁 ∈ Fin ∧
𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵)) |
28 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(Base‘𝑃) =
(Base‘𝑃) |
29 | 9, 1, 2, 3, 28 | chpmatply1 21889 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐶‘𝑀) ∈ (Base‘𝑃)) |
30 | 27, 29 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑛 ∈ ℕ0
∧ (((𝑁 ∈ Fin ∧
𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝐶‘𝑀) ∈ (Base‘𝑃)) |
31 | 10, 30 | eqeltrid 2843 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑛 ∈ ℕ0
∧ (((𝑁 ∈ Fin ∧
𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝐾 ∈ (Base‘𝑃)) |
32 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(coe1‘𝐾) = (coe1‘𝐾) |
33 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(Base‘𝑅) =
(Base‘𝑅) |
34 | 32, 28, 3, 33 | coe1f 21292 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐾 ∈ (Base‘𝑃) →
(coe1‘𝐾):ℕ0⟶(Base‘𝑅)) |
35 | 31, 34 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑛 ∈ ℕ0
∧ (((𝑁 ∈ Fin ∧
𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (coe1‘𝐾):ℕ0⟶(Base‘𝑅)) |
36 | | fvex 6769 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(Base‘𝑅)
∈ V |
37 | | nn0ex 12169 |
. . . . . . . . . . . . . . . . . . . 20
⊢
ℕ0 ∈ V |
38 | 36, 37 | pm3.2i 470 |
. . . . . . . . . . . . . . . . . . 19
⊢
((Base‘𝑅)
∈ V ∧ ℕ0 ∈ V) |
39 | | elmapg 8586 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((Base‘𝑅)
∈ V ∧ ℕ0 ∈ V) →
((coe1‘𝐾)
∈ ((Base‘𝑅)
↑m ℕ0) ↔ (coe1‘𝐾):ℕ0⟶(Base‘𝑅))) |
40 | 38, 39 | mp1i 13 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑛 ∈ ℕ0
∧ (((𝑁 ∈ Fin ∧
𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → ((coe1‘𝐾) ∈ ((Base‘𝑅) ↑m
ℕ0) ↔ (coe1‘𝐾):ℕ0⟶(Base‘𝑅))) |
41 | 35, 40 | mpbird 256 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑛 ∈ ℕ0
∧ (((𝑁 ∈ Fin ∧
𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (coe1‘𝐾) ∈ ((Base‘𝑅) ↑m
ℕ0)) |
42 | | simpl 482 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑛 ∈ ℕ0
∧ (((𝑁 ∈ Fin ∧
𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝑛 ∈ ℕ0) |
43 | | cayhamlem.e1 |
. . . . . . . . . . . . . . . . . 18
⊢ ↑ =
(.g‘(mulGrp‘𝐴)) |
44 | | cayhamlem.r |
. . . . . . . . . . . . . . . . . 18
⊢ · =
(.r‘𝐴) |
45 | 33, 1, 2, 13, 14, 43, 44 | cayhamlem2 21941 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ ((coe1‘𝐾) ∈ ((Base‘𝑅) ↑m
ℕ0) ∧ 𝑛 ∈ ℕ0)) →
(((coe1‘𝐾)‘𝑛) ∗ (𝑛 ↑ 𝑀)) = ((𝑛 ↑ 𝑀) ·
(((coe1‘𝐾)‘𝑛) ∗ 1 ))) |
46 | 27, 41, 42, 45 | syl12anc 833 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑛 ∈ ℕ0
∧ (((𝑁 ∈ Fin ∧
𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (((coe1‘𝐾)‘𝑛) ∗ (𝑛 ↑ 𝑀)) = ((𝑛 ↑ 𝑀) ·
(((coe1‘𝐾)‘𝑛) ∗ 1 ))) |
47 | 46 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝑈‘(𝐺‘𝑛)) = (((coe1‘𝐾)‘𝑛) ∗ 1 ) ∧ (𝑛 ∈ ℕ0
∧ (((𝑁 ∈ Fin ∧
𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))))) → (((coe1‘𝐾)‘𝑛) ∗ (𝑛 ↑ 𝑀)) = ((𝑛 ↑ 𝑀) ·
(((coe1‘𝐾)‘𝑛) ∗ 1 ))) |
48 | | oveq2 7263 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑈‘(𝐺‘𝑛)) = (((coe1‘𝐾)‘𝑛) ∗ 1 ) → ((𝑛 ↑ 𝑀) · (𝑈‘(𝐺‘𝑛))) = ((𝑛 ↑ 𝑀) ·
(((coe1‘𝐾)‘𝑛) ∗ 1 ))) |
49 | 48 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝑈‘(𝐺‘𝑛)) = (((coe1‘𝐾)‘𝑛) ∗ 1 ) ∧ (𝑛 ∈ ℕ0
∧ (((𝑁 ∈ Fin ∧
𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))))) → ((𝑛 ↑ 𝑀) · (𝑈‘(𝐺‘𝑛))) = ((𝑛 ↑ 𝑀) ·
(((coe1‘𝐾)‘𝑛) ∗ 1 ))) |
50 | 47, 49 | eqtr4d 2781 |
. . . . . . . . . . . . . 14
⊢ (((𝑈‘(𝐺‘𝑛)) = (((coe1‘𝐾)‘𝑛) ∗ 1 ) ∧ (𝑛 ∈ ℕ0
∧ (((𝑁 ∈ Fin ∧
𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))))) → (((coe1‘𝐾)‘𝑛) ∗ (𝑛 ↑ 𝑀)) = ((𝑛 ↑ 𝑀) · (𝑈‘(𝐺‘𝑛)))) |
51 | 50 | exp32 420 |
. . . . . . . . . . . . 13
⊢ ((𝑈‘(𝐺‘𝑛)) = (((coe1‘𝐾)‘𝑛) ∗ 1 ) → (𝑛 ∈ ℕ0
→ ((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → (((coe1‘𝐾)‘𝑛) ∗ (𝑛 ↑ 𝑀)) = ((𝑛 ↑ 𝑀) · (𝑈‘(𝐺‘𝑛)))))) |
52 | 51 | com12 32 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ0
→ ((𝑈‘(𝐺‘𝑛)) = (((coe1‘𝐾)‘𝑛) ∗ 1 ) → ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → (((coe1‘𝐾)‘𝑛) ∗ (𝑛 ↑ 𝑀)) = ((𝑛 ↑ 𝑀) · (𝑈‘(𝐺‘𝑛)))))) |
53 | 52 | adantl 481 |
. . . . . . . . . . 11
⊢
((∀𝑙 ∈
ℕ0 (𝑈‘(𝐺‘𝑙)) = (((coe1‘𝐾)‘𝑙) ∗ 1 ) ∧ 𝑛 ∈ ℕ0) → ((𝑈‘(𝐺‘𝑛)) = (((coe1‘𝐾)‘𝑛) ∗ 1 ) → ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → (((coe1‘𝐾)‘𝑛) ∗ (𝑛 ↑ 𝑀)) = ((𝑛 ↑ 𝑀) · (𝑈‘(𝐺‘𝑛)))))) |
54 | 26, 53 | mpd 15 |
. . . . . . . . . 10
⊢
((∀𝑙 ∈
ℕ0 (𝑈‘(𝐺‘𝑙)) = (((coe1‘𝐾)‘𝑙) ∗ 1 ) ∧ 𝑛 ∈ ℕ0) → ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → (((coe1‘𝐾)‘𝑛) ∗ (𝑛 ↑ 𝑀)) = ((𝑛 ↑ 𝑀) · (𝑈‘(𝐺‘𝑛))))) |
55 | 54 | com12 32 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → ((∀𝑙 ∈ ℕ0 (𝑈‘(𝐺‘𝑙)) = (((coe1‘𝐾)‘𝑙) ∗ 1 ) ∧ 𝑛 ∈ ℕ0) →
(((coe1‘𝐾)‘𝑛) ∗ (𝑛 ↑ 𝑀)) = ((𝑛 ↑ 𝑀) · (𝑈‘(𝐺‘𝑛))))) |
56 | 55 | impl 455 |
. . . . . . . 8
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ ∀𝑙 ∈ ℕ0 (𝑈‘(𝐺‘𝑙)) = (((coe1‘𝐾)‘𝑙) ∗ 1 )) ∧ 𝑛 ∈ ℕ0)
→ (((coe1‘𝐾)‘𝑛) ∗ (𝑛 ↑ 𝑀)) = ((𝑛 ↑ 𝑀) · (𝑈‘(𝐺‘𝑛)))) |
57 | 56 | mpteq2dva 5170 |
. . . . . . 7
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ ∀𝑙 ∈ ℕ0 (𝑈‘(𝐺‘𝑙)) = (((coe1‘𝐾)‘𝑙) ∗ 1 )) → (𝑛 ∈ ℕ0
↦ (((coe1‘𝐾)‘𝑛) ∗ (𝑛 ↑ 𝑀))) = (𝑛 ∈ ℕ0 ↦ ((𝑛 ↑ 𝑀) · (𝑈‘(𝐺‘𝑛))))) |
58 | 57 | oveq2d 7271 |
. . . . . 6
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ ∀𝑙 ∈ ℕ0 (𝑈‘(𝐺‘𝑙)) = (((coe1‘𝐾)‘𝑙) ∗ 1 )) → (𝐴 Σg
(𝑛 ∈
ℕ0 ↦ (((coe1‘𝐾)‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = (𝐴 Σg (𝑛 ∈ ℕ0
↦ ((𝑛 ↑ 𝑀) · (𝑈‘(𝐺‘𝑛)))))) |
59 | 58 | ex 412 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → (∀𝑙 ∈ ℕ0 (𝑈‘(𝐺‘𝑙)) = (((coe1‘𝐾)‘𝑙) ∗ 1 ) → (𝐴 Σg
(𝑛 ∈
ℕ0 ↦ (((coe1‘𝐾)‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = (𝐴 Σg (𝑛 ∈ ℕ0
↦ ((𝑛 ↑ 𝑀) · (𝑈‘(𝐺‘𝑛))))))) |
60 | 21, 59 | syl5bi 241 |
. . . 4
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → (∀𝑛 ∈ ℕ0 (𝑈‘(𝐺‘𝑛)) = (((coe1‘𝐾)‘𝑛) ∗ 1 ) → (𝐴 Σg
(𝑛 ∈
ℕ0 ↦ (((coe1‘𝐾)‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = (𝐴 Σg (𝑛 ∈ ℕ0
↦ ((𝑛 ↑ 𝑀) · (𝑈‘(𝐺‘𝑛))))))) |
61 | 60 | reximdva 3202 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ) → (∃𝑏 ∈ (𝐵 ↑m (0...𝑠))∀𝑛 ∈ ℕ0 (𝑈‘(𝐺‘𝑛)) = (((coe1‘𝐾)‘𝑛) ∗ 1 ) → ∃𝑏 ∈ (𝐵 ↑m (0...𝑠))(𝐴 Σg (𝑛 ∈ ℕ0
↦ (((coe1‘𝐾)‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = (𝐴 Σg (𝑛 ∈ ℕ0
↦ ((𝑛 ↑ 𝑀) · (𝑈‘(𝐺‘𝑛))))))) |
62 | 61 | reximdva 3202 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵 ↑m (0...𝑠))∀𝑛 ∈ ℕ0 (𝑈‘(𝐺‘𝑛)) = (((coe1‘𝐾)‘𝑛) ∗ 1 ) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵 ↑m (0...𝑠))(𝐴 Σg (𝑛 ∈ ℕ0
↦ (((coe1‘𝐾)‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = (𝐴 Σg (𝑛 ∈ ℕ0
↦ ((𝑛 ↑ 𝑀) · (𝑈‘(𝐺‘𝑛))))))) |
63 | 16, 62 | mpd 15 |
1
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵 ↑m (0...𝑠))(𝐴 Σg (𝑛 ∈ ℕ0
↦ (((coe1‘𝐾)‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = (𝐴 Σg (𝑛 ∈ ℕ0
↦ ((𝑛 ↑ 𝑀) · (𝑈‘(𝐺‘𝑛)))))) |