MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cayhamlem3 Structured version   Visualization version   GIF version

Theorem cayhamlem3 22622
Description: Lemma for cayhamlem4 22623. (Contributed by AV, 24-Nov-2019.) (Revised by AV, 15-Dec-2019.)
Hypotheses
Ref Expression
chcoeffeq.a 𝐴 = (𝑁 Mat 𝑅)
chcoeffeq.b 𝐵 = (Base‘𝐴)
chcoeffeq.p 𝑃 = (Poly1𝑅)
chcoeffeq.y 𝑌 = (𝑁 Mat 𝑃)
chcoeffeq.r × = (.r𝑌)
chcoeffeq.s = (-g𝑌)
chcoeffeq.0 0 = (0g𝑌)
chcoeffeq.t 𝑇 = (𝑁 matToPolyMat 𝑅)
chcoeffeq.c 𝐶 = (𝑁 CharPlyMat 𝑅)
chcoeffeq.k 𝐾 = (𝐶𝑀)
chcoeffeq.g 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))
chcoeffeq.w 𝑊 = (Base‘𝑌)
chcoeffeq.1 1 = (1r𝐴)
chcoeffeq.m = ( ·𝑠𝐴)
chcoeffeq.u 𝑈 = (𝑁 cPolyMatToMat 𝑅)
cayhamlem.e1 = (.g‘(mulGrp‘𝐴))
cayhamlem.r · = (.r𝐴)
Assertion
Ref Expression
cayhamlem3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵m (0...𝑠))(𝐴 Σg (𝑛 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑛) (𝑛 𝑀)))) = (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 𝑀) · (𝑈‘(𝐺𝑛))))))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝑛,𝐺   𝑛,𝐾   𝑛,𝑀   𝑛,𝑁   𝑅,𝑛   𝑈,𝑛   𝑛,𝑌   1 ,𝑛   ,𝑛   𝑛,𝑏,𝑠,𝐴   𝐵,𝑏,𝑠   𝑀,𝑏,𝑠   𝑁,𝑏,𝑠   𝑃,𝑏,𝑛,𝑠   𝑅,𝑏,𝑠   𝑇,𝑏,𝑛,𝑠   𝑛,𝑊   𝑌,𝑏,𝑠   0 ,𝑛   × ,𝑛   ,𝑏,𝑛,𝑠
Allowed substitution hints:   𝐶(𝑛,𝑠,𝑏)   · (𝑛,𝑠,𝑏)   × (𝑠,𝑏)   𝑈(𝑠,𝑏)   1 (𝑠,𝑏)   (𝑛,𝑠,𝑏)   𝐺(𝑠,𝑏)   (𝑠,𝑏)   𝐾(𝑠,𝑏)   𝑊(𝑠,𝑏)   0 (𝑠,𝑏)

Proof of Theorem cayhamlem3
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 chcoeffeq.a . . 3 𝐴 = (𝑁 Mat 𝑅)
2 chcoeffeq.b . . 3 𝐵 = (Base‘𝐴)
3 chcoeffeq.p . . 3 𝑃 = (Poly1𝑅)
4 chcoeffeq.y . . 3 𝑌 = (𝑁 Mat 𝑃)
5 chcoeffeq.r . . 3 × = (.r𝑌)
6 chcoeffeq.s . . 3 = (-g𝑌)
7 chcoeffeq.0 . . 3 0 = (0g𝑌)
8 chcoeffeq.t . . 3 𝑇 = (𝑁 matToPolyMat 𝑅)
9 chcoeffeq.c . . 3 𝐶 = (𝑁 CharPlyMat 𝑅)
10 chcoeffeq.k . . 3 𝐾 = (𝐶𝑀)
11 chcoeffeq.g . . 3 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))
12 chcoeffeq.w . . 3 𝑊 = (Base‘𝑌)
13 chcoeffeq.1 . . 3 1 = (1r𝐴)
14 chcoeffeq.m . . 3 = ( ·𝑠𝐴)
15 chcoeffeq.u . . 3 𝑈 = (𝑁 cPolyMatToMat 𝑅)
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15chcoeffeq 22621 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵m (0...𝑠))∀𝑛 ∈ ℕ0 (𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 ))
17 2fveq3 6896 . . . . . . 7 (𝑛 = 𝑙 → (𝑈‘(𝐺𝑛)) = (𝑈‘(𝐺𝑙)))
18 fveq2 6891 . . . . . . . 8 (𝑛 = 𝑙 → ((coe1𝐾)‘𝑛) = ((coe1𝐾)‘𝑙))
1918oveq1d 7427 . . . . . . 7 (𝑛 = 𝑙 → (((coe1𝐾)‘𝑛) 1 ) = (((coe1𝐾)‘𝑙) 1 ))
2017, 19eqeq12d 2747 . . . . . 6 (𝑛 = 𝑙 → ((𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 ) ↔ (𝑈‘(𝐺𝑙)) = (((coe1𝐾)‘𝑙) 1 )))
2120cbvralvw 3233 . . . . 5 (∀𝑛 ∈ ℕ0 (𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 ) ↔ ∀𝑙 ∈ ℕ0 (𝑈‘(𝐺𝑙)) = (((coe1𝐾)‘𝑙) 1 ))
22 2fveq3 6896 . . . . . . . . . . . . 13 (𝑙 = 𝑛 → (𝑈‘(𝐺𝑙)) = (𝑈‘(𝐺𝑛)))
23 fveq2 6891 . . . . . . . . . . . . . 14 (𝑙 = 𝑛 → ((coe1𝐾)‘𝑙) = ((coe1𝐾)‘𝑛))
2423oveq1d 7427 . . . . . . . . . . . . 13 (𝑙 = 𝑛 → (((coe1𝐾)‘𝑙) 1 ) = (((coe1𝐾)‘𝑛) 1 ))
2522, 24eqeq12d 2747 . . . . . . . . . . . 12 (𝑙 = 𝑛 → ((𝑈‘(𝐺𝑙)) = (((coe1𝐾)‘𝑙) 1 ) ↔ (𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 )))
2625rspccva 3611 . . . . . . . . . . 11 ((∀𝑙 ∈ ℕ0 (𝑈‘(𝐺𝑙)) = (((coe1𝐾)‘𝑙) 1 ) ∧ 𝑛 ∈ ℕ0) → (𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 ))
27 simprll 776 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ0 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵))
28 eqid 2731 . . . . . . . . . . . . . . . . . . . . . 22 (Base‘𝑃) = (Base‘𝑃)
299, 1, 2, 3, 28chpmatply1 22567 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐶𝑀) ∈ (Base‘𝑃))
3027, 29syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ0 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝐶𝑀) ∈ (Base‘𝑃))
3110, 30eqeltrid 2836 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℕ0 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝐾 ∈ (Base‘𝑃))
32 eqid 2731 . . . . . . . . . . . . . . . . . . . 20 (coe1𝐾) = (coe1𝐾)
33 eqid 2731 . . . . . . . . . . . . . . . . . . . 20 (Base‘𝑅) = (Base‘𝑅)
3432, 28, 3, 33coe1f 21967 . . . . . . . . . . . . . . . . . . 19 (𝐾 ∈ (Base‘𝑃) → (coe1𝐾):ℕ0⟶(Base‘𝑅))
3531, 34syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ0 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (coe1𝐾):ℕ0⟶(Base‘𝑅))
36 fvex 6904 . . . . . . . . . . . . . . . . . . . 20 (Base‘𝑅) ∈ V
37 nn0ex 12485 . . . . . . . . . . . . . . . . . . . 20 0 ∈ V
3836, 37pm3.2i 470 . . . . . . . . . . . . . . . . . . 19 ((Base‘𝑅) ∈ V ∧ ℕ0 ∈ V)
39 elmapg 8839 . . . . . . . . . . . . . . . . . . 19 (((Base‘𝑅) ∈ V ∧ ℕ0 ∈ V) → ((coe1𝐾) ∈ ((Base‘𝑅) ↑m0) ↔ (coe1𝐾):ℕ0⟶(Base‘𝑅)))
4038, 39mp1i 13 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ0 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((coe1𝐾) ∈ ((Base‘𝑅) ↑m0) ↔ (coe1𝐾):ℕ0⟶(Base‘𝑅)))
4135, 40mpbird 257 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ0 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (coe1𝐾) ∈ ((Base‘𝑅) ↑m0))
42 simpl 482 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ0 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑛 ∈ ℕ0)
43 cayhamlem.e1 . . . . . . . . . . . . . . . . . 18 = (.g‘(mulGrp‘𝐴))
44 cayhamlem.r . . . . . . . . . . . . . . . . . 18 · = (.r𝐴)
4533, 1, 2, 13, 14, 43, 44cayhamlem2 22619 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ ((coe1𝐾) ∈ ((Base‘𝑅) ↑m0) ∧ 𝑛 ∈ ℕ0)) → (((coe1𝐾)‘𝑛) (𝑛 𝑀)) = ((𝑛 𝑀) · (((coe1𝐾)‘𝑛) 1 )))
4627, 41, 42, 45syl12anc 834 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ0 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (((coe1𝐾)‘𝑛) (𝑛 𝑀)) = ((𝑛 𝑀) · (((coe1𝐾)‘𝑛) 1 )))
4746adantl 481 . . . . . . . . . . . . . . 15 (((𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 ) ∧ (𝑛 ∈ ℕ0 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))))) → (((coe1𝐾)‘𝑛) (𝑛 𝑀)) = ((𝑛 𝑀) · (((coe1𝐾)‘𝑛) 1 )))
48 oveq2 7420 . . . . . . . . . . . . . . . 16 ((𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 ) → ((𝑛 𝑀) · (𝑈‘(𝐺𝑛))) = ((𝑛 𝑀) · (((coe1𝐾)‘𝑛) 1 )))
4948adantr 480 . . . . . . . . . . . . . . 15 (((𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 ) ∧ (𝑛 ∈ ℕ0 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))))) → ((𝑛 𝑀) · (𝑈‘(𝐺𝑛))) = ((𝑛 𝑀) · (((coe1𝐾)‘𝑛) 1 )))
5047, 49eqtr4d 2774 . . . . . . . . . . . . . 14 (((𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 ) ∧ (𝑛 ∈ ℕ0 ∧ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))))) → (((coe1𝐾)‘𝑛) (𝑛 𝑀)) = ((𝑛 𝑀) · (𝑈‘(𝐺𝑛))))
5150exp32 420 . . . . . . . . . . . . 13 ((𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 ) → (𝑛 ∈ ℕ0 → ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (((coe1𝐾)‘𝑛) (𝑛 𝑀)) = ((𝑛 𝑀) · (𝑈‘(𝐺𝑛))))))
5251com12 32 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0 → ((𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 ) → ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (((coe1𝐾)‘𝑛) (𝑛 𝑀)) = ((𝑛 𝑀) · (𝑈‘(𝐺𝑛))))))
5352adantl 481 . . . . . . . . . . 11 ((∀𝑙 ∈ ℕ0 (𝑈‘(𝐺𝑙)) = (((coe1𝐾)‘𝑙) 1 ) ∧ 𝑛 ∈ ℕ0) → ((𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 ) → ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (((coe1𝐾)‘𝑛) (𝑛 𝑀)) = ((𝑛 𝑀) · (𝑈‘(𝐺𝑛))))))
5426, 53mpd 15 . . . . . . . . . 10 ((∀𝑙 ∈ ℕ0 (𝑈‘(𝐺𝑙)) = (((coe1𝐾)‘𝑙) 1 ) ∧ 𝑛 ∈ ℕ0) → ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (((coe1𝐾)‘𝑛) (𝑛 𝑀)) = ((𝑛 𝑀) · (𝑈‘(𝐺𝑛)))))
5554com12 32 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → ((∀𝑙 ∈ ℕ0 (𝑈‘(𝐺𝑙)) = (((coe1𝐾)‘𝑙) 1 ) ∧ 𝑛 ∈ ℕ0) → (((coe1𝐾)‘𝑛) (𝑛 𝑀)) = ((𝑛 𝑀) · (𝑈‘(𝐺𝑛)))))
5655impl 455 . . . . . . . 8 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ ∀𝑙 ∈ ℕ0 (𝑈‘(𝐺𝑙)) = (((coe1𝐾)‘𝑙) 1 )) ∧ 𝑛 ∈ ℕ0) → (((coe1𝐾)‘𝑛) (𝑛 𝑀)) = ((𝑛 𝑀) · (𝑈‘(𝐺𝑛))))
5756mpteq2dva 5248 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ ∀𝑙 ∈ ℕ0 (𝑈‘(𝐺𝑙)) = (((coe1𝐾)‘𝑙) 1 )) → (𝑛 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑛) (𝑛 𝑀))) = (𝑛 ∈ ℕ0 ↦ ((𝑛 𝑀) · (𝑈‘(𝐺𝑛)))))
5857oveq2d 7428 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ ∀𝑙 ∈ ℕ0 (𝑈‘(𝐺𝑙)) = (((coe1𝐾)‘𝑙) 1 )) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑛) (𝑛 𝑀)))) = (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 𝑀) · (𝑈‘(𝐺𝑛))))))
5958ex 412 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (∀𝑙 ∈ ℕ0 (𝑈‘(𝐺𝑙)) = (((coe1𝐾)‘𝑙) 1 ) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑛) (𝑛 𝑀)))) = (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 𝑀) · (𝑈‘(𝐺𝑛)))))))
6021, 59biimtrid 241 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (∀𝑛 ∈ ℕ0 (𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 ) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑛) (𝑛 𝑀)))) = (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 𝑀) · (𝑈‘(𝐺𝑛)))))))
6160reximdva 3167 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ) → (∃𝑏 ∈ (𝐵m (0...𝑠))∀𝑛 ∈ ℕ0 (𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 ) → ∃𝑏 ∈ (𝐵m (0...𝑠))(𝐴 Σg (𝑛 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑛) (𝑛 𝑀)))) = (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 𝑀) · (𝑈‘(𝐺𝑛)))))))
6261reximdva 3167 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵m (0...𝑠))∀𝑛 ∈ ℕ0 (𝑈‘(𝐺𝑛)) = (((coe1𝐾)‘𝑛) 1 ) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵m (0...𝑠))(𝐴 Σg (𝑛 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑛) (𝑛 𝑀)))) = (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 𝑀) · (𝑈‘(𝐺𝑛)))))))
6316, 62mpd 15 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ ∃𝑏 ∈ (𝐵m (0...𝑠))(𝐴 Σg (𝑛 ∈ ℕ0 ↦ (((coe1𝐾)‘𝑛) (𝑛 𝑀)))) = (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝑛 𝑀) · (𝑈‘(𝐺𝑛))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1086   = wceq 1540  wcel 2105  wral 3060  wrex 3069  Vcvv 3473  ifcif 4528   class class class wbr 5148  cmpt 5231  wf 6539  cfv 6543  (class class class)co 7412  m cmap 8826  Fincfn 8945  0cc0 11116  1c1 11117   + caddc 11119   < clt 11255  cmin 11451  cn 12219  0cn0 12479  ...cfz 13491  Basecbs 17151  .rcmulr 17205   ·𝑠 cvsca 17208  0gc0g 17392   Σg cgsu 17393  -gcsg 18860  .gcmg 18990  mulGrpcmgp 20032  1rcur 20079  CRingccrg 20132  Poly1cpl1 21933  coe1cco1 21934   Mat cmat 22140   matToPolyMat cmat2pmat 22439   cPolyMatToMat ccpmat2mat 22440   CharPlyMat cchpmat 22561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193  ax-addf 11195  ax-mulf 11196
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-xor 1509  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-ot 4637  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7674  df-ofr 7675  df-om 7860  df-1st 7979  df-2nd 7980  df-supp 8152  df-tpos 8217  df-cur 8258  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-2o 8473  df-er 8709  df-map 8828  df-pm 8829  df-ixp 8898  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-fsupp 9368  df-sup 9443  df-oi 9511  df-card 9940  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-div 11879  df-nn 12220  df-2 12282  df-3 12283  df-4 12284  df-5 12285  df-6 12286  df-7 12287  df-8 12288  df-9 12289  df-n0 12480  df-xnn0 12552  df-z 12566  df-dec 12685  df-uz 12830  df-rp 12982  df-fz 13492  df-fzo 13635  df-seq 13974  df-exp 14035  df-hash 14298  df-word 14472  df-lsw 14520  df-concat 14528  df-s1 14553  df-substr 14598  df-pfx 14628  df-splice 14707  df-reverse 14716  df-s2 14806  df-struct 17087  df-sets 17104  df-slot 17122  df-ndx 17134  df-base 17152  df-ress 17181  df-plusg 17217  df-mulr 17218  df-starv 17219  df-sca 17220  df-vsca 17221  df-ip 17222  df-tset 17223  df-ple 17224  df-ds 17226  df-unif 17227  df-hom 17228  df-cco 17229  df-0g 17394  df-gsum 17395  df-prds 17400  df-pws 17402  df-mre 17537  df-mrc 17538  df-acs 17540  df-mgm 18568  df-sgrp 18647  df-mnd 18663  df-mhm 18708  df-submnd 18709  df-efmnd 18789  df-grp 18861  df-minusg 18862  df-sbg 18863  df-mulg 18991  df-subg 19043  df-ghm 19132  df-gim 19177  df-cntz 19226  df-oppg 19255  df-symg 19280  df-pmtr 19355  df-psgn 19404  df-evpm 19405  df-cmn 19695  df-abl 19696  df-mgp 20033  df-rng 20051  df-ur 20080  df-srg 20085  df-ring 20133  df-cring 20134  df-oppr 20229  df-dvdsr 20252  df-unit 20253  df-invr 20283  df-dvr 20296  df-rhm 20367  df-subrng 20438  df-subrg 20463  df-drng 20506  df-lmod 20620  df-lss 20691  df-sra 20934  df-rgmod 20935  df-cnfld 21149  df-zring 21222  df-zrh 21276  df-dsmm 21510  df-frlm 21525  df-assa 21631  df-ascl 21633  df-psr 21685  df-mvr 21686  df-mpl 21687  df-opsr 21689  df-psr1 21936  df-vr1 21937  df-ply1 21938  df-coe1 21939  df-mamu 22119  df-mat 22141  df-mdet 22320  df-madu 22369  df-cpmat 22441  df-mat2pmat 22442  df-cpmat2mat 22443  df-decpmat 22498  df-pm2mp 22528  df-chpmat 22562
This theorem is referenced by:  cayhamlem4  22623
  Copyright terms: Public domain W3C validator