| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > smadiadetr | Structured version Visualization version GIF version | ||
| Description: The determinant of a square matrix with one row replaced with 0's and an arbitrary element of the underlying ring at the diagonal position equals the ring element multiplied with the determinant of a submatrix of the square matrix obtained by removing the row and the column at the same index. Closed form of smadiadetg 22560. Special case of the "Laplace expansion", see definition in [Lang] p. 515. (Contributed by AV, 15-Feb-2019.) |
| Ref | Expression |
|---|---|
| smadiadetr | ⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝑁 Mat 𝑅))) ∧ (𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅))) → ((𝑁 maDet 𝑅)‘(𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾)) = (𝑆(.r‘𝑅)(((𝑁 ∖ {𝐾}) maDet 𝑅)‘(𝐾((𝑁 subMat 𝑅)‘𝑀)𝐾)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anass 1094 | . . . . 5 ⊢ ((𝑀 ∈ (Base‘(𝑁 Mat 𝑅)) ∧ 𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅)) ↔ (𝑀 ∈ (Base‘(𝑁 Mat 𝑅)) ∧ (𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅)))) | |
| 2 | oveq2 7395 | . . . . . . . 8 ⊢ (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → (𝑁 Mat 𝑅) = (𝑁 Mat if(𝑅 ∈ CRing, 𝑅, ℂfld))) | |
| 3 | 2 | fveq2d 6862 | . . . . . . 7 ⊢ (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → (Base‘(𝑁 Mat 𝑅)) = (Base‘(𝑁 Mat if(𝑅 ∈ CRing, 𝑅, ℂfld)))) |
| 4 | 3 | eleq2d 2814 | . . . . . 6 ⊢ (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → (𝑀 ∈ (Base‘(𝑁 Mat 𝑅)) ↔ 𝑀 ∈ (Base‘(𝑁 Mat if(𝑅 ∈ CRing, 𝑅, ℂfld))))) |
| 5 | fveq2 6858 | . . . . . . 7 ⊢ (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → (Base‘𝑅) = (Base‘if(𝑅 ∈ CRing, 𝑅, ℂfld))) | |
| 6 | 5 | eleq2d 2814 | . . . . . 6 ⊢ (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → (𝑆 ∈ (Base‘𝑅) ↔ 𝑆 ∈ (Base‘if(𝑅 ∈ CRing, 𝑅, ℂfld)))) |
| 7 | 4, 6 | 3anbi13d 1440 | . . . . 5 ⊢ (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → ((𝑀 ∈ (Base‘(𝑁 Mat 𝑅)) ∧ 𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅)) ↔ (𝑀 ∈ (Base‘(𝑁 Mat if(𝑅 ∈ CRing, 𝑅, ℂfld))) ∧ 𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘if(𝑅 ∈ CRing, 𝑅, ℂfld))))) |
| 8 | 1, 7 | bitr3id 285 | . . . 4 ⊢ (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → ((𝑀 ∈ (Base‘(𝑁 Mat 𝑅)) ∧ (𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅))) ↔ (𝑀 ∈ (Base‘(𝑁 Mat if(𝑅 ∈ CRing, 𝑅, ℂfld))) ∧ 𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘if(𝑅 ∈ CRing, 𝑅, ℂfld))))) |
| 9 | oveq2 7395 | . . . . . 6 ⊢ (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → (𝑁 maDet 𝑅) = (𝑁 maDet if(𝑅 ∈ CRing, 𝑅, ℂfld))) | |
| 10 | oveq2 7395 | . . . . . . . 8 ⊢ (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → (𝑁 matRRep 𝑅) = (𝑁 matRRep if(𝑅 ∈ CRing, 𝑅, ℂfld))) | |
| 11 | 10 | oveqd 7404 | . . . . . . 7 ⊢ (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → (𝑀(𝑁 matRRep 𝑅)𝑆) = (𝑀(𝑁 matRRep if(𝑅 ∈ CRing, 𝑅, ℂfld))𝑆)) |
| 12 | 11 | oveqd 7404 | . . . . . 6 ⊢ (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → (𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾) = (𝐾(𝑀(𝑁 matRRep if(𝑅 ∈ CRing, 𝑅, ℂfld))𝑆)𝐾)) |
| 13 | 9, 12 | fveq12d 6865 | . . . . 5 ⊢ (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → ((𝑁 maDet 𝑅)‘(𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾)) = ((𝑁 maDet if(𝑅 ∈ CRing, 𝑅, ℂfld))‘(𝐾(𝑀(𝑁 matRRep if(𝑅 ∈ CRing, 𝑅, ℂfld))𝑆)𝐾))) |
| 14 | fveq2 6858 | . . . . . 6 ⊢ (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → (.r‘𝑅) = (.r‘if(𝑅 ∈ CRing, 𝑅, ℂfld))) | |
| 15 | eqidd 2730 | . . . . . 6 ⊢ (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → 𝑆 = 𝑆) | |
| 16 | oveq2 7395 | . . . . . . 7 ⊢ (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → ((𝑁 ∖ {𝐾}) maDet 𝑅) = ((𝑁 ∖ {𝐾}) maDet if(𝑅 ∈ CRing, 𝑅, ℂfld))) | |
| 17 | oveq2 7395 | . . . . . . . . 9 ⊢ (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → (𝑁 subMat 𝑅) = (𝑁 subMat if(𝑅 ∈ CRing, 𝑅, ℂfld))) | |
| 18 | 17 | fveq1d 6860 | . . . . . . . 8 ⊢ (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → ((𝑁 subMat 𝑅)‘𝑀) = ((𝑁 subMat if(𝑅 ∈ CRing, 𝑅, ℂfld))‘𝑀)) |
| 19 | 18 | oveqd 7404 | . . . . . . 7 ⊢ (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → (𝐾((𝑁 subMat 𝑅)‘𝑀)𝐾) = (𝐾((𝑁 subMat if(𝑅 ∈ CRing, 𝑅, ℂfld))‘𝑀)𝐾)) |
| 20 | 16, 19 | fveq12d 6865 | . . . . . 6 ⊢ (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → (((𝑁 ∖ {𝐾}) maDet 𝑅)‘(𝐾((𝑁 subMat 𝑅)‘𝑀)𝐾)) = (((𝑁 ∖ {𝐾}) maDet if(𝑅 ∈ CRing, 𝑅, ℂfld))‘(𝐾((𝑁 subMat if(𝑅 ∈ CRing, 𝑅, ℂfld))‘𝑀)𝐾))) |
| 21 | 14, 15, 20 | oveq123d 7408 | . . . . 5 ⊢ (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → (𝑆(.r‘𝑅)(((𝑁 ∖ {𝐾}) maDet 𝑅)‘(𝐾((𝑁 subMat 𝑅)‘𝑀)𝐾))) = (𝑆(.r‘if(𝑅 ∈ CRing, 𝑅, ℂfld))(((𝑁 ∖ {𝐾}) maDet if(𝑅 ∈ CRing, 𝑅, ℂfld))‘(𝐾((𝑁 subMat if(𝑅 ∈ CRing, 𝑅, ℂfld))‘𝑀)𝐾)))) |
| 22 | 13, 21 | eqeq12d 2745 | . . . 4 ⊢ (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → (((𝑁 maDet 𝑅)‘(𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾)) = (𝑆(.r‘𝑅)(((𝑁 ∖ {𝐾}) maDet 𝑅)‘(𝐾((𝑁 subMat 𝑅)‘𝑀)𝐾))) ↔ ((𝑁 maDet if(𝑅 ∈ CRing, 𝑅, ℂfld))‘(𝐾(𝑀(𝑁 matRRep if(𝑅 ∈ CRing, 𝑅, ℂfld))𝑆)𝐾)) = (𝑆(.r‘if(𝑅 ∈ CRing, 𝑅, ℂfld))(((𝑁 ∖ {𝐾}) maDet if(𝑅 ∈ CRing, 𝑅, ℂfld))‘(𝐾((𝑁 subMat if(𝑅 ∈ CRing, 𝑅, ℂfld))‘𝑀)𝐾))))) |
| 23 | 8, 22 | imbi12d 344 | . . 3 ⊢ (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → (((𝑀 ∈ (Base‘(𝑁 Mat 𝑅)) ∧ (𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅))) → ((𝑁 maDet 𝑅)‘(𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾)) = (𝑆(.r‘𝑅)(((𝑁 ∖ {𝐾}) maDet 𝑅)‘(𝐾((𝑁 subMat 𝑅)‘𝑀)𝐾)))) ↔ ((𝑀 ∈ (Base‘(𝑁 Mat if(𝑅 ∈ CRing, 𝑅, ℂfld))) ∧ 𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘if(𝑅 ∈ CRing, 𝑅, ℂfld))) → ((𝑁 maDet if(𝑅 ∈ CRing, 𝑅, ℂfld))‘(𝐾(𝑀(𝑁 matRRep if(𝑅 ∈ CRing, 𝑅, ℂfld))𝑆)𝐾)) = (𝑆(.r‘if(𝑅 ∈ CRing, 𝑅, ℂfld))(((𝑁 ∖ {𝐾}) maDet if(𝑅 ∈ CRing, 𝑅, ℂfld))‘(𝐾((𝑁 subMat if(𝑅 ∈ CRing, 𝑅, ℂfld))‘𝑀)𝐾)))))) |
| 24 | cncrng 21300 | . . . . 5 ⊢ ℂfld ∈ CRing | |
| 25 | 24 | elimel 4558 | . . . 4 ⊢ if(𝑅 ∈ CRing, 𝑅, ℂfld) ∈ CRing |
| 26 | 25 | smadiadetg0 22561 | . . 3 ⊢ ((𝑀 ∈ (Base‘(𝑁 Mat if(𝑅 ∈ CRing, 𝑅, ℂfld))) ∧ 𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘if(𝑅 ∈ CRing, 𝑅, ℂfld))) → ((𝑁 maDet if(𝑅 ∈ CRing, 𝑅, ℂfld))‘(𝐾(𝑀(𝑁 matRRep if(𝑅 ∈ CRing, 𝑅, ℂfld))𝑆)𝐾)) = (𝑆(.r‘if(𝑅 ∈ CRing, 𝑅, ℂfld))(((𝑁 ∖ {𝐾}) maDet if(𝑅 ∈ CRing, 𝑅, ℂfld))‘(𝐾((𝑁 subMat if(𝑅 ∈ CRing, 𝑅, ℂfld))‘𝑀)𝐾)))) |
| 27 | 23, 26 | dedth 4547 | . 2 ⊢ (𝑅 ∈ CRing → ((𝑀 ∈ (Base‘(𝑁 Mat 𝑅)) ∧ (𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅))) → ((𝑁 maDet 𝑅)‘(𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾)) = (𝑆(.r‘𝑅)(((𝑁 ∖ {𝐾}) maDet 𝑅)‘(𝐾((𝑁 subMat 𝑅)‘𝑀)𝐾))))) |
| 28 | 27 | impl 455 | 1 ⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝑁 Mat 𝑅))) ∧ (𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅))) → ((𝑁 maDet 𝑅)‘(𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾)) = (𝑆(.r‘𝑅)(((𝑁 ∖ {𝐾}) maDet 𝑅)‘(𝐾((𝑁 subMat 𝑅)‘𝑀)𝐾)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∖ cdif 3911 ifcif 4488 {csn 4589 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 .rcmulr 17221 CRingccrg 20143 ℂfldccnfld 21264 Mat cmat 22294 matRRep cmarrep 22443 subMat csubma 22463 maDet cmdat 22471 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-addf 11147 ax-mulf 11148 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1512 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-ot 4598 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-pm 8802 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-sup 9393 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-xnn0 12516 df-z 12530 df-dec 12650 df-uz 12794 df-rp 12952 df-fz 13469 df-fzo 13616 df-seq 13967 df-exp 14027 df-hash 14296 df-word 14479 df-lsw 14528 df-concat 14536 df-s1 14561 df-substr 14606 df-pfx 14636 df-splice 14715 df-reverse 14724 df-s2 14814 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-hom 17244 df-cco 17245 df-0g 17404 df-gsum 17405 df-prds 17410 df-pws 17412 df-mre 17547 df-mrc 17548 df-acs 17550 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-submnd 18711 df-efmnd 18796 df-grp 18868 df-minusg 18869 df-mulg 19000 df-subg 19055 df-ghm 19145 df-gim 19191 df-cntz 19249 df-oppg 19278 df-symg 19300 df-pmtr 19372 df-psgn 19421 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-cring 20145 df-oppr 20246 df-dvdsr 20266 df-unit 20267 df-invr 20297 df-dvr 20310 df-rhm 20381 df-subrng 20455 df-subrg 20479 df-drng 20640 df-sra 21080 df-rgmod 21081 df-cnfld 21265 df-zring 21357 df-zrh 21413 df-dsmm 21641 df-frlm 21656 df-mat 22295 df-marrep 22445 df-subma 22464 df-mdet 22472 df-minmar1 22522 |
| This theorem is referenced by: cramerimplem1 22570 madjusmdetlem1 33817 |
| Copyright terms: Public domain | W3C validator |