Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > smadiadetr | Structured version Visualization version GIF version |
Description: The determinant of a square matrix with one row replaced with 0's and an arbitrary element of the underlying ring at the diagonal position equals the ring element multiplied with the determinant of a submatrix of the square matrix obtained by removing the row and the column at the same index. Closed form of smadiadetg 21570. Special case of the "Laplace expansion", see definition in [Lang] p. 515. (Contributed by AV, 15-Feb-2019.) |
Ref | Expression |
---|---|
smadiadetr | ⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝑁 Mat 𝑅))) ∧ (𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅))) → ((𝑁 maDet 𝑅)‘(𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾)) = (𝑆(.r‘𝑅)(((𝑁 ∖ {𝐾}) maDet 𝑅)‘(𝐾((𝑁 subMat 𝑅)‘𝑀)𝐾)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anass 1097 | . . . . 5 ⊢ ((𝑀 ∈ (Base‘(𝑁 Mat 𝑅)) ∧ 𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅)) ↔ (𝑀 ∈ (Base‘(𝑁 Mat 𝑅)) ∧ (𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅)))) | |
2 | oveq2 7221 | . . . . . . . 8 ⊢ (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → (𝑁 Mat 𝑅) = (𝑁 Mat if(𝑅 ∈ CRing, 𝑅, ℂfld))) | |
3 | 2 | fveq2d 6721 | . . . . . . 7 ⊢ (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → (Base‘(𝑁 Mat 𝑅)) = (Base‘(𝑁 Mat if(𝑅 ∈ CRing, 𝑅, ℂfld)))) |
4 | 3 | eleq2d 2823 | . . . . . 6 ⊢ (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → (𝑀 ∈ (Base‘(𝑁 Mat 𝑅)) ↔ 𝑀 ∈ (Base‘(𝑁 Mat if(𝑅 ∈ CRing, 𝑅, ℂfld))))) |
5 | fveq2 6717 | . . . . . . 7 ⊢ (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → (Base‘𝑅) = (Base‘if(𝑅 ∈ CRing, 𝑅, ℂfld))) | |
6 | 5 | eleq2d 2823 | . . . . . 6 ⊢ (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → (𝑆 ∈ (Base‘𝑅) ↔ 𝑆 ∈ (Base‘if(𝑅 ∈ CRing, 𝑅, ℂfld)))) |
7 | 4, 6 | 3anbi13d 1440 | . . . . 5 ⊢ (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → ((𝑀 ∈ (Base‘(𝑁 Mat 𝑅)) ∧ 𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅)) ↔ (𝑀 ∈ (Base‘(𝑁 Mat if(𝑅 ∈ CRing, 𝑅, ℂfld))) ∧ 𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘if(𝑅 ∈ CRing, 𝑅, ℂfld))))) |
8 | 1, 7 | bitr3id 288 | . . . 4 ⊢ (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → ((𝑀 ∈ (Base‘(𝑁 Mat 𝑅)) ∧ (𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅))) ↔ (𝑀 ∈ (Base‘(𝑁 Mat if(𝑅 ∈ CRing, 𝑅, ℂfld))) ∧ 𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘if(𝑅 ∈ CRing, 𝑅, ℂfld))))) |
9 | oveq2 7221 | . . . . . 6 ⊢ (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → (𝑁 maDet 𝑅) = (𝑁 maDet if(𝑅 ∈ CRing, 𝑅, ℂfld))) | |
10 | oveq2 7221 | . . . . . . . 8 ⊢ (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → (𝑁 matRRep 𝑅) = (𝑁 matRRep if(𝑅 ∈ CRing, 𝑅, ℂfld))) | |
11 | 10 | oveqd 7230 | . . . . . . 7 ⊢ (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → (𝑀(𝑁 matRRep 𝑅)𝑆) = (𝑀(𝑁 matRRep if(𝑅 ∈ CRing, 𝑅, ℂfld))𝑆)) |
12 | 11 | oveqd 7230 | . . . . . 6 ⊢ (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → (𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾) = (𝐾(𝑀(𝑁 matRRep if(𝑅 ∈ CRing, 𝑅, ℂfld))𝑆)𝐾)) |
13 | 9, 12 | fveq12d 6724 | . . . . 5 ⊢ (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → ((𝑁 maDet 𝑅)‘(𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾)) = ((𝑁 maDet if(𝑅 ∈ CRing, 𝑅, ℂfld))‘(𝐾(𝑀(𝑁 matRRep if(𝑅 ∈ CRing, 𝑅, ℂfld))𝑆)𝐾))) |
14 | fveq2 6717 | . . . . . 6 ⊢ (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → (.r‘𝑅) = (.r‘if(𝑅 ∈ CRing, 𝑅, ℂfld))) | |
15 | eqidd 2738 | . . . . . 6 ⊢ (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → 𝑆 = 𝑆) | |
16 | oveq2 7221 | . . . . . . 7 ⊢ (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → ((𝑁 ∖ {𝐾}) maDet 𝑅) = ((𝑁 ∖ {𝐾}) maDet if(𝑅 ∈ CRing, 𝑅, ℂfld))) | |
17 | oveq2 7221 | . . . . . . . . 9 ⊢ (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → (𝑁 subMat 𝑅) = (𝑁 subMat if(𝑅 ∈ CRing, 𝑅, ℂfld))) | |
18 | 17 | fveq1d 6719 | . . . . . . . 8 ⊢ (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → ((𝑁 subMat 𝑅)‘𝑀) = ((𝑁 subMat if(𝑅 ∈ CRing, 𝑅, ℂfld))‘𝑀)) |
19 | 18 | oveqd 7230 | . . . . . . 7 ⊢ (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → (𝐾((𝑁 subMat 𝑅)‘𝑀)𝐾) = (𝐾((𝑁 subMat if(𝑅 ∈ CRing, 𝑅, ℂfld))‘𝑀)𝐾)) |
20 | 16, 19 | fveq12d 6724 | . . . . . 6 ⊢ (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → (((𝑁 ∖ {𝐾}) maDet 𝑅)‘(𝐾((𝑁 subMat 𝑅)‘𝑀)𝐾)) = (((𝑁 ∖ {𝐾}) maDet if(𝑅 ∈ CRing, 𝑅, ℂfld))‘(𝐾((𝑁 subMat if(𝑅 ∈ CRing, 𝑅, ℂfld))‘𝑀)𝐾))) |
21 | 14, 15, 20 | oveq123d 7234 | . . . . 5 ⊢ (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → (𝑆(.r‘𝑅)(((𝑁 ∖ {𝐾}) maDet 𝑅)‘(𝐾((𝑁 subMat 𝑅)‘𝑀)𝐾))) = (𝑆(.r‘if(𝑅 ∈ CRing, 𝑅, ℂfld))(((𝑁 ∖ {𝐾}) maDet if(𝑅 ∈ CRing, 𝑅, ℂfld))‘(𝐾((𝑁 subMat if(𝑅 ∈ CRing, 𝑅, ℂfld))‘𝑀)𝐾)))) |
22 | 13, 21 | eqeq12d 2753 | . . . 4 ⊢ (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → (((𝑁 maDet 𝑅)‘(𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾)) = (𝑆(.r‘𝑅)(((𝑁 ∖ {𝐾}) maDet 𝑅)‘(𝐾((𝑁 subMat 𝑅)‘𝑀)𝐾))) ↔ ((𝑁 maDet if(𝑅 ∈ CRing, 𝑅, ℂfld))‘(𝐾(𝑀(𝑁 matRRep if(𝑅 ∈ CRing, 𝑅, ℂfld))𝑆)𝐾)) = (𝑆(.r‘if(𝑅 ∈ CRing, 𝑅, ℂfld))(((𝑁 ∖ {𝐾}) maDet if(𝑅 ∈ CRing, 𝑅, ℂfld))‘(𝐾((𝑁 subMat if(𝑅 ∈ CRing, 𝑅, ℂfld))‘𝑀)𝐾))))) |
23 | 8, 22 | imbi12d 348 | . . 3 ⊢ (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → (((𝑀 ∈ (Base‘(𝑁 Mat 𝑅)) ∧ (𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅))) → ((𝑁 maDet 𝑅)‘(𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾)) = (𝑆(.r‘𝑅)(((𝑁 ∖ {𝐾}) maDet 𝑅)‘(𝐾((𝑁 subMat 𝑅)‘𝑀)𝐾)))) ↔ ((𝑀 ∈ (Base‘(𝑁 Mat if(𝑅 ∈ CRing, 𝑅, ℂfld))) ∧ 𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘if(𝑅 ∈ CRing, 𝑅, ℂfld))) → ((𝑁 maDet if(𝑅 ∈ CRing, 𝑅, ℂfld))‘(𝐾(𝑀(𝑁 matRRep if(𝑅 ∈ CRing, 𝑅, ℂfld))𝑆)𝐾)) = (𝑆(.r‘if(𝑅 ∈ CRing, 𝑅, ℂfld))(((𝑁 ∖ {𝐾}) maDet if(𝑅 ∈ CRing, 𝑅, ℂfld))‘(𝐾((𝑁 subMat if(𝑅 ∈ CRing, 𝑅, ℂfld))‘𝑀)𝐾)))))) |
24 | cncrng 20384 | . . . . 5 ⊢ ℂfld ∈ CRing | |
25 | 24 | elimel 4508 | . . . 4 ⊢ if(𝑅 ∈ CRing, 𝑅, ℂfld) ∈ CRing |
26 | 25 | smadiadetg0 21571 | . . 3 ⊢ ((𝑀 ∈ (Base‘(𝑁 Mat if(𝑅 ∈ CRing, 𝑅, ℂfld))) ∧ 𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘if(𝑅 ∈ CRing, 𝑅, ℂfld))) → ((𝑁 maDet if(𝑅 ∈ CRing, 𝑅, ℂfld))‘(𝐾(𝑀(𝑁 matRRep if(𝑅 ∈ CRing, 𝑅, ℂfld))𝑆)𝐾)) = (𝑆(.r‘if(𝑅 ∈ CRing, 𝑅, ℂfld))(((𝑁 ∖ {𝐾}) maDet if(𝑅 ∈ CRing, 𝑅, ℂfld))‘(𝐾((𝑁 subMat if(𝑅 ∈ CRing, 𝑅, ℂfld))‘𝑀)𝐾)))) |
27 | 23, 26 | dedth 4497 | . 2 ⊢ (𝑅 ∈ CRing → ((𝑀 ∈ (Base‘(𝑁 Mat 𝑅)) ∧ (𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅))) → ((𝑁 maDet 𝑅)‘(𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾)) = (𝑆(.r‘𝑅)(((𝑁 ∖ {𝐾}) maDet 𝑅)‘(𝐾((𝑁 subMat 𝑅)‘𝑀)𝐾))))) |
28 | 27 | impl 459 | 1 ⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝑁 Mat 𝑅))) ∧ (𝐾 ∈ 𝑁 ∧ 𝑆 ∈ (Base‘𝑅))) → ((𝑁 maDet 𝑅)‘(𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾)) = (𝑆(.r‘𝑅)(((𝑁 ∖ {𝐾}) maDet 𝑅)‘(𝐾((𝑁 subMat 𝑅)‘𝑀)𝐾)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ∖ cdif 3863 ifcif 4439 {csn 4541 ‘cfv 6380 (class class class)co 7213 Basecbs 16760 .rcmulr 16803 CRingccrg 19563 ℂfldccnfld 20363 Mat cmat 21304 matRRep cmarrep 21453 subMat csubma 21473 maDet cmdat 21481 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 ax-addf 10808 ax-mulf 10809 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-xor 1508 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-ot 4550 df-uni 4820 df-int 4860 df-iun 4906 df-iin 4907 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-se 5510 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-isom 6389 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-of 7469 df-om 7645 df-1st 7761 df-2nd 7762 df-supp 7904 df-tpos 7968 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-2o 8203 df-er 8391 df-map 8510 df-pm 8511 df-ixp 8579 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-fsupp 8986 df-sup 9058 df-oi 9126 df-card 9555 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-div 11490 df-nn 11831 df-2 11893 df-3 11894 df-4 11895 df-5 11896 df-6 11897 df-7 11898 df-8 11899 df-9 11900 df-n0 12091 df-xnn0 12163 df-z 12177 df-dec 12294 df-uz 12439 df-rp 12587 df-fz 13096 df-fzo 13239 df-seq 13575 df-exp 13636 df-hash 13897 df-word 14070 df-lsw 14118 df-concat 14126 df-s1 14153 df-substr 14206 df-pfx 14236 df-splice 14315 df-reverse 14324 df-s2 14413 df-struct 16700 df-sets 16717 df-slot 16735 df-ndx 16745 df-base 16761 df-ress 16785 df-plusg 16815 df-mulr 16816 df-starv 16817 df-sca 16818 df-vsca 16819 df-ip 16820 df-tset 16821 df-ple 16822 df-ds 16824 df-unif 16825 df-hom 16826 df-cco 16827 df-0g 16946 df-gsum 16947 df-prds 16952 df-pws 16954 df-mre 17089 df-mrc 17090 df-acs 17092 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-mhm 18218 df-submnd 18219 df-efmnd 18296 df-grp 18368 df-minusg 18369 df-mulg 18489 df-subg 18540 df-ghm 18620 df-gim 18663 df-cntz 18711 df-oppg 18738 df-symg 18760 df-pmtr 18834 df-psgn 18883 df-cmn 19172 df-abl 19173 df-mgp 19505 df-ur 19517 df-ring 19564 df-cring 19565 df-oppr 19641 df-dvdsr 19659 df-unit 19660 df-invr 19690 df-dvr 19701 df-rnghom 19735 df-drng 19769 df-subrg 19798 df-sra 20209 df-rgmod 20210 df-cnfld 20364 df-zring 20436 df-zrh 20470 df-dsmm 20694 df-frlm 20709 df-mat 21305 df-marrep 21455 df-subma 21474 df-mdet 21482 df-minmar1 21532 |
This theorem is referenced by: cramerimplem1 21580 madjusmdetlem1 31491 |
Copyright terms: Public domain | W3C validator |