Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  smadiadetr Structured version   Visualization version   GIF version

 Description: The determinant of a square matrix with one row replaced with 0's and an arbitrary element of the underlying ring at the diagonal position equals the ring element multiplied with the determinant of a submatrix of the square matrix obtained by removing the row and the column at the same index. Closed form of smadiadetg 21319. Special case of the "Laplace expansion", see definition in [Lang] p. 515. (Contributed by AV, 15-Feb-2019.)
Assertion
Ref Expression
smadiadetr (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝑁 Mat 𝑅))) ∧ (𝐾𝑁𝑆 ∈ (Base‘𝑅))) → ((𝑁 maDet 𝑅)‘(𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾)) = (𝑆(.r𝑅)(((𝑁 ∖ {𝐾}) maDet 𝑅)‘(𝐾((𝑁 subMat 𝑅)‘𝑀)𝐾))))

StepHypRef Expression
1 3anass 1092 . . . . 5 ((𝑀 ∈ (Base‘(𝑁 Mat 𝑅)) ∧ 𝐾𝑁𝑆 ∈ (Base‘𝑅)) ↔ (𝑀 ∈ (Base‘(𝑁 Mat 𝑅)) ∧ (𝐾𝑁𝑆 ∈ (Base‘𝑅))))
2 oveq2 7153 . . . . . . . 8 (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → (𝑁 Mat 𝑅) = (𝑁 Mat if(𝑅 ∈ CRing, 𝑅, ℂfld)))
32fveq2d 6659 . . . . . . 7 (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → (Base‘(𝑁 Mat 𝑅)) = (Base‘(𝑁 Mat if(𝑅 ∈ CRing, 𝑅, ℂfld))))
43eleq2d 2875 . . . . . 6 (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → (𝑀 ∈ (Base‘(𝑁 Mat 𝑅)) ↔ 𝑀 ∈ (Base‘(𝑁 Mat if(𝑅 ∈ CRing, 𝑅, ℂfld)))))
5 fveq2 6655 . . . . . . 7 (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → (Base‘𝑅) = (Base‘if(𝑅 ∈ CRing, 𝑅, ℂfld)))
65eleq2d 2875 . . . . . 6 (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → (𝑆 ∈ (Base‘𝑅) ↔ 𝑆 ∈ (Base‘if(𝑅 ∈ CRing, 𝑅, ℂfld))))
74, 63anbi13d 1435 . . . . 5 (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → ((𝑀 ∈ (Base‘(𝑁 Mat 𝑅)) ∧ 𝐾𝑁𝑆 ∈ (Base‘𝑅)) ↔ (𝑀 ∈ (Base‘(𝑁 Mat if(𝑅 ∈ CRing, 𝑅, ℂfld))) ∧ 𝐾𝑁𝑆 ∈ (Base‘if(𝑅 ∈ CRing, 𝑅, ℂfld)))))
81, 7bitr3id 288 . . . 4 (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → ((𝑀 ∈ (Base‘(𝑁 Mat 𝑅)) ∧ (𝐾𝑁𝑆 ∈ (Base‘𝑅))) ↔ (𝑀 ∈ (Base‘(𝑁 Mat if(𝑅 ∈ CRing, 𝑅, ℂfld))) ∧ 𝐾𝑁𝑆 ∈ (Base‘if(𝑅 ∈ CRing, 𝑅, ℂfld)))))
9 oveq2 7153 . . . . . 6 (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → (𝑁 maDet 𝑅) = (𝑁 maDet if(𝑅 ∈ CRing, 𝑅, ℂfld)))
10 oveq2 7153 . . . . . . . 8 (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → (𝑁 matRRep 𝑅) = (𝑁 matRRep if(𝑅 ∈ CRing, 𝑅, ℂfld)))
1110oveqd 7162 . . . . . . 7 (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → (𝑀(𝑁 matRRep 𝑅)𝑆) = (𝑀(𝑁 matRRep if(𝑅 ∈ CRing, 𝑅, ℂfld))𝑆))
1211oveqd 7162 . . . . . 6 (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → (𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾) = (𝐾(𝑀(𝑁 matRRep if(𝑅 ∈ CRing, 𝑅, ℂfld))𝑆)𝐾))
139, 12fveq12d 6662 . . . . 5 (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → ((𝑁 maDet 𝑅)‘(𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾)) = ((𝑁 maDet if(𝑅 ∈ CRing, 𝑅, ℂfld))‘(𝐾(𝑀(𝑁 matRRep if(𝑅 ∈ CRing, 𝑅, ℂfld))𝑆)𝐾)))
14 fveq2 6655 . . . . . 6 (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → (.r𝑅) = (.r‘if(𝑅 ∈ CRing, 𝑅, ℂfld)))
15 eqidd 2799 . . . . . 6 (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → 𝑆 = 𝑆)
16 oveq2 7153 . . . . . . 7 (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → ((𝑁 ∖ {𝐾}) maDet 𝑅) = ((𝑁 ∖ {𝐾}) maDet if(𝑅 ∈ CRing, 𝑅, ℂfld)))
17 oveq2 7153 . . . . . . . . 9 (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → (𝑁 subMat 𝑅) = (𝑁 subMat if(𝑅 ∈ CRing, 𝑅, ℂfld)))
1817fveq1d 6657 . . . . . . . 8 (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → ((𝑁 subMat 𝑅)‘𝑀) = ((𝑁 subMat if(𝑅 ∈ CRing, 𝑅, ℂfld))‘𝑀))
1918oveqd 7162 . . . . . . 7 (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → (𝐾((𝑁 subMat 𝑅)‘𝑀)𝐾) = (𝐾((𝑁 subMat if(𝑅 ∈ CRing, 𝑅, ℂfld))‘𝑀)𝐾))
2016, 19fveq12d 6662 . . . . . 6 (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → (((𝑁 ∖ {𝐾}) maDet 𝑅)‘(𝐾((𝑁 subMat 𝑅)‘𝑀)𝐾)) = (((𝑁 ∖ {𝐾}) maDet if(𝑅 ∈ CRing, 𝑅, ℂfld))‘(𝐾((𝑁 subMat if(𝑅 ∈ CRing, 𝑅, ℂfld))‘𝑀)𝐾)))
2114, 15, 20oveq123d 7166 . . . . 5 (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → (𝑆(.r𝑅)(((𝑁 ∖ {𝐾}) maDet 𝑅)‘(𝐾((𝑁 subMat 𝑅)‘𝑀)𝐾))) = (𝑆(.r‘if(𝑅 ∈ CRing, 𝑅, ℂfld))(((𝑁 ∖ {𝐾}) maDet if(𝑅 ∈ CRing, 𝑅, ℂfld))‘(𝐾((𝑁 subMat if(𝑅 ∈ CRing, 𝑅, ℂfld))‘𝑀)𝐾))))
2213, 21eqeq12d 2814 . . . 4 (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → (((𝑁 maDet 𝑅)‘(𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾)) = (𝑆(.r𝑅)(((𝑁 ∖ {𝐾}) maDet 𝑅)‘(𝐾((𝑁 subMat 𝑅)‘𝑀)𝐾))) ↔ ((𝑁 maDet if(𝑅 ∈ CRing, 𝑅, ℂfld))‘(𝐾(𝑀(𝑁 matRRep if(𝑅 ∈ CRing, 𝑅, ℂfld))𝑆)𝐾)) = (𝑆(.r‘if(𝑅 ∈ CRing, 𝑅, ℂfld))(((𝑁 ∖ {𝐾}) maDet if(𝑅 ∈ CRing, 𝑅, ℂfld))‘(𝐾((𝑁 subMat if(𝑅 ∈ CRing, 𝑅, ℂfld))‘𝑀)𝐾)))))
238, 22imbi12d 348 . . 3 (𝑅 = if(𝑅 ∈ CRing, 𝑅, ℂfld) → (((𝑀 ∈ (Base‘(𝑁 Mat 𝑅)) ∧ (𝐾𝑁𝑆 ∈ (Base‘𝑅))) → ((𝑁 maDet 𝑅)‘(𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾)) = (𝑆(.r𝑅)(((𝑁 ∖ {𝐾}) maDet 𝑅)‘(𝐾((𝑁 subMat 𝑅)‘𝑀)𝐾)))) ↔ ((𝑀 ∈ (Base‘(𝑁 Mat if(𝑅 ∈ CRing, 𝑅, ℂfld))) ∧ 𝐾𝑁𝑆 ∈ (Base‘if(𝑅 ∈ CRing, 𝑅, ℂfld))) → ((𝑁 maDet if(𝑅 ∈ CRing, 𝑅, ℂfld))‘(𝐾(𝑀(𝑁 matRRep if(𝑅 ∈ CRing, 𝑅, ℂfld))𝑆)𝐾)) = (𝑆(.r‘if(𝑅 ∈ CRing, 𝑅, ℂfld))(((𝑁 ∖ {𝐾}) maDet if(𝑅 ∈ CRing, 𝑅, ℂfld))‘(𝐾((𝑁 subMat if(𝑅 ∈ CRing, 𝑅, ℂfld))‘𝑀)𝐾))))))
24 cncrng 20133 . . . . 5 fld ∈ CRing
2524elimel 4495 . . . 4 if(𝑅 ∈ CRing, 𝑅, ℂfld) ∈ CRing
2625smadiadetg0 21320 . . 3 ((𝑀 ∈ (Base‘(𝑁 Mat if(𝑅 ∈ CRing, 𝑅, ℂfld))) ∧ 𝐾𝑁𝑆 ∈ (Base‘if(𝑅 ∈ CRing, 𝑅, ℂfld))) → ((𝑁 maDet if(𝑅 ∈ CRing, 𝑅, ℂfld))‘(𝐾(𝑀(𝑁 matRRep if(𝑅 ∈ CRing, 𝑅, ℂfld))𝑆)𝐾)) = (𝑆(.r‘if(𝑅 ∈ CRing, 𝑅, ℂfld))(((𝑁 ∖ {𝐾}) maDet if(𝑅 ∈ CRing, 𝑅, ℂfld))‘(𝐾((𝑁 subMat if(𝑅 ∈ CRing, 𝑅, ℂfld))‘𝑀)𝐾))))
2723, 26dedth 4484 . 2 (𝑅 ∈ CRing → ((𝑀 ∈ (Base‘(𝑁 Mat 𝑅)) ∧ (𝐾𝑁𝑆 ∈ (Base‘𝑅))) → ((𝑁 maDet 𝑅)‘(𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾)) = (𝑆(.r𝑅)(((𝑁 ∖ {𝐾}) maDet 𝑅)‘(𝐾((𝑁 subMat 𝑅)‘𝑀)𝐾)))))
2827impl 459 1 (((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝑁 Mat 𝑅))) ∧ (𝐾𝑁𝑆 ∈ (Base‘𝑅))) → ((𝑁 maDet 𝑅)‘(𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾)) = (𝑆(.r𝑅)(((𝑁 ∖ {𝐾}) maDet 𝑅)‘(𝐾((𝑁 subMat 𝑅)‘𝑀)𝐾))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111   ∖ cdif 3880  ifcif 4428  {csn 4528  ‘cfv 6332  (class class class)co 7145  Basecbs 16495  .rcmulr 16578  CRingccrg 19312  ℂfldccnfld 20112   Mat cmat 21053   matRRep cmarrep 21202   subMat csubma 21222   maDet cmdat 21230 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5158  ax-sep 5171  ax-nul 5178  ax-pow 5235  ax-pr 5299  ax-un 7454  ax-cnex 10600  ax-resscn 10601  ax-1cn 10602  ax-icn 10603  ax-addcl 10604  ax-addrcl 10605  ax-mulcl 10606  ax-mulrcl 10607  ax-mulcom 10608  ax-addass 10609  ax-mulass 10610  ax-distr 10611  ax-i2m1 10612  ax-1ne0 10613  ax-1rid 10614  ax-rnegex 10615  ax-rrecex 10616  ax-cnre 10617  ax-pre-lttri 10618  ax-pre-lttrn 10619  ax-pre-ltadd 10620  ax-pre-mulgt0 10621  ax-addf 10623  ax-mulf 10624 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-xor 1503  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3444  df-sbc 3723  df-csb 3831  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-ot 4537  df-uni 4805  df-int 4843  df-iun 4887  df-iin 4888  df-br 5035  df-opab 5097  df-mpt 5115  df-tr 5141  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6334  df-fn 6335  df-f 6336  df-f1 6337  df-fo 6338  df-f1o 6339  df-fv 6340  df-isom 6341  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7400  df-om 7574  df-1st 7684  df-2nd 7685  df-supp 7827  df-tpos 7893  df-wrecs 7948  df-recs 8009  df-rdg 8047  df-1o 8103  df-2o 8104  df-oadd 8107  df-er 8290  df-map 8409  df-pm 8410  df-ixp 8463  df-en 8511  df-dom 8512  df-sdom 8513  df-fin 8514  df-fsupp 8836  df-sup 8908  df-oi 8976  df-card 9370  df-pnf 10684  df-mnf 10685  df-xr 10686  df-ltxr 10687  df-le 10688  df-sub 10879  df-neg 10880  df-div 11305  df-nn 11644  df-2 11706  df-3 11707  df-4 11708  df-5 11709  df-6 11710  df-7 11711  df-8 11712  df-9 11713  df-n0 11904  df-xnn0 11976  df-z 11990  df-dec 12107  df-uz 12252  df-rp 12398  df-fz 12906  df-fzo 13049  df-seq 13385  df-exp 13446  df-hash 13707  df-word 13878  df-lsw 13926  df-concat 13934  df-s1 13961  df-substr 14014  df-pfx 14044  df-splice 14123  df-reverse 14132  df-s2 14221  df-struct 16497  df-ndx 16498  df-slot 16499  df-base 16501  df-sets 16502  df-ress 16503  df-plusg 16590  df-mulr 16591  df-starv 16592  df-sca 16593  df-vsca 16594  df-ip 16595  df-tset 16596  df-ple 16597  df-ds 16599  df-unif 16600  df-hom 16601  df-cco 16602  df-0g 16727  df-gsum 16728  df-prds 16733  df-pws 16735  df-mre 16869  df-mrc 16870  df-acs 16872  df-mgm 17864  df-sgrp 17913  df-mnd 17924  df-mhm 17968  df-submnd 17969  df-efmnd 18046  df-grp 18118  df-minusg 18119  df-mulg 18238  df-subg 18289  df-ghm 18369  df-gim 18412  df-cntz 18460  df-oppg 18487  df-symg 18509  df-pmtr 18583  df-psgn 18632  df-cmn 18921  df-abl 18922  df-mgp 19254  df-ur 19266  df-ring 19313  df-cring 19314  df-oppr 19390  df-dvdsr 19408  df-unit 19409  df-invr 19439  df-dvr 19450  df-rnghom 19484  df-drng 19518  df-subrg 19547  df-sra 19958  df-rgmod 19959  df-cnfld 20113  df-zring 20185  df-zrh 20219  df-dsmm 20443  df-frlm 20458  df-mat 21054  df-marrep 21204  df-subma 21223  df-mdet 21231  df-minmar1 21281 This theorem is referenced by:  cramerimplem1  21329  madjusmdetlem1  31246
 Copyright terms: Public domain W3C validator